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Abstract

We propose a new general-purpose data structure useful for a variety
of three-dimensional applications. The data structure has the charac-
teristic of storing simultaneously the primal and dual subdivisions of a
three-dimensional manifold. We argue in this paper that storing both
subdivisions, for instance the Voronoi diagram and the Delaunay tetrahe-
dralization, can be beneficial for many application domains, notably for
the modelling of datasets in geosciences or for representing boundaries of
real-world features. Our structure is an extension of the well-known quad-

edge data structure used for representing two-dimensional manifolds. We
describe the basic properties of this augmented quad-edge structure, along
with the navigation operators, and we also demonstrate its usefulness with
some examples of applications.

Keywords: Data structure, Three-dimensional modelling, Duality, Voronoi
diagram, Delaunay tetrahedralization.

1 Introduction

The topological data structures commonly found in geographical information
systems (GIS) or other modelling systems have been used—with success—
for many years to model two-dimensional (2D) objects and surfaces (e.g. a
digital terrain model where the elevation is treated as an attribute). The
TIGER (Boudriault, 1987), DCEL (Muller & Preparata, 1978) and ARC/INFO
(Morehouse, 1985) formats are all examples of such structures. Although many
application domains require more than that, data structures to model three-
dimensional (3D) solid objects (not only their surface, but also their interior)
are still not well-studied and can even be considered to be in their infancy.

∗Corresponding author.
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Examples of domains where 3D data structures are required include computer
graphics/games, CAD systems, medical imaging, and the modelling of cities or
geoscientific datasets.

In this paper, we propose a new general-purpose data structure useful for a
variety of applications where 3D solid objects are involved. To represent such
objects in computers, the space they cover has to be decomposed, or subdivided,
into finite parts, i.e. into volume elements that we refer to as cells. For the
purpose of this paper, we are particularly interested in data structures that
permit us to store not only one subdivision of a 3D object, but simultaneously
both that subdivision (which is refer to as the primal) and another related
subdivision called the dual. The terms ‘primal’ and ‘dual’ refer to the concept
of duality in mathematics, as explained in Section 3. In brief, it means that
two subdivisions are inter-connected: they represent the same thing, just from
a different point of view. The most known and used example of primal and dual
subdivisions is the duality that exists in any dimensions between the Voronoi
diagram (VD) and the Delaunay triangulation (DT).

Our claim in this paper is that storing both the primal and the dual sub-
divisions can be beneficial for a broad range of applications, and that doing
so offers a more powerful and flexible solution than the other known 3D data
structures (see Section 2 for a review). As explained in Section 5, keeping both
subdivisions can optimise certain spatial analysis operations in GIS, and permit
new applications involving the volume and the boundary of an object. Also, it
offers a flexible solution, because attributes for any elements of both subdivi-
sions can be stored, which is of considerable importance for the modelling of
real-world features. On the other hand, keeping two subdivisions at the same
time obviously has drawbacks: it increases the requirements for storage, and
the construction/modification algorithms will be slower. We nevertheless be-
lieve that in many real-world applications the major constraint is not the speed
of construction of the topological models of a large number of points or the
space needed in memory, but rather the ability to interactively construct, edit
(by deleting or moving certain points) and query (interpolation, extraction of
implicit surfaces, etc.) the desired model. See Anselin (1999) and Gold (1993)
for discussions about the advantages of interactive modelling.

We present in Section 4 a new data structure to store and manipulate simul-
taneously the primal and dual subdivisions of a 3D object. The structure, called
the augmented quad-edge (AQE), is based on the quad-edge structure (Guibas
& Stolfi, 1985) that has been used for many years to represent the primal and
dual subdivisions of 2D objects. The basic properties, the construction and
navigation operators, and the storage costs of the AQE are also presented in
Section 4. We believe the primary feature of the data structure to be ease of use
in managing and navigating 3D objects. While it needs somewhat more stor-
age than other structures, it is computationally efficient, requiring no searching
operations in order to move from cell to cell.
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2 Related Work

