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While we can affirm that the representation, storage and exchange of two-dimensional
objects (vector data) in GIS is solved (at least if we consider the de facto standards
shapefile and GML), the same cannot be said for fields. Among the GIS commu-
nity, most people assume that fields are synonymous with raster structures, and thus
only representations for these are being used in practice (many formats exist) and
have been standardised. In this paper, I present a new GML-based representation
for fields in 2D and 3D, one that permits us to represent not only rasters, but also
fields in any other forms. This is achieved by storing the original samples of the field,
alongside the interpolation method used to reconstruct the field. The solution, called
FieldGML, is based on current standards, is flexible, extensible and is also more ap-
propriate than raster structures to model the kind of datasets found in GIS-related
applications.

1 Introduction

There exist two contrasting conceptualisations of space: the object and the field views (Couclelis,
1992; Goodchild, 1992; Peuquet, 1984). In a nutshell, the former view considers space as being
‘empty’ and populated with discrete entities embedded in space, while the latter considers the
space as being continuous, and every location in space has a certain property (there is something
at every location). In the former model, entities can be for example roads, cups of tea, churches,
etc., and they have certain properties; in the latter, they are formed by clusters of properties.
When one wants to represent and store a certain piece of space in a computer, the field-view
approach is much more problematic than its counterpart. The problems are most likely caused
by the fact that the definition of a field itself changes from discipline to discipline, and that
the issues can be seen from a philosophic, conceptual or implementation point of view (Peuquet
et al., 1999). There is also much confusion among users between spatial models, data structures,
and spatial concepts (Frank, 1992). While in the GIS jargon object- and field-views of space
are often synonymous with respectively vector and raster models, Goodchild (1992), among
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others, explains that this is simply false as both views can be stored with either model. Put on
top of that that fields are by definition something continuous—and that computers are discrete
machines—and one can start understanding the confusion among users. (More information
about fields and their representations is available in Section 3.)

In recent years, with the multitude of formats available, practitioners have turned to defining
and using standards (e.g. those of the Open Geospatial Consortium (OGC), and of the Inter-
national Organization for Standardization (ISO)) to facilitate the storage and exchange of GIS
data. While the current standards are somewhat successful and promising for objects (with the
Geography Markup Language (GML) leading the way), their use for fields are very scarce, and
are mostly limited to raster solutions. However, as argued in Section 4, rasters are technically
and theoretically restrictive and therefore alternative solutions should be sought.

In this paper, instead of using solely raster formats to represent fields, I propose an alternative
representation called FieldGML. As described in Section 5, this generic solution is based on cur-
rent standards (i.e. GML), and permits us to efficiently store and exchange field-based geographic
information. The main idea behind this representation is that instead of storing explicitly grids
or tessellations, we store the data that were collected to study the field (the samples), and we
also store the interpolation method that will permit us to reconstruct the field in a computer. I
also argue in the following that FieldGML offers a better representation than current ones be-
cause: (i) it takes into account the nature of datasets as found in GIS-related applications; (ii)
it is valid for fields in 2D and 3D, but can be readily extended to higher-dimensions; and (iii) it
is flexible in the sense that different types of fields can be stored (scattered points, tessellations,
tetrahedralizations, voxels, etc.). I also present in Section 5 a prototype that was developed to
create FieldGML files from already existing fields, and also to transform FieldGML files into
different formats and representations that are being used by commercial GISs.

2 Related Work

From a “standards” point of view, different XML-based languages (eXtensible Markup Lan-
guage) have been proposed. First of all, there is the more general-purpose GML that implements
many of the ISO/OGC standards for fields, but not all of them. Note that the definitions of
these standards can be found in Section 4, and their implementation with GML is discussed in
Section 5. Based on GML/XML, there are different languages to model fields. For instance,
Nativi et al. (2005) propose the NcML-GML, which permits us to store with GML the meta-
data associated with netCDF files (this is a multi-dimensional raster format described in the
next section). Also, Woolf and Lowe (2007) propose the Climate Science Modelling Language
(CSML), which is used to represent all the different kinds of climate data (often fields) and their
relevant information. The particularity of CSML is that, for the sake of simplicity and perfor-
mance, the authors chose to use only parts of the standards: they offer a GML-based ‘wrapper’
around legacy formats to simplify exchange, but they are still using the legacy file for applica-
tions (these legacy files are all raster-based). Furthermore, the Geoscience Markup Language
(GeoSciML) can be used to store any kind of information related to geology (Sen and Duffy,
2005). When fields are involved, they are usually stored in raster formats, but GeoSciML also
allows the storage of the observations that were collected (interpolation methods are however
not discussed).

