
Extruding building footprints to create

topologically consistent 3D city models

Hugo Ledoux and Martijn Meijers

Delft University of Technology (OTB—section GIS Technology)
Jaffalaan 9, 2628BX Delft, the Netherlands

{h.ledoux-b.m.meijers}@tudelft.nl

February 23, 2009

One of the simplest methods to construct a 3D city model is to extrude building footprints, to
obtain “block-shaped” buildings. While the method is well-known and easy to implement, if the
topological relationships between the footprints are not taken into account, the resulting city models
will not necessarily be topologically consistent. As a result, the model will be of little use for most
applications, besides visualisation that is. In this paper, we present a new extrusion algorithm to
construct topologically correct 3D city models. It is conceptually simple and permits us to create
city models in different formats (e.g. CityGML). We have implemented the algorithm, tested it for
the creation of the model of our university campus and validated it by constructing the constrained
Delaunay tetrahedralization.

1 Introduction

The Open Geospatial Consortium (OGC) has recently adopted CityGML (OGC, 2008) as a standard for repre-
senting three-dimensional (3D) city models. CityGML, a GML-based (Geography Markup Language) format,
“not only represents the shape and graphical appearance of city models but specifically addresses the object
semantics and the representation of the thematic properties, taxonomies and aggregations” (Kolbe, 2008). It
also offers a multi-scale representation since five levels of details (LODs) for the same city can be stored: from
LOD0 where only the terrain is stored, to LOD4 where buildings have detailed roofs structures, windows, rooms
and even pieces of furniture. While the adoption of an international standard will certainly foster the use of
CityGML by practitioners and also foster the development of new tools to create and process city models, it
should also be said that at this moment the creation of 3D city models is still very much a problem in practice.
Many 3D data from diverse sources are being collected (photogrammetry, LIDAR, GPS, terrestrial laserscan-
ning, etc.), but not enough tools to process and structure these data are available. Most of the available models
have indeed been built semi-automatically, and for the ones with high LODs heavy manual intervention is often
the norm.

We discuss in this paper one way to automatically construct a 3D city model: by extruding the building
footprints (ground plans) to create “block-shaped” buildings. This representation of a city, where roofs have
no structure and are formed by horizontal planes, is referred to as LOD1 in CityGML. This is arguably the
simplest way to create 3D city models as footprints of buildings are (usually) readily available, and the height at
which buildings are extruded can be obtained by different means, although airbone laser scanners are nowadays
used (Rottensteiner et al., 2005). Here, one might say that the extrusion task is an easy one. We argue that it
is indeed easy if the only thing you want to do with your city model is to look at it! As explained in Section 2,
many commercial software can extrude polygons to obtain buildings, but the results will in most cases only
look nice, but not be topologically consistent. In a nutshell, that means that the result of an extrusion contains
for example duplicate points, overlapping faces, faces intersecting where there are no points, etc. (we define
formally topological consistency in Section 3). Figure 1 illustrates a simple case where five building footprints
are being extruded. If the adjacency relationships between the building footprints are not taken into account

1



D=9m

E=12m

(a) (b)

B=12m

A=15m

C=8m

Figure 1: (a) Top view of 5 buildings A, B, C, D and E, and their respective elevation. (b) Perspective view of
the result, obtained by extrusion.

while extruding (if the five are “independently” extruded), it is easy to see that the resulting model will not be
consistent. And if one wants to process and manipulate such a city model (using the topological relationships
between the spatial objects in 3D), and not only visualise it, then all these inconsistencies have to be fixed.
Examples of applications where consistent city models are needed are plenty: noise modelling in 3D (CityGML
has an application extension for noise mapping), flood modelling (Schulte and Coors, 2008), 3D navigation (Lee
and Zlatanova, 2008), disaster management (Kolbe et al., 2008) and urban planning (Köninger and Bartel,
1998).

