
Geometric Validation of GML Solids with the
Constrained Delaunay Tetrahedralization

Hugo Ledoux, Edward Verbree and Hang Si

GIS technology group

4 November 2009
3DGeoInfo—Ghent



Introduction

The problem:

Given a polyhedron stored with GML, we want to validate it

VALIDATE
YES :)

NO :(

BUT

This is not that simple, because:

1 Definitions of a polyhedron/solid is not 100% clear

2 Generalisation to 3D is difficult

3 2D problem is not that simple either



Why do we want to validate spatial objects?

Non-valid spatial objects are fine if you only want to look at
them!

Validation is necessary to guarantee output of processing or
manipulation operations:

calculation of area of a polygon
creation of a buffer
boolean operations such as intersection, touch, contain, etc.
conversion to other formats



Validation = geometric validation

Validating a spatial object means ensuring that it respects
certain specifications

Specifications are standardised, such as by the ISO or the OGC

6= XML schema validation (*.xsd)

For Polygons:

1 closed boundary

2 no self-intersection

3 ring does not intersect
boundary

4 etc

VALID

NON-VALID

NON-VALID



6= XML Schema Validation (*.xsd)

<gml:Solid>

<gml:exterior>

<gml:CompositeSurface>

<gml:surfaceMember>

<!--top surface-->

<gml:Polygon gml:id="a">

<gml:exterior>

<gml:LinearRing>

<gml:pos>0 0 1</gml:pos>

<gml:pos>1 0 1</gml:pos>

...

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>



Validation = geometric validation

Validating a spatial object means ensuring that it respects
certain specifications

Specifications are standardised, such as by the ISO or the OGC

6= XML schema validation (*.xsd)

For Polygons:

1 closed boundary

2 no self-intersection

3 ring does not intersect
boundary

4 etc

VALID

NON-VALID

NON-VALID



Validation is 2D is not simple

Figure from [vOQT04]



GML Solids

from [OGC07]:

A GML Solid “is the basis for 3-dimensional geometry. The
extent of a solid is defined by the boundary surfaces as specified in
ISO 19107:2003. gml:exterior specifies the outer boundary,
gml:interior the inner boundary of the solid”.

In other words, a GML Solid:

is represented by its boundaries (gml:Polygon embedded in
3D)

can have “holes” (inner shells) that are allowed to touch each
others, or the outer boundary, under certain circumstances.



GML—Geography Markup Language

<gml:Solid>

<gml:exterior>

<gml:CompositeSurface>

<gml:surfaceMember>

<!--top surface-->

<gml:Polygon gml:id="a">

<gml:exterior>

<gml:LinearRing>

<gml:pos>0 0 1</gml:pos>

<gml:pos>1 0 1</gml:pos>

<gml:pos>1 1 1</gml:pos>

<gml:pos>0 1 1</gml:pos>

<gml:pos>0 0 1</gml:pos>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>

...

...

</gml:CompositeSurface>

</gml:exterior>

</gml:Solid>



Some examples of solids

INVALID VALID VALID VALIDINVALID

Figure from [KKvOR08]



Related Work

Most work do not allow holes, e.g. [Lie03] or [AF06]

QS-City 3D tools, by Volker Coors (no publication yet)

Oracle Spatial 11g: use a “graph-based” approach [KKvOR08]



Our approach: constrained Delaunay tetrahedralization

Using volumetric methods, since we’re dealing with volumes

Raster could be used, but difficulties with boundaries

So we’re using the Constrained Delaunay Tetrahedralization
(CDT)

1 Create CDT for the solid with TetGen [Si04]
2 Flag each tetrahedron with either IN or OUT
3 Permits us to easily detect connectedness problems,

non-watertight situations, etc.



Our approach: constrained Delaunay tetrahedralization

Using volumetric methods, since we’re dealing with volumes

Raster could be used, but difficulties with boundaries

So we’re using the Constrained Delaunay Tetrahedralization
(CDT)

1 Create CDT for the solid with TetGen [Si04]
2 Flag each tetrahedron with either IN or OUT
3 Permits us to easily detect connectedness problems,

non-watertight situations, etc.