From a GIScience point of view, different alternatives to the ubiquitous rasters have been pro-
posed over the years, starting with tessellations into triangles (Mark, 1975; Peucker, 1978).
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Kemp (1993) proposes different alternatives to store 2D fields, and shows how to convert them
from one representation to another when needed (for analysis). Gold and Edwards (1992), and
Ledoux and Gold (2006), among others, have also discussed the use of the Voronoi diagram (in
2D and 3D) as an interesting alternative to raster-based approaches. In a proposition that is
similar to the one in this paper (at least conceptually), Haklay (2004) proposes, in an attempt
to model and manipulate 2D fields, to store only the samples collected, and the parameters of
interpolation functions.

FieldGML is also conceptually very similar to the concept of virtual data set (VDS) (Stephan
et al., 1993; Včkovski and Bucher, 1996; Včkovski, 1998). A VDS is a dataset “enhanced” with
a set of methods that are used to access, manipulate or transform the data—it is an object in
the object-oriented sense of the term. The term “virtual” means that different representations
of a dataset can be generated for different users/applications. In the context of fields, that
means that the samples of a field are stored, and also that interpolation methods to generate
different representations of that field are available (pixel size, format, data model, etc.). It is
implemented as a Java class where an interface is defined.

VDSs were introduced around 15 years ago as a solution to the interoperability of GISs and to
improve the quality of datasets used in GIS. The whole concept of interoperability through VDS
was based on the idea that “data exchange is not specified by a standardized data structure
(e.g. a physical file format) but a set of interfaces” (Včkovski, 1998, p.54). If we fast-forward to
2008, we now have widely-accepted GIS-related standards (see Section 4) and even a de facto
language (GML). These standards have taken a different approach to interoperability since all
datasets are coded with the same language, which clearly contrasts with VDS where one could
store the datasets in his own format as long as he/she implemented the interface. FieldGML
can thus be seen as implementation of the conceptual ideas of VDS in a 2008 context where
GML is synonymous with interoperability in the GIS world.

3 Fields and Their Representations

This section gives a brief overview of what fields are, from the point of view of GISscience.

3.1 Definition of a Field

A field is a concept rather difficult to define because it is not tangible and not part of our
intuitive knowledge. It is easy for us to see and describe entities such as houses or chairs, but,
although we can imagine fields, they are somewhat an abstract concept. The consequences of
that are firstly that formalising a field is difficult, and secondly that many definitions exist in
different disciplines (Peuquet et al., 1999). The definition usually used in a GIScience context
is borrowed and adapted from physics. Physicists in the 19th century developed the concept of
a force field to model the magnetic or the gravitational force, where a force (a vector with an
orientation and a length) has a value everywhere in space, and changes from location to location.
For most GIS applications, the vector assigned to each point of the Euclidean space is replaced
by a scalar value, and we obtain scalar fields (it is assumed in the following that all fields are of
that type).

Because each location in space possesses a value, a field must be represented mathematically. It
is a model of the spatial variation of a given attribute a over a spatial domain, and it is modelled
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by a function, from R
d to R in a d-dimensional Euclidean space, mapping the location to the

value of a, thus
a = f(location).

The function can theoretically have any number of independent variables (i.e. the spatial domain
can have any dimensions), but in the context of geographical phenomena the function is usually
bivariate (x, y) or trivariate (x, y, z). Notice that the domain can also incorporate time as an
extra dimension, and thus we have a = f(location, time).