In this paper, we present a new algorithm to construct topologically consistent 3D city models by extrusion of
building footprints. The algorithm, which is described in Section 4, is conceptually simple and straightforward
to implement. It takes as input a topologically consistent dataset in 2D, and can output to different formats,
including CityGML. We have put strict requirements on the input because cleaning a 2D dataset is a straight-
forward task for which many tools exist. In 3D, the same task is titanic, for, to the best of our knowledge, there
are simply no tools available. Furthermore, we report in Section 5 on our implementation of the algorithm to
create the city model of the campus of our university (TU Delft). In that section, we also describe the tools we
used to obtain topological consistency out of a “spaghetti” input, show examples of the CityGML output, and
describe how we validated our approach by creating a constrained Delaunay tetrahedralization of the model.

2 Related work

As mentioned in the Introduction, the “simple” extrusion of footprints, that is without considering other foot-
prints, is a straightforward task and has been implemented in many commercial products, for instance Oracle
Spatial 11g (Beinat et al., 2007), ArcGIS1, or even Google Earth2. Each resulting building is valid, but there
are no guarantees that a set of footprints will yield a topologically consistent city models.

Tse et al. (2005) extrude footprints and output topologically consistent models, but take a totally different
approach. They start by constructing the constrained Delaunay triangulation of the footprints, and then extrude
the buildings by always keeping a single triangulated surface for the whole area; the surface has vertical walls
so their approach is referred to as “2.75D”. With their method, many applications are possible since topological
relationships between the buildings are explicitly stored, but it is unfortunately impossible to represent the
vertical walls between two connected buildings (e.g. the five buildings in Figure 1 are stored without the internal
walls) as the whole dataset must be represented by single surface.

One way to obtain topologically consistent 3D city models is to use constructive solid geometry (CSG). With
that method, polyhedra are represented as Boolean combinations (union, intersection and difference) of simpler
objects such as cylinders, cubes, spheres or pyramids. CSG objects are by definition topologically consistent,
and it is possible to convert them a boundary representation (see Requicha (1982) for more details). Haala and
Brenner (1999) create extruded 3D city models by first decomposing footprints into rectangles, and from these
rectangles create CSG polyhedra, which are then combined to reconstruct the building. The main problem
of that approach is that not every building footprint can be decomposed into rectangles; as can be seen in
Section 5, some of the footprints of our campus have for instance circular shapes.

1www.esri.com/arcgis
2earth.google.com

2



Another approach to obtain topological consistency is that of cell decomposition, as explained in Haala et al.
(2007). Each edge of a building becomes a half-space plane (an infinite vertical plane defined mathematically),
and intersections of planes permits us to reconstruct the building. It is not clear how this method would scale
up to big datasets since it appears that every half-space plane has to be tested with every other one in the
dataset.

3 Topological concepts related to extrusion

This section introduces definitions and concepts needed for the next section. The concepts are related to
topological relationships in 2D and 3D, and what happens when one creates a 3D dataset from a 2D dataset.

3.1 Topological concepts in 2D

Let M be a set of spatial objects in R
2, the two-dimensional Euclidean space. Spatial objects in M are formed

by three geometric primitives σ: (i) a point (0-dimensional object); (ii) a straight line segment (1-dimension),
which is referred to simply as a line in the following; and (iii) a polygon (2-dimensional object). We call a
sequence of lines connected by their end-points a polyline. Each point in a polyline is part of two lines, except
the first and the last ones (we call them the extremes of the polyline).

Observe that a spatial object σ of dimensionality higher than 0 is formed by lower dimensionality primitives
that define its boundary, denoted ∂σ. If σ is a line, then ∂σ is formed by both end-points of σ; if σ is a polygon,
then ∂σ is formed by a polyline forming a loop (whose extremes are coincident).

We say that M is topologically consistent if the following rules are valid:

1. every line in M is formed by two points also in M ;

2. the intersection of two lines σ1 and σ2, denoted σ1 ∩ σ2, is either empty or is a point in M ;

3. the intersection of the interior of a polygon σ1, denoted σ◦

1 , with another primitive in M , σ◦

1 ∩σ2, is empty.