Before discussing the alternative data structures, we need to introduce some
concepts and definitions. When dealing with d-dimensional objects, an impor-
tant concept is that of a manifold. Informally, a d-manifold is an object for
which the neighbourhood of every one of its points resembles a d-dimensional
space. A 2-manifold is therefore a surface which, it should be pointed out, can
be embedded in 3D space (see Figure 1a); an obvious example is the surface
of the Earth, for which near to every point the environment is equivalent to
a plane. An example of a 3-manifold is the entire Earth (its interior) because
the neighbourhood of every point is equivalent to a 3D region (see Figure 1b).
Closely related to the concept of a subdivision of a 3-manifold is that of a 3D cell
complex. A cell complex is formed by a collection of k-cells (where 0 < k ≤ d,
such that a 0-cell is a vertex, a 1-cell an edge, a 2-cell a face and a 3-cell a
polyhedron) such that no k-cell punctures the interior of any other k-cell. In
the following, unless explicitly stated, a cell is always assumed to be a 3-cell.
Note that a 3D cell complex is the same as the tessellation of 3D space into
non-overlapping polyhedra.

Data structures to represent 3D objects have been developed in many differ-
ent fields, and we would classify the most common 3D spatial data structures
as follows. Note that this is not a complete review, our purpose is to introduce
some of the methods used in other disciplines.

Constructive solid geometry (CSG): Solid objects are represented as Boolean
combinations (union, intersection and difference) of simpler objects, which
are typically of simple shapes such as cylinders, cones, spheres or pyra-
mids (see Requicha (1982) for more details). CSG is mostly used in CAD
systems to represent complex models of man-made features (e.g. aircrafts
or engines).

Boundary representation (b-rep): One 3D object—it must be a 2-manifold—
is represented by its boundary surface, using primitive objects (vertices,
edges and faces). Boundary modelling is more flexible than CSG because
irregular objects can be modelled, but it requires more work as the infor-
mation about the connectivity of the faces needs to be valid at all times.
One example of the use of such a structure is the modelling of cities in a
GIS where each building is represented individually by a b-rep (see Zla-
tanova et al. (2004) for a review of the topological models used).

Regular decomposition: The space covered by an object is arbitrarily de-
composed into cells of regular shape (usually cubes in 3D). The term
‘voxel’ is used as the 3D equivalent of pixel. This structure, or closely re-
lated hierarchical decompositions (Samet, 1984), have been used in many
application domains to represent continuous phenomena.

Irregular decomposition: The object is decomposed into cells of different size
and/or shape. The cells can all have the same shape (e.g. tetrahedra), or
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be arbitrary polyhedra. It is equivalent to a subdivision or a tessellation
of a 3-manifold.

Non-manifold structures: These are used to represent non-manifold objects,
i.e. objects for which the neighbourhood of a point does not resemble a
3D region (see Figure 1c). See De Floriani & Hui (2003) for one imple-
mentation of such a structure.

Let us now describe in more detail some of the most relevant data structures.
To represent 2-manifolds, only the edges and vertices of a subdivision are usually
stored, and for each edge the connected edges are stored; this permits us to store
implicitly the faces of the boundary. The most popular structures are the half-
edge (Mäntylä, 1988), the DCEL (Muller & Preparata, 1978) and the winged-
edge (Baumgart, 1975). Guibas & Stolfi (1985) also propose the quad-edge,
which stores simultaneously any primal and dual subdivisions of a 2-manifold.
The structure, which is formally described in Section 4.1, comes with an algebra
for the construction and the navigation of the subdivisions.

Many data structures to store arbitrary 3D subdivisions are extensions of
work done in 2D. Examples are the half-face of Lopes & Tavares (1997) (ex-
tension of the half-edge) and the Generalized Maps (G-Maps) (Bertrand et al.,
1993; Lienhardt, 1994). The latter structure, which is actually valid to represent
a broader class of objects called cellular quasi-manifolds, can be seen as a gen-
eralization to d-manifolds of boundary models as each k-cell (where 0 < k ≤ d)
is recursively decomposed into cells of lower dimensionality, and the topological
relationships between adjacent k-cells are kept. The resulting structure is thus
very space-consuming, as each lower-dimensionality cell must be stored in cells
of higher dimensionality: a vertex shared by five edges is for instance stored
in each of the five edges. It is nevertheless being used in a commercial sys-
tem for the modelling of geoscientific data1. Although G-Maps store only one
subdivision, it offers efficient functions to extract all the elements of the dual
subdivision. One of the few structures permitting the simultaneous preserva-
tion of primal and dual subdivisions of 3-manifolds is the facet-edge structure
of Dobkin & Laszlo (1989). As its name implies, the atom is a pair formed
of a face and an edge, and the next facet-edge pairs (one in each direction)
around the face and the edge (incident faces to the edge) are stored. Unlike
G-Maps, a face shared by two cells needs only be stored once. The facet-edge
structure comes with a set of operations to modify cells and to navigate within
both subdivisions. Its generality makes navigation within a single cell impossi-
ble, and hence the authors suggest storing extra information for each edge and
using the quad-edge operators. Also, unlike the quad-edge that is being used in
many implementations of the 2D VD/DT, the facet-edge has been found diffi-
cult to implement in practice and, to our knowledge, has not been used in ‘real
projects’.