3.2 Representation in Computers

The representation of a field in a computer faces many problems. Firstly, fields are continuous
functions, and, by contrast, computers are discrete machines. Secondly, it should be stressed out
that we never have access to a ‘complete representation’ of a geographical phenomenon. Indeed,
to obtain information about a given phenomenon, one must sample it, and reconstruct the field
from these samples1. In the context of GIS-related applications (e.g. modelling of elevation,
geosciences, geology, hydrology, bathymetry, etc.), this collection of samples is hindered by the
fact that unlike disciplines like medicine or engineering, we seldom have direct access to the
whole object (think of collecting data underground, or at sea for instance). And even if we have
complete access to the object, it is often too expensive to sample the object everywhere.

In short, to represent a field in a computer (i.e. to be able to model a continuous phenomenon),
we need to:

1. have a set of samples for the given fields—they are the “ground truth” of a field. The
samples are usually point-based, but other forms can also exist (for instance an image
obtained with remote sensing).

2. define a set of rules to obtain the values of the attribute studied, at any location. This
operation is referred to as spatial interpolation.

4 Standards and Formats to Represent Fields

4.1 GIS Standards

There are two “levels” of geographic information standards: abstract and implementation speci-
fications. The former defines a conceptual architecture (or reference model) for different aspects
related to the storage and exchange of information; and the latter are at a lower-level, i.e.
they define an interface to access the properties and methods of classes defined in the abstract
specifications.

1Even if a sensor is used to collect samples, the result (e.g. an image with pixels) is not a complete representation
since each pixel usually averages the value of the studied phenomenon over the pixel area, or each pixel
represents the value located in the middle of the pixel.

4



<<Type>>

CV_Coverage

+domainExtent [1..*]: EX_Extent

+rangeType: RecordType

+list(): Set<CV_GeometryValuePair>

+evaluate(p:DirectPosition): Record

<<MetaClass>>

GF_FeatureType

<<Type>>

CV_DiscreteCoverage

+locate(p:DirectPosition): Set<CV_GeometryValuePair>

<<Type>>

CV_ContinuousCoverage

+interpolationType: CV_InterpolationMethod

+interpolationParameterTypes[0..1]: Record

+locate(p:DirectPosition): CV_InterpolationMethod

CV_GeometryValuePair

+geometry: CV_DomainObject

+value: Record

<<Type>>

CV_ValueObject

+geometry: CV_DomainObject

+interpolationParameter[0..1]: Record

+interpolate(p:DirectPosition): Set<CV_ValueObject>

1..*
+0..*

<<instantiates>>

1..*

0..*

0..*

1..*

Figure 1: UML diagram for the main classes of an ISO/OGC coverage. (Figure after ISO (2005))

Abstract specifications

In the case of fields, two documents exist: the ‘Schema for coverage geometry and func-
tions’ (ISO, 2005), and the OGC document with the same title (OGC, 2007b). Notice here
that fields are referred to as ‘coverages’ in these documents; both terms are synonymous and
used interchangeably in the following. Both documents have the same content. A coverage is
considered a feature2, like is any geographic object in the ISO/OGC documents. So while each
geographic object in a representation of a field is a feature, the field as a whole is a feature
too.

The formal definition of “coverage” is the following (and its principal classes are shown in
Figure 1):

A coverage is a feature that acts as a function to return values from its range for
any direct position within its spatial, temporal or spatiotemporal domain. [...] [it]
has multiple values for each attribute type, where each direct position within the
geometric representation of the feature has a single value for each attribute type.

Notice that a ISO/OGC coverage can have many different attribute types, but that this is not
relevant here, and we simply assume that one coverage is for one attribute type (let that be the
temperature of the air, the elevation of a terrain, the density of the population, etc.)

The coverage type is divided into two distinct but closely related subtypes:

Continuous Coverage: coverage that returns different values for the same feature attribute at
different direct positions within a single spatial object, temporal object or spatiotemporal
object in its domain.

Discrete Coverage: coverage that returns the same feature attribute values for every direct
position within any single spatial object, temporal or spatiotemporal object in its domain.