Rule #3 implies that every polygon in M is topologically equivalent to a unit disk, i.e. it does not contain any
holes. Also, observe that rule #2 implies that the intersection of two polygons σ1 and σ2, is either empty or a
finite set of primitives in M (a point or a line).

Connectedness. Consider two geometric primitives σ1 and σ2. We say that σ1 is incident to σ2 if σ2 is a
primitives forming ∂σ1 (the dimensionality of the two primitives is different), and we say that σ1 and σ2 are
adjacent if they share a lower-dimensionality primitives (here σ1 and σ2 are of the same dimensionality). If
the set of shared primitives contains at least one line, σ1 and σ2 are strongly connected, and if it contains only
points, then they are weakly connected. (In Figure 1, polygon A and D are strongly connected, while A and B

are weakly connected).

Representing topology. Once a set of spatial objects is topologically consistent, different data structures can
be used to represent explicitly and store the topological relationships of the set M of objects. Observe that if
M is stored in a computer the names of the geometric primitives change to node, edges and faces (or areas), but
these have the same definition. The well-known node-edge-face data structure (NEF) can for instance be used.
With it, each edge is directed (it has a start and an end node), and the faces left and right of each edge are
also stored (most GIS textbook, such as Longley et al. (2001) and Worboys and Duckham (2004), give detailed
description of the structure). This permits us to explicitly represent the concept of strong connectedness, but
not weak connectedness. To represent the latter, another data structure where the ordering of the edges incident
to nodes must be used; the DCEL structure (Muller and Preparata, 1978) or the half-edge (Mäntylä, 1988) are
two examples. It should however be noticed that, if not explicitly stored, weak connectedness can always be
derived.

3



(b)
(c)

a

b c

d
a

b c

d

k

e f

g h
ji

l

n

o

q

p m

D=9m

E=12m

(a)

B=12m

A=15m

C=8m
b

a
d

c

Figure 2: Overview of the extraction of building A. (a) The footprint of A is the polygon abcd. (b) Perspective
view of the result (with connected buildings). (c) A is formed of several faces.

3.2 3D topological concepts

When moving to R
3, one more geometric primitive has to be introduced: the polyhedron. As is the case in 2D,

a polyhedron is formed by lower dimensionality primitives. The concept of topological consistency in R
3 is a

straightforward generalisation of the three rules previously defined. The only differences are that: (i) all the
primitives are embedded in R

3; (ii) another rule has to be added: the intersection of the interior of a polyhedron
σ1 with another primitive in M , σ◦

1
∩ σ2, is empty.

3.3 From 2D to 3D with extrusion

In the context of 3D city models, extrusion means that a building (a polyhedron) is constructed by “pushing
upwards” its footprint (a polygon). For a footprint with n lines, the resulting building is formed of n + 2
surfaces:

• the floor surface corresponds to the footprint;

• the roof surface has the same geometry as the floor but all points are at the extruded height;

• every line becomes a wall (a vertical surface).

If the building footprints are considered independently, or if a footprint does not have any other footprint
adjacent, then as discussed previously creating a building is an easy task. However, if there are adjacent
footprints (weakly and/or strongly connected), the result will not be topologically consistent. Indeed, consider
the case in Figure 2a where five connected footprints are extruded to different heights, yielding the set of objects
shown in Figure 2b.

Let us focus on the building A whose footprint is abcd. Figure 2c shows the resulting extruded building, with
different shades of grey for every extruded surface. First of all, notice that A has 17 points and 9 surfaces; a
“simple extrusion” would have created here 8 points and 6 surfaces. Other observations:

• the floor surface is not the polygon abcd, but abefcd, because C and D are strongly connected to A;

• the roof surface is however formed only of the four points forming the footprint, for the buildings adjacent
to it are not as high;

• line ab is extruded to two surfaces abkl and klno since A and E do not have the same height. Observe
also that surface abkl will be a surface of both A and E;

• buildings A and B are weakly connected and have different heights, which means that the edges incident
to d in 2D (cd and ad) are extruded to surfaces containing a point at the elevation of building B (here
surfaces cdmqpj and dmqnla). Notice here that point l is in the second surface because E is adjacent to
A;

• line bc in the footprint is the most complex one to extrude since three surfaces must be extruded (beghijpok,
efhg and fcjih).