As Aurenhammer (1991) demonstrates, the VD and the DT are fundamental
concepts in computer science because they are useful in a wide variety of appli-

1The gOcad system: www.gocad.org
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cations, and once they are constructed they permit us to solve many geometric
problems. In fact, they are such important concepts that it is worth mentioning
data structures to store these in particular. In practice, most of the algorithms
and implementations available to construct the 3D VD/DT store only the DT
and perform their topological operations on tetrahedra, and if needed the VD is
extracted afterwards. This is usually justified by the fact that the knowledge of
either structure implies the knowledge of the other, and also because managing
and storing simplices—having a fixed number of vertices and adjacent cells—
over arbitrary polyhedra simplifies the topological operations and permits the
design of simpler data structures. The resulting implementation will therefore
be more efficient, both in terms of speed and memory. The simplest data struc-
ture considers the tetrahedron as being its atom and stores each tetrahedron
with four pointers to its vertices and four pointers to its adjacent tetrahedra.
This is a very space-efficient structure that yields fast implementations, and it
is therefore the structure of choice in many projects. The CGAL library notably
uses it, but has added to each vertex a pointer to one of its incident tetrahedra
to speed up the extraction of the Voronoi cells (Boissonnat et al., 2002). It is
also possible to store the tetrahedra implicitly by considering a data structure
where the atom is a triangular face having three pointers to its vertices and
six pointers to its adjacent faces, as described by Shewchuk (1997). However,
storing only the DT has major drawbacks if one wants to work with the VD.
It is for example difficult to assign attributes to Voronoi vertices or faces, and
moreover the computation of the VD is an expensive operation, as explained in
Section 5.2.

3 Duality in Three-dimensional Space

Duality can have many different meanings in mathematics, but it always refers
to the translation or mapping in a one-to-one fashion of concepts or structures.
We use it here in the sense of the dual graph of a given graph. Let G be a planar
graph, as illustrated in Figure 2a. Note that G can both be seen as a subdivision
of a 2-manifold, or as a 2D cell complex. The dual graph G⋆ has a vertex for each
polygon in G, and the vertices in G⋆ are linked by an edge if and only if the two
corresponding dual polygons in G are adjacent (in Figure 2b, G⋆ is represented
with dashed lines). Notice also that each polygon in G⋆ corresponds to a vertex
in G. Consider now the polygonal map in Figure 2c, where each polygon (a
map object) has certain attributes, and where the boundaries between two map
objects also have some sort of attributes, e.g. the boundary form or the flow.
Notice that the boundaries do not characterise per se any of the objects, but
rather the adjacency relationships that exist between any two objects (Gold,
1991). It is therefore natural to store the relationships between two given map
objects in the edge that is dual to their shared boundary (Figure 2d).

The best known example of a graph and its dual is the Voronoi diagram and
the Delaunay triangulation. In this case, geometric constraints are added so
that the graphs respect some criteria. Let S be a set of points in the Euclidean
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space R
2. Many triangulations (a triangulation is a graph) of S are possible, but

only one has the property that the interior of the circumcircle of each triangle is
empty of any other point in S: the Delaunay triangulation, as shown in Figure 3.
The dual graph of the DT is the VD: each triangle in S becomes a vertex in
the dual (it is located at the centre of the circumcircle of the triangle) and two
vertices in the VD are linked by an edge if and only if their respective dual
triangles are adjacent. The resulting polygon dual to a point p ∈ S is a Voronoi
cell, denoted Vp, which is defined by the set of points x ∈ R

2 that are closer to
p than to any other point in S. From a mathematical point of view:

Vp = {x ∈ R
2 | ‖x − p‖ ≤ ‖x − q‖, ∀q ∈ S}.

