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1 Introduction

To facilitate and encourage the exchange and interoperability of geographical information, the ISO1

and the OGC2 have developed in recent years standards that define what the basic geographical
primitives are (ISO, TC211), and also how they can be implemented (OGC, 2007, 2006). While the
definitions for the primitives are not restricted to 2D, most of the efforts for the implementation of these
types have been done only in 2D. There exist indeed several tools to ensure that a line or a polygon
in 2D is valid, i.e. it respects the standardised definitions: the JTS Topology Suite3 and GEOS4 are
the most well-known and used tools, and are being used by different software packages. Although the
topic might appear simplistic—“a polygon is simply a polygon, no?”—it is in practice a problem and
is a topic of research, see van Oosterom et al. (2004) for a critic of the current ISO/OGC standards
and an overview of the difficulties in 2D. It should be noticed here that validation is a necessary tool
to guarantee the output of processing or manipulation GIS operations such as: calculation of the area
of polygons; creation of buffers; conversion to other formats; boolean operations such as intersection,
touch, contain, etc.

The efforts to implement in 3D a polyhedron type—also called a solid or a volume—and to be able to
validate instances of the type are recent. Oracle Spatial has in their latest version implemented their
own 3D type and are currently working on the geometric validation (Kazar et al., 2008). Interestingly,
the Oracle type does not follow that of ISO/GML exactly, but Kazar et al. (2008) claim that this does
not restrict the users and that it is simpler to implement. The validation of 3D polyhedron is also a
topic that is being tackled in other disciplines (e.g. engineering where laser-scanned objects have to
be modelled), but the definition of a polyhedron is often simpler and more restrictive than that of
the ISO/GML used in GIS-related applications. Indeed, a polyhedron is composed only of an exterior
boundary, and holes are not permitted. For examples of applications where polyhedra are validated
and repaired see, among other, Guéziec et al. (2001), Attene and Falcidieno (2006) and Liepa (2003).

Two of the authors of this abstract have presented in a previous paper (Verbree and Si, 2008) an
approach to the validation of one polyhedron: the constrained Delaunay tetrahedralization (CDT) was
used as a supporting data structure. The CDT permits us to circumvent and simplify the difficulties
arising with the method of Kazar et al. (2008), who uses an “edge-face” approach. The original paper
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Figure 1: Five different polyhedra. (Figure after Kazar et al. (2008))

was restricted to simple polyhedra, and did not consider explicitly holes in polyhedra. We are currently
working on the extension of this work so that polyhedra stored in GML (which can have holes) can
be validated, and potentially also automatically repaired. The presence of holes significantly increases
the complexity of the problem, as holes are themselves also polyhedra. We present briefly in this
abstract the ISO/GML’s definition of a polyhedron, the CDT and describe how it can help us to test
if one polyhedron is valid or not. We believe our method to be significantly better at catching special
geometric configurations that often arise with real-world data.

2 ISO Solids and their Validation

While a polyhedron/solid has different definitions in different disciplines, we focus here on the definition
given in the ISO standards (ISO, TC211) and implemented with GML (OGC, 2007). A GML Solid
“is the basis for 3-dimensional geometry. The extent of a solid is defined by the boundary surfaces
as specified in ISO 19107:2003. gml:exterior specifies the outer boundary, gml:interior the inner
boundary of the solid” (OGC, 2007). Without going into all the details, we can state that a solid is
represented by its boundaries (surfaces), and that like its counterpart in 2D (the polygon), a solid can
have “holes” (inner shells) that are allowed to touch each others, or the outer boundary, under certain
circumstances.

To be considered a valid solid, a solid must be fulfil several properties. The most important are: (i)
it must be simple (no self-intersection of its boundary); (ii) it must be closed, or ’watertight’; (iii) its
interior must be connected; (iv) its boundary surfaces must be properly oriented; (v) its surfaces are
not allowed to overlap each others. Figure 1 shows five different polyhedra, some of them valid, some
not. The first is invalid because it is not watertight; the fourth one is invalid because the hole separate
the interior of the polyhedron into 2 non-connected parts; the fifth one is valid since, as Kazar et al.
(2008) points out, the “handle” now creates a connected interior. It should also be noticed that since
a solid is formed of 2D primitives (embedded in 3D space), these also have to be valid. For instance, if
a surface has a hole (an inner ring), than this ring is not allowed to to overlap with the outer boundary
of the surface.

For more details about validation rules in 3D, the reader is directed towards ISO (TC211) and Kazar
et al. (2008).

3 Constrained Delaunay tetrahedralization

The constrained Delaunay tetrahedralization is the 3D counterpart of a constrained Delaunay trian-
gulation. Just like in 2D, the CDT permits us to decompose an object (a polyhedron in our case) into
non-overlapping tetrahedra. This is shown in Figure 2 for the 2D and the 3D cases. Observe here
that in 2D any polygon can be triangulated, but in 3D this is more complex as new vertices often
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Figure 2: (a) Left: a 2D polygon containing 4 holes. Middle and right: the constrained Delaunay
triangulation of the polygon. (b) A polyhedron and its CDT.

have to be inserted. It is nevertheless known that it is always possible to decompose a polyhedron
into tetrahedra if new vertices are allowed (Cohen-Steiner et al., 2004). These extra vertices do not
modify the shape of the polyhedron. For more information about the CDT see for instance Shewchuk
(1997) and Si (2008).

4 Validation with the CDT

To our knowledge the only other work related to the geometric validation of 3D polyhedra with holes is
that of Kazar et al. (2008). They take a different approach: they build the graph (nodes and vertices) of
the polyhedron and performs graph-traversal algorithms to validate. While this method works for the
simpler cases, some configurations such as the one with the handle in Figure 1 are extremely difficult to
catch. We believe that instead of building a edge-based data structure to validate, a space-filling data
structure would give much better results. Nooruddin and Turk (2003) also tried space-filling methods,
but used voxels (which could introduce errors depending on the resolution used). Our approach to
geometric validation consists of buildings the CDT of the input polyhedron, and use the properties
of the CDT to verify if it fulfils the definition of a valid polyhedron. It is also a space-filling data
structure, but does not have the shortcomings of raster.

We have identified 11 tests that need to be performed in order to ensure that one polyhedron is
geometrically valid. Some of them are simple and do not require the auxiliary data structure. For
instance, verifying that a surface is planar simply implies checking that all its points are on a plane;
and verifying that the boundary of a surface is closed implies that the first and last points are the
same. Observe here that the former implies the use of a tolerance for validation, as in van Oosterom
et al. (2004). For the verification tests that require the CDT we use TetGen (Si, 2004). Our method
is conceptually simple: we tetrahedralize a polyhedron, and then assign to each tetrahedron a IN or
OUT flag; this can be done automatically by “walking” in the CDT from the exterior and stopping
at constraints. Difficult tasks like verifying the connectedness of a polyhedron are immensely simple
once the CDT is built: we start at a point inside the polyhedron, and perform a depth-first search on
the dual graph of the CDT, counting the tetrahedra visited on the way (constraints obviously stop
you). Then the connectedness test boils down to comparing the number of visited tetrahedra with
the total number of tetrahedra flagged as IN. Another example is the test to verify if a polyhedron is
watertight. With graph-based methods this is not trivial, but if the method of walking from the outside
just described is used then again the result is automatically found: all the tetrahedra are flagged as
OUT. Lack of space prevents us from presenting all the 11 verification tests that we designed, but
other tests are also simplified if a CDT is first built.

At the conference, we will discuss these tests and show our latest developments.
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