2A feature is an abstraction of a real world phenomenon; it is a geographic feature if it is associated with a
location relative to the Earth (ISO, 2003).
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The definition of a continuous coverage is more or less equivalent to that of the general coverage
type. The definition refers to the fact that interpolation is used to obtain the attribute value
at a given location x. The terms “within a single object” can be misleading, but means that
interpolation is always performed with a function defined over one geometric object (e.g. a
polygon in 2D); if no object is present at a location x (possible according to the definition of a
coverage) then no value at x is returned. The latter type, the discrete coverage, seems to exist
only because “a coverage can be derived from a collection of discrete features with common
attributes” (ISO, 2005). As explained in Section 3.2, this is true (the samples), provided that
we have a set of rules to reconstruct the coverage at every location, but this is not the case in
the ISO/OGC documents. It is also stated that “a discrete coverage has a domain that consists
of a finite collection of geometric objects and the direct positions contained in those geometric
objects”. The problem here is that these geometric objects do not have to fully partition the
domain, i.e. according to that definition a set of unconnected lines and/or polygons (in which
each object has a value attached to it) is considered a coverage. Even worse, the objects are
permitted to overlap, which means not only do we have locations without any answer, but
that there can be more than one answer at one given location! This might be useful for some
applications—I am however not aware of any—but none are mentioned in the documents.

Another shortcoming is the list of interpolation methods discussed in the ISO/OGC documents
is very restricted. Many interpolation methods are simply ignored, and if one wanted to use them
it would be very difficult to integrate them in the coverage framework. Inverse-distance to a
power (IDW) and Kriging are for instance not listed, and for many subtypes (such as CV TIN-
Coverage, to store triangulated irregular networks (TINs)) only one type of interpolation is
possible within each piece (which is restrictive in practice).

Also, the ISO/OGC documents state that the concepts are valid not only for the 2D case, but
also for three and higher dimensions. The problem is that it is only a statement weakly backed
up by a few types in 3D and no explanations of interpolation methods in 3D are given.

In brief, the abstract standards for coverages do avoid the distinction between raster and vector,
but by creating two types for which the differences are rather blurred and subtle, they probably
also contribute to the confusion that already exists about fields.

Implementation Specifications

To my knowledge, the only implementation of the ISO/OGC abstract specifications is that of
GML. It is an XML-based modelling language developed to facilitate the exchange of geographic
data, and has been fairly successful in recent years. While a GML file is verbose (and thus files
can become enormous), there are many advantages to using it. Lake (2000) mentions, among
others: (i) it is self-descriptive, (ii) it can be processed with already existing XML software, (iii)
there are mechanisms to store metadata, and (iv) data integrity can be verified with the help of
schemas. The reader is referred to Lu et al. (2007) and OGC (2007a) to learn more.

As of GML version 3.2, only the CV DiscreteCoverage types have been implemented: there are
GML schemas for all subtypes of CV DiscreteCoverage, and also for grids (CV Grid). That
results in a representation that does not necessarily cover the whole spatial domain, and no
mechanisms are present to estimate the value of an attribute where there are no spatial objects,
or a default and simplistic method is assumed. Using simplistic interpolation methods, or the
wrong parameters for a method, is dangerous as many researchers have highlighted (see Watson
(1992) for instance).
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Not all abstract classes were implemented in GML, CV GeometryValuePair is for instance not
present, and was replaced by an implementation that follows closely the conceptual distinction
between the spatial domain and the range (the attribute modelled). The resulting XML file has
to have three separate types: the domain, the range and another one for mapping these two
correctly. As Cox (2007) explains, although this is conceptually valid, it also hinders the use of
these standards in practice because of the difficulties of processing large files, of updating files,
etc.

4.2 Formats Used in Practice

Among GIS practitioners, fields are being used almost exclusively in 2D, while in the geoscience
community 3D and higher-dimensional fields are extensively used. Note that the dimensions in
oceanographic/atmospheric coverages are not necessarily spatial dimensions, as any parameters
(e.g. temperature of the air, or density of water) can be considered a dimension.

As mentioned before, within the GIS community, coverages are more or less synonymous with
grids, although it must be said that TINs are also widely used for modelling terrain elevation.
There exist many different formats for 2D grids, but they can be easily all converted to one
another.

In geoscience, netCDF3 seems to be the de facto standard to exchange datasets, although other
similar formats, such as HDF54, are also popular. These formats are raster-based, and permit
users to use n-dimensional grids, with different spacing for different dimensions. They are binary
and spatially structured, which means that parts of a dataset can be efficiently retrieved and
processed. The use of other representations (e.g. tetrahedralizations or arbitrary polyhedra) is
very rare and mostly limited to the academic community.