The union of the Voronoi cells of all points p in S form VD(S). In any dimen-
sions, a Voronoi cell around a point p is always convex, and its size depends on
the configuration of neighbouring points. The VD and DT are very important
structures in a wide range of domains, see Aurenhammer (1991) for an excellent
survey.

Both the VD and the DT generalise to any dimensions. The Voronoi cell Vp

of a point p in R
3 has the same definition but becomes a polyhedron. The gener-

alisation to 3D of the Delaunay triangulation is the Delaunay tetrahedralization:
each triangle becomes a tetrahedron that satisfies the empty circumsphere rule.
The duality between the two structures in 3D is also similar: each tetrahedron
of the DT becomes a vertex (located at the centre of the circumsphere of the
tetrahedron), and two vertices in the VD are linked by an edge if and only if
their two respective dual tetrahedra are adjacent.

More formally, the mapping between the elements of primal and dual sub-
divisions in R

d is as follows. Let C be a k-cell of any structure, the dual cell
of C in R

d is denoted by C⋆ and is a (d − k)-cell. Therefore, in 3D, a point
becomes a polyhedron, and vice versa; and an edge becomes a face, and vice
versa. For example, a Delaunay vertex p becomes a Voronoi cell (Figure 4a), a
Delaunay edge α becomes a Voronoi face (Figure 4b), a Delaunay triangular face
κ becomes a Voronoi edge (Figure 4c), and a Delaunay tetrahedron τ becomes
a Voronoi vertex (Figure 4d).

4 Augmented Quad-Edge

4.1 Quad-Edge Structure

The quad-edge data structure (Guibas & Stolfi, 1985) was developed to represent
simultaneously the primal and dual subdivisions of a 2-manifold, and also to
navigate from edge to edge in these subdivisions. Each quad-edge represents
one geometrical edge of a subdivision, and this edge is decomposed into four
directed edges: two in the primal, and their two respective dual edges. Each
directed edge is represented by a quad, which, in a given subdivision, will either
point to one vertex or to a face; in the dual, a quad points to the dual of what it
is pointing to in the primal. Its advantages are firstly that there is no distinction
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between the primal and the dual representation (it is symmetric with respect to
edges and faces/polygons), and secondly that all operations are performed as
pointer operations only, thus giving an algebraic representation to its operations.
Figure 5a shows the basic structure, with four branches (quads) for each edge
of the graph being stored (the dual edges are not drawn), one for each of the
incident vertices or faces. There are three pointers on each quad: one to the
vertex or face object (org), one to the next anticlockwise quad-edge around that
object (next), and one to link the four quads together in a loop (rot). Thus all
vertices or faces have complete topological loops around them. Notice that the
rot operation actually permits us to navigate between the primal and the dual
subdivisions.

Only two commands are used to modify a graph: MakeEdge to create a
new edge on a manifold, and Splice to connect/disconnect quad-edges together
(illustrated in Figure 5b). In the simplest case, Splice connects two separate
next loops, joining the two nodes together, and at the same time splitting the
next loop around the common face. Splice is its own inverse.

4.2 One Dimension Higher

The augmented quad-edge (AQE) uses the ‘normal’ quad-edge, which is valid for
any 2-manifolds, to represent each 3-cell of a 3D complex, in either space. For
instance, each tetrahedron and each Voronoi cell are independently represented
with the quad-edge, which is akin to a boundary representation (b-rep). With
this simple structure, it is possible to navigate within a single cell with the
quad-edge operators, but in order to do the same for a 3D cell complex two
things are missing: a way to ‘link’ adjacent cells in a given space, and also a
mechanism to navigate to the dual space. First, notice that in this case two of
the four org pointers of a quad-edge point to vertices forming the 2-manifold,
but the other two (which in 2D point to the dual, or a face) are not used in 3D.
Remember also that in 3D the dual of a face is an edge. Our idea is therefore
to use this dual edge to ‘link’ two cells sharing a face: the unused face pointers
simply point to their dual edge. This permits us to ‘link’ cells together in either
space, and also to navigate from a space to its dual. Indeed, we may move from
any quad-edge with a face pointer to a quad-edge in the dual cell complex, and
from there we may return to a different 2-manifold in the original cell complex
if needed.