Validation with the CDT



Validation with the CDT

big triangle



Validation with the CDT

DFS on dual graph to flag triangles



Validation with the CDT

OUT

OUT OUT

OUT OUT

OUT

OUT

OUT

IN

IN

IN



Validation with the CDT



Validation with the CDT

DFS on dual graph



Validation with the CDT



Validation with the CDT



Validation with the CDT



Validation with the CDT



Validation with the CDT

cannot reach all IN
triangles



Some examples of solids

INVALID VALID VALID VALIDINVALID

Figure from [KKvOR08]



Other things to test

Each polygon embedded in 3D must:

1 have distinct vertices
2 its rings must be “closed” (first and last are the same)
3 its inner rings must have opposite orientation
4 must be planar
5 must not self-intersect
6 its inner-rings must not intersect outer ring

Also:

1 solid must be watertight
2 inner shells must be solid themselves
3 connectedness of the interior of the solid
4 do inner-outer shells intersect?
5 orientation of surfaces (normale pointing outwards)



Future work = automatic repair



That’s all, thanks for your attention!



References

Marco Attene and Bianca Falcidieno.
ReMESH: An interactive environment to edit and repair triangle meshes.
In Proceedings IEEE International Conference on Shape Modeling and Applications, page 41,
Matsushima, Japan, 2006.

Baris M. Kazar, Ravi Kothuri, Peter van Oosterom, and Siva Ravada.
On valid and invalid three-dimensional geometries.
In P. van Oosterom, S. Zlatanova, F. Penninga, and E. Fendel, editors, Advances in 3D
Geoinformation Systems, Lectures Notes in Geoinformation and Cartography, chapter 2, pages
19–46. Spinger, 2008.

Peter Liepa.
Filling holes in meshes.
In Proceedings 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pages
200–205, 2003.

OGC.
Geography markup language (GML) encoding standard.
Open Geospatial Consortium inc., 2007.
Document 07-036, version 3.2.1.

Hang Si.
Tetgen: A quality tetrahedral mesh generator and three-dimensional Delaunay triangulator.
User’s manual v1.3 9, WIAS, Berlin, Germany, 2004.

Peter van Oosterom, Wilko Quak, and Theo Tijssen.
About invalid, valid and clean polygons.
In Peter F. Fisher, editor, Developments in Spatial Data Handling—11th International
Symposium on Spatial Data Handling, pages 1–16. Springer, 2004.



Ambiguities in ISO/GML



What do we have to check?

1. closedness of the rings of every surface: easy, just check if 1st
and last point given are the same. Done outside
tetgen, as a pre-processing.

2. distinct vertex: easy to check, and must be done outside tetgen
as pre-processing.

3.orientation of points within a surface: to make sure that the
outer and the inner ring(s) have opposite orientation
(CCW and CW). This must be done outside tetgen
as a pre-process, and involves finding a single point
that defines a hole for the inner rings.

4. planarity of surfaces: this is checked when tetgen makes a
surface mesh, it’s a requirement of tetgen. Done
pre-processing right now.

5.non-self intersection of surfaces: this is checked with tetgen
surface mesh also.



What do we have to check?

6. non-overlapping inner rings on a surface. That would be
checked automatically by tetgen also when meshing
each surface. [again, that might not be necessary for
same reason as rule #3]

7. closedness of the solid: Builtin tetgen.

8. Inner shells are a volume This is to make sure that one inner
shell is not a line segment for instance. That
wouldn’t be a problem for tetgen, so we have to take
extra care for that one... I guess that would be done
when checking the closedness in rule #7.

9. connectedness of the volume of the solid: rather easy to
perform, once we have the CDT. Start at a point
inside a IN tetra, and breath-first search, counting
tetra visited on the way. Constraints obviously stops
you. Then compare number of visited tetra with total
number of IN tetra.



What do we have to check?

10. inner-outer check of shells , ie make sure that inner shells do
not intersect outer shells. The triangle-triangle
intersection series of tests will test that.

11. orientation of surfaces : probably the last step of the
algorithm. Once we have the CDT with all tetra
flagged as IN or OUT, we can then make sure that
for each face, the tetra on each side are all
consistent. Two cases: the point given to define the
interior was based on a wrongly orientated faces;
point given was based on a correctly orientated face.