4.3 The Dangers of Using Raster Formats

As argued by many over the years, using raster structures has many drawbacks (Gold and
Edwards, 1992; Kemp, 1993; Haklay, 2004; Ledoux and Gold, 2006). Firstly, as Fisher (1997)
points out, the use of pixels as the main element for storing and analysing geographical data is
not optimal. The problems most often cited are: (i) the meaning of a grid is unclear (are the
values at the centre of each pixel, or at the intersections of grid lines?), (ii) the size of a grid (for
fine resolutions, grids can become huge), (iii) the fact that the space is arbitrarily tessellated
without taking into consideration the objects embedded in that space. Secondly, the use of grids
in GIS/geoscience applications has wider repercussions since we can assume in most cases that a
given grid was constructed from a set of point samples. Converting samples to grids is dangerous
because the original samples, which could be meaningful points such as the summits, valleys or
ridges or a terrain, are not present in the resulting grid. The importance of the original samples
for a field is such that they have even been dubbed the meta-field by Kemp and Včkovski (1998).
It should also be said that when a user only has access to a grid, he often does not know how it
was constructed and what interpolation method was used, unless metadata are available. Notice
that all the previous statements are also valid in 3D (a pixel becomes a voxel).

3http://www.unidata.ucar.edu/software/netcdf/
4http://www.hdfgroup.com
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5 FieldGML: The Field Geography Markup Language

Because of the current standards’ shortcomings and weaknesses, as highlighted in the previous
section, I propose an alternative to represent fields: FieldGML. It is an XML-based language
based on GML, and it permits us to represent fields in 2D and 3D, although conceptually it can
be easily extended to higher dimensions. Unlike current standards where there is a distinction
between discrete and continuous fields/coverages, I argue in this paper that a field should always
have one—and only one!—value for a given attribute at every location in the spatial domain (be
this domain the surface of the Earth, a 3D volume, or even a 4D spatio-temporal hypercube).
The concept of discrete coverage can be then removed, as it is misleading and it creates confusion
among users.

5.1 A Field = Samples + Interpolation Rules

The principal idea behind FieldGML is that two things are needed to have a coverage: (i) a set
of samples of the phenomenon, and (ii) an interpolation function to reconstruct the continuity
of the phenomenon studied.

Samples. By that it is meant what is referred to as ‘discrete coverage’ in ISO/OGC terms. It
is any data that were collected to study the phenomenon:

1. a set of scattered points in 2D or 3D.

2. a set of lines, e.g. contour lines coming from a topographic map.

3. a set of scattered polygons to which one value is attached. Although this case is possible,
I am not aware of any interpolation method that would take a set of polygons as input. It
is nevertheless always possible to discretise each polygon into a set of points. Polyhedra
in 3D are also considered samples.

4. a raster image coming from remote sensing or photogrammetry where the value of each
pixel represents the temperature of the sea for instance.

Observe that a set of samples is simply a “normal” vector file or a grid (as defined in other
ISO/OGC standards, e.g. in ISO (2003)), where each object is assigned a value for a common
attribute.

Interpolation Method. The set of rules used to reconstruct the field from samples can take
many forms. Interpolation methods are rather difficult to categorise because they are based on
different paradigms, and some methods fall into more than one category. No attempts will be
made here to introduce categories (see Mitas and Mitasova (1999) and Watson (1992) for that),
but what should be kept in mind is that although several different interpolation methods are
used in GIS and that several publications advocate the use of “better” methods, the current
standards, while discussing a few methods, give no importance to interpolation and do not
permit the use of many of the known methods.

Storing explicitly the interpolation method, as FieldGML is doing, is efficient in practice as only
a few parameters have to be stored. Finding the appropriate values for interpolation parameters
is a difficult and time-consuming task, as the user must have a good understanding of the
spatial distribution of the objects in the set of samples, and of the details of the method. A
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vivid example is Kriging (Oliver and Webster, 1990), with which experienced users can obtain
very good results, but which also leaves newcomers clueless with its many parameters and
options. Using Kriging with the appropriate parameters leads to a result that has statistically
minimum variance, however, simply using the default values for the parameters will most likely
lead to unreliable results. Thus, if we leave the job of modelling the datasets and deriving the
interpolation parameters to specialists, the users would not have to worry about these anymore.
This is one of FieldGML’s main benefits.