A quad-edge is divided into four quads q, and there exist two types of quads:
a qf points to a face, and a qv points to a vertex. One rot operation applied
to a qf returns a qv, and vice-versa. A qf identifies uniquely, like the facet-
edge (Dobkin & Laszlo, 1989), a pair (face, edge). Therefore qf has also a
linked quad q⋆

f in the dual that is defined by (face⋆, edge⋆).
One issue remains to be resolved: as each face is penetrated by several dual

edges, a consistent rule must be defined to select the appropriate one. Indeed,
with the AQE, the dual edge to a face has to be stored for all the dual cells
sharing that edge. A triangular face has for example three dual edges since each
of its three vertices becomes a cell in the dual. A qv has its org pointer set to
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a node, and a qf has its org pointer set to q⋆
f . The pointer to q⋆

f from qf is
called through, as shown in Figure 6. The quad q⋆

f is defined as belonging to the
dual cell which encloses the node pointed to by qf .rot = qv. This is sufficient
to define the through pointer structure. In Figure 6, the triangular face abc has
three dual edges and may be represented by the quad qf (the black quad) on the
edge ab. The dual edge of abc is uv, and the grey face represents the face that is
dual to the edge ab. The operation qf .through gives q⋆

f which is situated on the
edge uv and on the face dual to ab; this face belongs to the cell dual to vertex b

since qf .rot.org gives b. Note also that qf .next.through gives a quad on a face
which belongs to the cell dual to the vertex a; and qf .next.next.through to c.

4.3 Navigation and Construction Operators

As mentioned earlier, because the quad-edge structure is used to represent each
cell of a 3D cell complex, the ‘usual’ navigation operators (next and rot) de-
scribed in Section 4.1 can be used to navigate within a 3-cell. Only one new
operator is needed to navigate within a 3D cell complex and to be able to visit
every polyhedron, face, node or quad-edge: the through operator, as described
in the previous section.

Let qf be a quad and q⋆
f its dual quad, then the following properties are

valid:

1. q⋆
f = qf .through

2. qf = qf .through.through = q⋆
f .through

Different higher-level navigation operators can also be defined. One that is
particularly useful is an operator for ‘jumping’ from a cell to another adjacent
cell, in either space. We call this navigation operator adjacent. Let qf be a quad
on the boundary of a common face between two cells, as shown in Figure 7. We
want to ‘jump’ to the quad rf representing the same pair (face, edge) as qf

but on the adjacent cell. We do this by using the dual structure to navigate.
Starting from qf , qf .through gives q⋆

f , and q⋆
f .next gives a quad whose through

pointer gives a quad in the original space but in a neighbouring cell. The rot
operator is used twice to set the result to rf . Thus,

qf .adjacent = qf .through.next.through.rot2

Other relations are also interesting. First, the adjacent operator is symmetri-
cal: qf = qf .adjacent.adjacent. Second, if qf and rf are adjacent quads as in
Figure 7 (such that rf = qf .adjacent), notice that their respective dual quads
q⋆
f and r⋆

f are also adjacent, i.e. they represent the same pair (face, edge) but
are part of different 3-cells.

New construction operators are required to build a 3D cell complex and
its dual. The creation of new independent cells, e.g. a Delaunay tetrahedron
or a Voronoi cell, can be done with only the construction operators MakeEdge
and Splice of the quad-edge structure because each cell is represented as a
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2-manifold. The other construction operator needed is for the assemblage or
linkage of two cells. Again, this is done fairly easily as only the through pointers
of all qf belonging to a common face need to be set (reset) to link (un-link) two
cells.

4.4 Properties

We have attempted to develop a data structure with a variety of properties.
The AQE integrates the b-rep representations and the irregular and regular de-
compositions under the same structure, as described in Section 2. Its flexibility,
and the fact that the dual of a 3D cell complex is also stored, makes the AQE
a valuable choice for many applications, as we discuss in Section 5. It should
be noticed that the AQE is only valid for cell complexes, and that subdivisions
where ‘dangling’ elements are present cannot be represented with the structure
in its current form.

The proposed approach preserves the lower dimensionality (2D) navigation
and construction operations, as well as keeping the underlying quad-edge prop-
erties in 3D. As a consequence, the data structure is directly navigable and
forms an ‘edge algebra’, allowing us to combine our pointer operations by fol-
lowing well defined rules, and to show the equivalence of different ways of getting
to the same destination. Also, every operation has an inverse. To permit the
navigation between 2-manifolds, the dual has to be explicitly stored within the
structure. Each volumetric element uses the quad-edge (with 2D primal and
dual edge elements) for navigation around its boundary, and the same is thus
required for the dual structure, as we wish the same set of operations to be valid
in each space.