As can be seen from these observations, two factors are to be considered when extruding building footprints:
(i) the relative heights of two connected buildings, (ii) their type of connectedness. But it should also be said
that we cannot simply consider pair-wise the building footprints as more complex situations arise, for instance

4



in Figure 2c the point f has 3 incident buildings (A, C and D) that are extruded to different heights. When
creating the surfaces containing f , all its adjacent footprints have to be taken into account. It is worth pointing
out that many cases are also very simple to handle, for instance extruding a line whose end-points have only
one other incident line, as is the case for two lines of building B (the two top-right lines). Here, no special cases
arise and the simple extrusion is sufficient.

4 Our approach

This section presents our new algorithm to extrude 2D footprints, called Extrude and detailed in Figure 3.
The input of the algorithm is a topologically consistent 2D dataset, and the output is a list of topologically
consistent buildings (a building object is a container for a set of 3D surfaces describing the polyhedron). In
practice, only a few datasets are topologically consistent. We could go for extruding a non-consistent 2D dataset
to a 3D geometric model and try to clean the resulting model by creating 3D topology and correcting errors
after the extrusion process. However, since there are currently no tools, to our knowledge, to do this validation
in 3D, we chose to use existing tools to create a consistent 2D dataset.

In the previous section we have shown that finding the geometry of the (vertical) wall surfaces is complex due
to the different heights and given connectedness of the buildings. Our approach tackles this problem elegantly
by introducing the concept of node columns. At the location of each 2D node, a node column is erected. Such
a column consists of a sorted list of all the different heights of the buildings incident to this node (plus the
floor height, which we assume to be zero). In our case, using a NEF data structure, we could find the different
heights by navigating from the nodes to the related edges, and then to the adjacent faces (and so obtain the
associated heights). Figure 5a illustrates a part of the node columns related to building A (shown in Figure 1a).

Input: a topologically consistent 2D footprint dataset D, with extrusion height for every footprint
Output: a topologically consistent list B of 3D buildings
1: B ← init an empty list
2: N ← init an empty list
3: for all faces in D as f do
4: b← init a building {with height associated to f}
5: b← CreateFloorSurface

6: b← CreateRoofSurface

7: B ← add b

8: for all nodes in D as n do
9: nc← compute a node column

10: N ← add nc

11: for all edges in D as e do
12: ncstart, ncend ← from N {related to e}
13: if e is adjacent to the universe face then
14: b← from B {face not being the universe}
15: b← CreateWallSurfaces (e, ncstart, ncend, b)
16: else
17: bleft, bright ← from B {the two adjacent faces}
18: bleft, bright ← CreateWallSurfaces (e, ncstart, ncend, bleft, bright)

Figure 3: The Extrude algorithm.

The main steps of the algorithm are as follows: First all buildings are initialized. As shown in line 3 of Figure 3,
the floor and the roof surfaces are both added instantly after initialising such a container object. Then, after
initialising the node columns (line 8), the wall surfaces are pulled up per edge. For this, we visit all edges in
the given dataset and apply the CreateWallSurfaces algorithm (line 11 and onwards). As we do not have
a full area partitioning, edges may be adjacent to empty space. The concept of the universe face models this
empty space.

The CreateWallSurfaces function, given in Figure 4, outputs the correct number of wall surfaces for each
building, with the help of the ExtrudeSegment function, which does the ‘heavy lifting’ of extrusion. Its
input is an edge (for which we can derive the node columns), and the start and end heights of the surface to
be created. A ring of coordinates, that describes the geometry of the wall surface, is formed as follows: the