5.2 Abstract and Implementation Specifications

Figure 2 shows the class diagram of FieldGML (for the main classes). To ensure that a FieldGML
file respects the rules in the model (and that it is therefore ‘valid’), a GML application schema
has also been developed. What follows is an overview of the engineering decisions that were taken
in order to develop FieldGML and its schema. I tried to use GML types as much as possible, but
for practical reasons (e.g. simplicity of implementation and performances for processing files)
new types also had to be defined. The full application schema is not described here (for lack of
space), but it can be obtained on the website of FieldGML5.

The first thing to notice is that a FieldGML type Field inherits directly from a GML feature,
which means that it can use all the mechanisms already defined by the OGC to deal with
metadata.

An important decision that was taken was not to use directly the GML implementation of
CV DiscreteCoverage for the set of samples, for the reasons described in Section 4.1. Instead,
four new types were created: (i) scattered points (notice here that even if points are regularly
spaced, this type can still be used); (ii) scattered lines; (iii) full tessellations; and (iv) arrays,
which includes all the raster-based types. All these types inherit from gml:AbstractGeometryType

(which means that mechanisms defined by GML for reference systems can be used), and GML
types were used where possible (e.g. gml:MultiPointType for the scattered points). In addi-
tion, these types were extended so that an attribute (a scalar value) is attached to each object;
a version of the CV GeometryPairValue was implemented, as in Cox (2007). Also, it should be
noticed here that if a tessellation is needed for the interpolation (e.g. Delaunay triangulation for
a piecewise interpolation) this structure need not be persistent: only the samples can be stored,
and it is calculated on the fly. Constraints that a triangulation must follow can also be stored, but
if it is impossible to define rules to automatically construct a tessellation (there has been human
intervention in the construction) then the full tessellation must be stored. The type FullTess
represents this full description (each cell is described); the GML types gml:MultiSurface and
gml:MultiSolid can be used for that, albeit they are rather non-efficient in practice.

As is the case for GeoSciML (Woolf and Lowe, 2007), it was decided that ‘legacy files’ (i.e.
raster formats used in commercial GISs) could be used directly without having to convert them
to GML types (which are non-efficient and cumbersome to use in practice). It is however still
possible to use CV Grid as defined in ISO/OGC standards and implemented in GML (as a
discrete coverage). Legacy files are simply referenced to by a pointer; the metadata about the
file (georeferencing, pixel size, etc.) have however to be stored in the FieldGML file with GML
types and/or attributes.

Interpolation methods play an important role in the FieldGML model, and several methods used
in the GIS world have been listed. The list of methods in Figure 2 is by no means exhaustive as

5www.gdmc.nl/ledoux/fieldgml.html
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Figure 2: UML diagram for the main classes of FieldGML.
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other ones can be easily be added if needed (which is a big advantage over current standards).
It should also be noticed that all the methods listed are perfectly valid in 2D and 3D.

While space constraints does not permit to discuss the details of these methods, the manual of
FieldGML will describe them and discuss what the parameters imply, and that for interpolation
in 2D and 3D.

A few examples of the methods available in FieldGML:

Piecewise: a function is defined over each cell of a tessellation (usually constant or linear).

IDW: as described in Shepard (1968), it requires different parameters to define which points are
involved in the interpolation at a given location (different criteria can be used), and also
the power must be defined.

Kriging: while the modelling of a dataset is a difficult and time-consuming task, the output of
the modelling (a function characterising the dependence between the attributes of any two
samples that are at a given distance from each other) can be simply stored as a string. The
parameters and the functions as defined in the program gstat (Pebesma and Wesseling,
1998) are used.

Natural neighbour: the basic method (Sibson, 1981) does not need any user-defined parameters,
but it is possible to obtain a smoother interpolation if certain parameters are used (see
Watson (1992)).

RST—regularized spline with tension: this method is available in the open-source GIS GRASS,
and by storing a few parameters a field can be reconstructed from a set of samples (Mi-
tasova and Mitas, 1993).