Furthermore, the AQE has the major benefit of being locally modifiable,
i.e. if new elements need to be inserted (deleted) in (from) a model a complete
reconstruction of the model is not required. We have already implemented with
the AQE an algorithm to construct and store both the 3D DT and the VD. It is
based on local transformations, called flips, to modify a tetrahedralization (Joe,
1991). A DT is constructed incrementally by inserting one at a time the points in
a set and updating the DT—with flips—after each insertion. Our modifications
involve the update of the dual structure when a flip is performed; because the
flips are simple topological operations involving a fixed set of tetrahedra, the
operations to update the VD are relatively simple and can be described using
algebraic statements exclusively. This simplicity also means that vertices can be
deleted from a 3D VD/DT (Ledoux et al., 2005), which is of great value for many
applications. More details concerning the construction and the modification of
the 3D VD/DT with the AQE will be published in another paper.

4.5 Storage Costs and Comparisons

We analyse in this section the storage costs of the AQE when it is used to
represent both the DT and the VD.
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With the AQE, each cell (tetrahedron or Voronoi cell) is stored separately.
Each tetrahedron contains: six edges, each represented by four quads containing
three pointers (org, next and rot). This makes a total of 72 pointers. Notice
that every qf has one and only one q⋆

f , and also that the same is true for every
qv (there is always one qv when a rot is applied to a given qf ). As a result,
the total number of pointers for the dual is also 72, which makes a total of 144
pointers for each tetrahedron.

This is obviously more than the data structures used to store only the DT.
For example, the tetrahedron-based structure described in Section 2 uses only
eight pointers per tetrahedron. To our knowledge, the only data structure pre-
serving both a primal and dual 3D subdivision is the facet-edge (Dobkin & Las-
zlo, 1989). With it, each pair (face, edge) contains (considering both the primal
and the dual): four pointers to vertices (two Delaunay and two Voronoi), and
also four pointers to the next facet-edge (the navigation requires the use of the
dual to access the adjacent facet-edges around the face and the edge). There are
three pairs per triangular face, and a tetrahedron contains four faces. However,
with this structure, the common faces between two tetrahedra are not stored
twice—and we can state that each face is shared by two tetrahedra, except the
ones on the convex hull of the data set. As a result, the total number of pointers
per tetrahedron is 48, but, as explained previously, extra information needs to
be stored if one wants to use the quad-edge operators to navigate within a single
cell.

To summarise, the AQE, as described in Section 4, is about three times
more space-consuming than the facet-edge, in the worst case. A factor of two is
consistent with our initial objective to maintain the primal and dual structures
simultaneously, and to use the same set of operations in each space. This can be
achieved by compressing the quad-edge as Guibas and Stolfi proposed: the rot
pointers between quads are not explicitly stored and the last two bits of each
pointer are used to identify each quad of a quad-edge object.

5 Applications

Many applications in 3D are based on the idea of subdividing or tessellating
the space to be able to model objects. This section gives a few examples of
applications for which the dual of a subdivision is meaningful, and therefore is
worth storing. Doing this can optimise some of the operations necessary for an
application, solve a problem that data structures storing only one subdivision
have, or offer a more flexible option for the storage of attributes.

5.1 Crust and Skeleton

In recent years, tetrahedralizations have been used more and more to model the
interior and the boundary of objects. The principal application is in engineering
where the subdivision of an object is used in the finite element method or other
numerical methods for solving partial differential equations. Delaunay tetrahe-
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dra are usually preferred because of their properties, but are sometimes refined
so that they respect some criteria (see Shewchuk (1997) for a discussion). This
is mostly the reason why the efforts of the computational geometry community
have been directed towards data structures to efficiently store tetrahedra, and
only tetrahedra.