5



Input: an edge e, node column ncstart, node column ncend, one or two buildings (bleft and/or bright)
Output: building(s) with wall surfaces
1: W ← init a list
2: if one building then
3: building ← ExtrudeSegment (e, 0, height of building, ncstart, ncend)
4: else {two buildings}
5: if height of bleft = height of bright then {equal height}
6: bleft, bright ← ExtrudeSegment (e, 0, height of bleft, ncstart, ncend)
7: else
8: if height of bleft < height of bright then {bright is tallest}
9: bleft, bright ← ExtrudeSegment (e, 0, height of bleft, ncstart, ncend)

10: bright ← ExtrudeSegment (e, height of bleft, height of bright, ncstart, ncend)
11: else {bleft is tallest}
12: bleft, bright ← ExtrudeSegment (e, 0, height of bright, ncstart, ncend)
13: bleft ← ExtrudeSegment (e, height of bright, height of bleft, ncstart, ncend)

Figure 4: The CreateWallSurfaces algorithm.

given start node column is ascended from the start height, until the end height is reached. Subsequently the
end node column is descended from that height, until the start height is encountered. The resulting geometry
of the surface is correctly added to the building. Here, correctly means that the normal vector to the surface
described points outward of the building to which the surface is added.

Figure 5b shows an illustration of how ExtrudeSegment uses the node columns: the node columns at location
e and f are given to the ExtrudeSegment function when edge ef is processed. Edge ef is adjacent to building
A and building C, for which building A is the tallest of the two. First, the groundheight (0m) and the height
of building C (8m) are given. This way a loop is formed over the two given node columns and results in surface
eghf . Second, the height of building C (8m) and the height of building A (15m) are given, together with the
two node columns and surface grsih is the result. Surface eghf is added to the buildings A and C, as both
are adjacent to edge ef . Surface grsih is only added to building A (as this is the tallest of the two buildings).
Notice here that since we extrude buildings by processing edges, the resulting surface between building A and
buildings C and D is modelled with five surfaces, and not three as in Figure 2c.

(a)

b ce f

0

15

8

12
9 9

8

(c)

a

b c

d

k

e f

g h
ji

l

n

o

q

p mr s

(b)

e f e f

15

0

8 9
g h

i

r s

Figure 5: (a) Node columns generated for the front side of building A (same configuration as in Figure 2). (b)
Extrusion of edge ef results in two surfaces (c) Extruded result for the footprint of building A.

Observe that if edges were modelled as polylines (compared to straight lines), the ExtrudeSegment function
would have to be modified, but could still output correct geometry. With this approach, each edge is entirely
processed, but segment per segment. If the start or end vertex of a segment is a node, a given node column
(either the start node column or the end column) is used for creating the geometry of the wall surface. If this is
not the case—a segment thus starts or ends in a vertex not being a node—a virtual node column is generated,
consisting of the start and end height given. This way per segment two node columns can be used and a ring
of coordinates can still be formed.

6



Figure 6: Perspective view of the CityGML file (LOD1) of the TU Delft campus.

5 Experiments and results

To test our approach, we have setup an experiment with real world data of the TU Delft campus. For this area,
covering 2.3 km2 with 470 buildings, we obtained the Large Scale Base map of Delft (Grootschalige Basiskaart
in Dutch). This map was a line-oriented dataset, consequently the first step was to form footprint polygons out
of the lines.

As the footprints appeared to be too coarse to get an accurate city model with respect to the height of the
buildings, it was decided to split all building footprints into multiple, with respect to height, homogeneous parts.
This was a manual work and was accomplished by using interpretation of additional aerial photographs of the
area. After creating the footprint parts, a height was assigned to each footprint. This value was obtained by
using the median z value of all LIDAR points within a given part.