Grid interpolation: while a grid can be seen as a special case of scattered points, different
methods optimised for grids have been developed. FieldGML implements a few of them,
for instance bilinear and biquadratic. See Kidner et al. (1999) for a discussion in 2D, but
these methods trivially generalise to higher dimensions.

In brief, when fields are represented with FieldGML, any kinds of fields can be defined. Observe
also that all the ISO/OGC (sub)types can be mapped to a samples/interpolation in FieldGML
(so there are no needs to define explicitly subtypes). For example, the CV TINCoverage is
based on a set of points, and the interpolation is a piecewise function (linear function inside
each Delaunay triangle). Also, notice that even if a grid is the set of samples for a field, an
interpolation method must be also defined (it can be for instance constant or bilinear inside each
cell).

5.3 Prototype

To convert back and forth between FieldGML representations and the formats used in GIS and
geoscience applications, a prototype was built. Currently it permits users to read a FieldGML
file and output to different formats, and it is also possible to create a FieldGML file when a set
of samples is already available. To output to a format used by commercial GISs, the user has to
choose the spatial extent, the resolution of the grids (only grids are possible right now, although
triangulation could be implemented in the future), and the format. The possible grid formats
currently supported are the ones in the GDAL library6 (in 2D), and netCDF (in 3D).

6The Geospatial Data Abstraction Library: www.gdal.org
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The prototype was developed with the Python programming language, and uses only open-source
software. The interpolation methods described in the precedent section were implemented or
their libraries were linked to the prototype. For instance, the program gstat (Pebesma and
Wesseling, 1998) was used for Kriging, GRASS for RST, and CGAL7 to create triangulations in
2D and 3D.

5.4 Discussion Over the Implementation

At this moment, the interpolation methods have been implemented in the prototype, but to
favour interoperability, I plan to make use of the newly adopted OGC standards about web
processing service (WPS) (OGC, 2007c), which defines how GIS operations can be performed
over the Internet. The methods used by FieldGML would simply be available on a server, and
a user would upload his FieldGML file, specify what representation is needed, and then he/she
would get the file.

Also, it is interesting to observe that while FieldGML and VDS have very similar conceptual
ideas, the implementations are totally different because of the way interoperability is tackled.
The VDS approach was about having proprietary formats not directly accessible to users, who
had to access data through common interfaces. While theoretically very sound, this was not the
choice the GIS community picked, and now instead we have one language (GML) that can be used
to represent any geographical dataset. While probably less efficient (GML is very verbose and
complex), it offers more flexibility as anyone can read a FieldGML file and extract the original
samples, while in the case of VDS you would have to have a piece of software implementing the
interface. With the original dataset, the user can then choose another interpolation method, if
needed.

6 Conclusions

The ultimate goal of a digital field representation is to reconstruct in a computer the continuity
of a studied phenomenon, i.e. to be able to accurately estimate, or calculate, the value of the
phenomenon at any location in a spatial domain. As an alternative to current standards for
fields (i.e. the discrete coverage as implemented in GML), what has been proposed in this
paper, a GML-based representation, is admittedly rather simple from a theoretical point of
view, but yet it permits us to model every situation (and that in two and three dimensions),
and it uses the types already defined in current standards (thus it is a step in the direction of
interoperability). It is also more adapted than raster structures to the kind of datasets found
in GIS-related applications, because it permits us to always keep the original data that were
collected to study a phenomenon, and simply generate new representations that are adapted
to a particular application. FieldGML was also designed with flexibility in mind, so that other
interpolation methods and sample forms can be added.

While the use of FieldGML requires a rethinking from people who produce fields, the users
need not be affected. Indeed, a potential user of FieldGML would simply obtain a field in the
form of a FieldGML file, select the format and resolution of the output file, and carry on with
his/her work as before. But when he/she would need to exchange the field with someone else,
the shortcomings of raster structures would not arise.

7The computational geometry algorithms library: www.cgal.org
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Future works include the implementation of a WPS and the processing of very large datasets
(which are common in GIS-related applications, especially in three dimensions). I also plan to
extent FieldGML so that dynamic fields, and fields having a nominal scale of measurement, are
handled.
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