But some applications are only possible when both the DT and the VD are
known explicitly, i.e. that properties of the DT and the VD are both used to
solve a problem. Obvious two-dimensional examples are the definitions of the
crust and skeleton of a sufficiently well-sampled polygon. It has been shown that
these two structures are subsets of respectively the DT and the VD (Amenta
et al., 1998), and the extraction of either the crust or the skeleton requires
the knowledge of both the DT and the VD. Gold & Snoeyink (2001) show
that the crust/skeleton concept helps in many cartographic problems such as
the reconstruction of terrain models from contour lines, the estimation of a
river network from boundaries, and the extraction of “topology” from scanned
maps. One interesting application is polygon generalisation: a polygon may be
generalised by first constructing its skeleton, then simplifying this skeleton, and
finally reconstructing the polygon from the simplified skeleton. This idea has
been extended to three dimensions for the reconstruction and simplification of
surfaces and features from laser scans (Tam & Heidrich, 2003). The method is
similar to the two-dimensional one and involves the extraction of the DT of the
set of points, and the 3D skeleton of the reconstructed objects (with the VD).
The surface is simplified by modifying the skeleton, which as a consequence
involves modifying the crust.

5.2 Modelling 3D Datasets in the Geosciences

In the same way that triangulated irregular networks are used in two dimensions
to represent the spatial variation of an attribute (usually the elevation of a
terrain), tetrahedra can be used to model geoscientific datasets, as an alternative
to raster structures (Lattuada, 1998). Examples are datasets in geology or
oceanography where continuous phenomena (e.g. the percentage of gold in the
rock or the salinity of the water) are modelled. However, as Ledoux & Gold
(2006) explain, modelling 3D continuous phenomena can also benefit greatly
from both the DT and the VD. As discussed in Section 2, most of the algorithms
and data structures available for constructing and storing the VD actually use
only tetrahedra and extract the VD when needed. Although this results in a
faster implementation, it has one major drawback if one wants to work with
the VD: the computation of the Voronoi elements (vertices, edges, faces and
polyhedra) is a computationally expensive operation. Although a single Voronoi
vertex is easily extracted (it is located at the centre of the tetrahedron to which
it is dual), the extraction of the other elements is more complex. The next
examples all refer to Figure 4. A Voronoi edge, which is dual to a triangular
face κ, is formed by the two Voronoi vertices dual to the two tetrahedra sharing
κ. A Voronoi face, which is dual to a Delaunay edge α, is formed by all the
vertices that are dual to the Delaunay tetrahedra incident to α. The idea is
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simply to “turn” around a Delaunay edge and extract all the Voronoi vertices
to extract a face. The construction of one Voronoi cell Vp dual to a vertex p is
similar: it is formed by all the Voronoi vertices dual to the tetrahedra incident
to p. Since a Voronoi cell is convex by definition, it is possible to collect all
the Voronoi vertices and then compute the convex hull (see Barber et al. (1996)
for more details). A simpler method consists of first identifying all the edges
incident to p, and then extracting the dual face of each.

In short, in order to model a geoscientific dataset, the DT is an important
concept because it helps in the construction and the manipulation of the spatial
relationships between the elements, but also because many 3D visualization al-
gorithms are optimised when tetrahedra are involved (Cignoni et al., 1998). On
the other hand, the VD can be of great help with many spatial analysis opera-
tions, and storing it explicitly considerably optimises the operations. Examples
are interpolation methods (e.g. the natural neighbour interpolation method of
Sibson (1981)), spatial analysis functions (Okabe et al., 1994), or traditional
GIS operations (Gold et al., 1997).

5.3 Modelling Apartment Buildings

Perhaps the main advantage of using the AQE is that attributes can be stored for
any elements of both subdivisions (vertices, edges, faces and volumes). Indeed,
the vertex attributes may be stored along with the x− y − z coordinates in the
vertex; edge attributes in a quad pointing to a vertex; face attributes in a quad
pointing to a face; and volume attributes in the vertex that is dual to a volume.

One potential three-dimensional application exploiting duality to store at-
tributes is the modelling of an apartment building. Each room is represented
by one 3-cell (see Figure 8 for a simple example), and in a similar way to the
example in Figure 2, the dual edge to each face (e.g. the four walls, the floor or
the ceiling) is used to store the relationships between two adjacent rooms, such
as the visibility (instead of explicitly representing a window for instance), or the
noise transmission. Moreover, it is possible to store attributes for the properties
of different parts of one room: the finish of a wall or the floor type (attributes
attached to 2-cells), the type of moulding (attributes attached to the 1-cells),
or the properties for the whole room (e.g. its volume or renting price) can be
stored in the dual vertex to the 3-cell. A major advantage of using the AQE for
modelling apartment buildings is that a wall (or a floor) is stored twice, once
for each of the two rooms sharing the wall. This is consistent with the way one
would conceptualise many rooms in a building: the wall separating two rooms
will not necessarily have the same properties on each side. For example, the
finish on one side of the wall might be different from the one on the other side,
or one side might have a gold ceiling moulding and the other no moulding at
all.