Having a complete footprint dataset, we continued our experiment by creating an explicit topological model of
the campus. For this, we used FME’s topology builder3 to convert our geometric building footprints to a node-
edge-face data structure. This topological model was loaded into Oracle Topolgy with some handwritten SQL
scripts (as the Oracle Topology model uses the more extensive Winged-Edge topology model (Baumgart, 1975)).
Oracle Topology provides the ValidateTopoMap function, which can validate a stored topology according to
a given tolerance. The original polygon geometry was also loaded into Oracle Spatial and was validated with
the supplied ValidateGeometryWithinContext function. Both validation functions highlighted different
errors in the source dataset, including overlapping polygons, vertices that were too close to each other and
spikes in the dataset. In an iterative way, all errors present in the original dataset were solved by the process
of topology creation, validating the topology and geometry and correcting the remaining errors. This way we
obtained a topologically consistent 2D dataset that we used as an input for our algorithm. Note that our initial
dataset was far from being topologically consistent, while there are also known cases from practice, e.g. the
Large Scale Base map of the municipality of Amsterdam, for which a topological structure is used to maintain
the dataset. If this had been the case, our algorithm could have run right away.

We implemented the Extrude algorithm in the Python scripting language4. Since our program creates topo-
logically consistent datasets in 3D, it is easy to convert to different formats used in practice. We first created
a CityGML file of the whole campus, the result can be seen in Figure 6. Each building (LOD1) is stored as
a gml:Solid, which means that it is a volume with a “watertight” boundary. Notice that CityGML does not
offer (yet) mechanisms to represent topological relationships between primitives, which means that nodes and
edges shared by higher-dimensionality primitives are repeated. The only mechanism available at the time of
writing is the possibility to store only once surfaces shared by two adjacent polyhedra A and B: the surface
is represented only once, e.g. A contains that surface, and B has a pointer to the surface (an xlink in XML
language).

It should be noticed here that CityGML does not permit us to really validate our approach as the XML-

3www.safe.com
4www.python.org

7



Figure 7: Part of the TU Delft campus tetrahedralized.

based validation (with XML schemas) simply validates the XML tags, and not the geometry or the topological
relationships. To validate our approach, we created the constrained Delaunay tetrahedralization (CDT) of our
set of buildings. As explained in Shewchuk (2002), CDTs have strong mathematical foundations, and are used
in the generation of meshes in engineering. The input of a CDT algorithm is a piecewise linear complex (PLC),
as first introduced by Miller et al. (1996). A PLC, which is a general boundary description for 3D shapes,
contains a set of points, together with a set of straight line segments and polygons. Segments and polygons
in a PLC are allowed to intersect at a shared point, and two polygons may intersect only at a finite number
of shared points or lines. PLCs are more general than polyhedra, i.e. every polyhedra as defined in Section 3
is a PLC, but not vice versa. If the input of a CDT algorithm is not a valid PLC, then it is impossible to
compute the CDT. We therefore converted our set of buildings to a PLC format, and used TetGen (Si, 2004) to
perform the tetrahedralization. The PLC format used was the POLY format (as explained in Si (2004)), which
is a simple text file listing unique points in 3D, and polygons are formed by references to the points. For our
set of 470 buildings, the PLC contains 6105 points, and 4331 polygons (which act as constrained faces for the
tetrahedralization). The result of this operation is a set of 21700 tetrahedra, part of it shown in Figure 7.

6 Conclusions

We have shown that a problem that appears to be rather simple at first glance—the extrusion of building
footprints—turns out to be considerably more complex if we put requirements on the resulting datasets. We
have solved the problem by detailing an algorithm that is conceptually simple, and easy to implement. We
have introduced the concept of a node column, which permits us to simply construct surfaces and assign them
to the correct buildings (modelled as polyhedra), which yields a topologically consistent 3D dataset. Our
implementation of the algorithm has been used to create the 3D city model of the TU Delft campus, at a level
of detail of LOD1. It should also be said that this work is part of a larger project at TU Delft to build the
CityGML model of the whole campus (with the five LODs), store it in a spatial DBMS, and use that for further
analysis and for teaching students about 3D GIS. The LOD2 and LOD3 of the campus have already been done
(the work was done mostly manually), and we are planning to construct LOD4 by using when possible the
digital blue prints of the buildings (as in Brenner et al. (2005)).

As for the future work, we also plan to extend the algorithm to consider holes in the footprints, so that inner
courts and/or blocks on roofs can be modelled.