The AQE can also be used to search efficiently a 3D cell complex. Referring
to Figure 8, if qf (the black quad) is a quad representing the wall between the
two rooms, it is possible to retrieve all the elements forming the room on the
right by using a simple graph search algorithm such breadth-first search (BFS)
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on the 3-cell representing the room (using quad-edge operators). Each element
of the wall that qf represents can also be retrieved with the quad-edge operators
rot and next ; and the same is true for the ceiling or the floor that can be accessed
directly from the AQE algebra, without searching. The attributes characterising
the relation between the two rooms are obtained with qf .through, and then the
attributes of the whole room can be obtained directly because they are stored
in the vertex dual to the room. Also, from qf it is possible to navigate locally
and visit the adjacent room with qf .adjacent, and then for instance move to its
ceiling by applying rot twice. Given a k-cell C, it is actually possible to identify
all the l-cells (where k < l ≤ 3) incident to C using the navigation operators of
Section 4.3. Notice that in the case of retrieving all the elements incident to a
vertex one can simply move to the dual subdivision and perform a BFS on the
3-cell because the elements retrieved are dual to elements incident in the primal.
A further important consideration is that a complete 3D cell complex can be
easily and efficiently traversed without storing extra information (de Berg et al.,
1997).

When the attributes are included in a search, it is for example possible to
look for an edge that represents gold ceiling moulding, incident to a white ceiling
and a blue wall, and with a red corner boss; or for all the rooms having more
than 100 m2 but not having a carpet.

6 Discussion

This paper has outlined a new data structure to store simultaneously a 3D
cell complex and its dual, and briefly showed its use for different applications.
The augmented quad-edge integrates under one structure different types of data
structures used in different application domains. While the data structure re-
quires somewhat more storage than some more simple structures, it has the
advantage of conceptual simplicity and involves only a simple extension of the
2D topological relationships. The fact that the dual subdivision is also stored
permits the storage of attributes for any elements of a 3D subdivision, and makes
the structure particularly valuable for a wide range of applications. We believe
that the AQE offers a good trade-off between storage costs and the number of
topological relationships between the different elements of a subdivision.

We are still exploring if the structure is appropriate for arbitrary subdivisions
of 3-manifolds where ‘dangling’ faces and edges may exist. Future work also
includes more formal definition of navigation and construction operations, and
possible compression of the structure. Earlier work suggests that quad-edges,
being an algebra, may be stored effectively using relational databases, but this
is still being examined (Merrett, 2005).
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(a) (c)(b)

Figure 1: (a) The neighbourhood of every point in a 2-manifold is equivalent to
a plane. (b) The neighbourhood of every point in a 3-manifold is equivalent to
a 3D space. (c) A non-manifold object. The neighbourhood of the vertex where
the two tetrahedra, the triangular face and the edge meet does not resemble a
3D space, i.e. a coordinate system can not be defined locally.
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Figure 2: The dual graph is used to describe the relationships between adjacent
polygons.

(a) (b)

(c)

Figure 3: (a) The Delaunay triangulation for a set of points in the plane. (b)
The Voronoi diagram for the same set of points. (c) Both structures.

17

FINAL VERSION



(a) (b) (c) (d)

p
κ

α τ

Figure 4: Duality in 3D between the elements of the Voronoi diagram and the
Delaunay tetrahedralization.

q

q.rot

q.sym

q.next

q.sym.next

q.rot.next

a b

Splice(a, b)

a b

(a) (b)

Figure 5: (a) The quad-edge data structure and some basic operators (only
one subdivision is represented). The starting quad q is the black quad, and the
resulting quads are grey. (b) The Splice operator.
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qf .next.next

qf .next

q⋆
f = qf .through
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Figure 6: The through pointer. The quad qf is the starting quad, and the grey
ones are resulting quads after an operation.

qf .through.next

qf

qf .through
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d
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vu
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rf

qf .through.next.through

Figure 7: The adjacent operator. The quads qf and rf represent the same pair
(face, edge), but belong to different 3-cells.
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qf

qf .adjacent

qf .adjacent.rot.rot

qf .next.next

qf .rot.rot.next.next

Figure 8: An apartment building can be modelled with the AQE.
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