8



Acknowledgements

We thank our all colleagues for fruitful discussions on the topic, especially Sisi Zlatanova and Friso Penninga
for posing the problem, and Theo Tijssen for providing the scripts to validate topology in Oracle.

References

B. G. Baumgart. A polyhedron representation for computer vision. In National Computer Conference. AFIPS,
1975.

E. Beinat, A. Godfrind, and R. V. Kothuri. Pro Oracle Spatial for Oracle Database 11g. Apress, 2007.

C. Brenner, A. Geiger, and K. Leinemann. Flexible generation of semantic 3D building models. In G. Gröger
and T. H. Kolbe, editors, Proceedings 1st International Workshop on Next Generation 3D City Models, pages
17–22, Bonn, Germany, 2005.

N. Haala and C. Brenner. Virtual city models from laser altimeter and 2D map data. Photogrammetric
Engineering & Remote Sensing, 65:787–795, 1999.

N. Haala, S. Becker, and M. Kada. Cell decomposition for building model generation at different scales. In
Proceedings Urban Remote Sensing Joint Event, pages 1–6, Paris, France, 2007.

T. H. Kolbe. Representing and exchanging 3d city models with CityGmL. In Proceedings 3rd International
Workshop on 3D Geo-Information: Requirements, Acquisition, Modeling, Analysis, Visualization, Seoul, Ko-
rea, 2008. Upcoming, November 2008.

T. H. Kolbe, G. Gröger, and L. Plümer. CityGML—3D city models and their potential for emergency response.
In S. Zlatanova and J. Li, editors, Geospatial Information Technology for Emergency Response. Taylor &
Francis, 2008.

A. Köninger and S. Bartel. 3d-GIS for urban purposes. Geoinformatica, 2(1):79–103, 1998. ISSN 1384-6175.

J. Lee and S. Zlatanova. A 3D data model and topological analyses for emergency response in urban areas. In
S. Zlatanova and J. Li, editors, Geospatial Information Technology for Emergency Response, pages 143–168.
Taylor & Francis, 2008.

P. A. Longley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind. Geographic information systems and science.
Wiley, London, 2001.

M. Mäntylä. An introduction to solid modeling. Computer Science Press, New York, USA, 1988.

G. L. Miller, D. Talmor, S. hua Teng, N. Walkington, and H. Wang. Control volume meshes using sphere
packing: Generation, refinement and coarsening. In Proceedings 5th International Meshing Roundtable, pages
47–61, Pittsburgh, USA, 1996.

D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theoretical Computer
Science, 7:217–236, 1978.

OGC. City geography markup language (CityGML) encoding standard. Open Geospatial Consortium inc.,
2008. Document 08-007r1, version 1.0.0.

A. A. G. Requicha. Representation of rigid solids—theory, methods and systems. ACM Computing Surveys, 12
(4):437–464, 1982.

F. Rottensteiner, J. Trinder, and S. Clode. Data acquisition for 3D city models from LIDAR extracting buildings
and roads. In Proceedings IEEE Geoscience and Remote Sensing Symposium (IGARSS ’05)., volume 1, Seoul,
Korea, 2005.

C. Schulte and V. Coors. Development of a CityGML ADE for dynamic 3D flood information. In Proceedings
Joint ISCRAM-CHINA and GI4DM Conference on Information Systems for Crisis Management, Harbin,
China, 2008.

J. R. Shewchuk. Constrained Delaunay tetrahedralization and provably good boundary recovery. In Proceedings
11th International Meshing Roundtable, pages 193–204, Ithaca, New York, USA, 2002.

9



H. Si. Tetgen: A quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. User’s
manual v1.3 9, WIAS, Berlin, Germany, 2004.

R. O. C. Tse, M. Dakowicz, C. M. Gold, and D. Kidner. Building reconstruction using LIDAR data. In
Proceedings 4th ISPRS Workshop on Dynamic and Multi-dimensional GIS, pages 156–161, Pontypridd, Wales,
UK, 2005.

M. F. Worboys and M. Duckham. GIS: A computing perspective. CRC Press, second edition edition, 2004.

10


