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Abstract

Simulations of environmental processes are usually modelled by partial dif-
ferential equations that are approximated with numerical methods, based on
regular grids. An attractive alternative for simulating a fluid flow is the Free-
Lagrange Method (FLM). In this paper, I discuss the use of the FLM—based
on the Voronoi diagram (VD)—for the modelling of fluid flow in three dimen-
sions (e.g. the movement of underground water or of pollution plumes in the
ocean). Such a technique requires the kinetic three-dimensional VD, that is a
VD for which the points are allowed to move freely in space. I present a new
algorithm for the movement of points in a three-dimensional VD, and show
that it can be relatively easy to implement as it is the extension of a simple
two-dimensional algorithm.

1 Introduction

The integration of simulation models and geographical information systems
(GISs) is a major source of problems because GISs have not been designed for
handling time, and even less for handling processes which involves continual
movements (Sui and Maggio, 1999). Full integration is almost not heard of,
and the two are usually simply ‘linked’, i.e. a GIS is used as a pre-processing
tool (e.g. to prepare a dataset or convert formats) and as a post-processing
tool (e.g. visualisation and further spatial analysis), but the simulation itself
is done using a specialised tool. Many argue for ‘full integration’, as both tools
would ultimately gain (Freda, 1993; Parks, 1993). The simulation of some en-
vironmental processes, e.g. the tracking of pollution plumes in the ocean or
dispersion models in meteorology, is even more problematic because these phe-
nomena are three-dimensional by nature, and three-dimensional GISs are still
their infancy (see Zlatanova et al. (2002) and Raper (2000) for discussions).
Simply to be integrated into a GIS, the results of environmental simulations
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must often be ‘sliced’ into several 2D datasets (Bivand and Lucas, 2000; Nativi
et al., 2004).

Many disciplines need to simulate real-world processes, and the methods
they use obviously differ. Simulations in geoscience or in engineering have
usually been based on partial differential equations (PDEs) that describe the
behaviour of some fluid (e.g. the fluid flow around an aircraft, or the move-
ment of underground water) (Burrough et al., 1988). PDEs are solved, or
rather approximated, with mainly two numerical methods: the finite differ-
ence method (FDM), which was developed for regular tessellations; and the
finite element method (FEM) (Strang and Fix, 1973), which is possible on any
tessellations, regular or irregular. The solution of a PDE is obtained by firstly
approximating the behaviour of the process studied for each element of the
tessellation, and the final solution is obtained by accumulating all the results.
The FDM performed on grids, as used for instance by systems for weather
forecasting, is well-known, efficient and mostly accurate. However, the use of
grids can sometimes lead to unreliable results (Augenbaum, 1985), and some
other technical problems also arise (for instance the curvature of the Earth is
problematic for large datasets).

For the modelling of fluid flow, there exists an alternative approach to
using a fixed/rigid tessellation: the Free-Lagrange method (FLM) (Fritts et al.,
1985). With this method, the flow is approximated by a set of discrete points
(called particles) that are allowed to move freely and interact; each particle has
a mass and a velocity. A tessellation of the space is still required, but of course
it will be modified as the particles are moving. As briefly explained in Sect. 2,
the Voronoi diagram ‘naturally’ tessellates the space based on a set of points,
and has therefore been used (see Erlebacher (1985) for instance). Although the
FLM can theoretically better represent a physical process (Fritts et al., 1985),
it is handicapped by the many difficulties encountered when implementing it.
As Mostafavi and Gold (2004) note, the adjacency relationships of the cells
of the tessellation must be kept consistent at all times, and there must be a
way to model time, because fixed time steps can comprise the adjacency of
the tessellation. Indeed, earlier implementations of the FLM were very slow
because the adjacency relationships between cells had to be rebuilt at each
step of the process. With Mostafavi and Gold’s solution, the kinetic VD,
all the topological events are managed locally, and the time steps that were
previously used (which could lead to overshoots and unwanted collisions) can
be avoided as topological events are used. They show the advantages of the
kinetic VD with the simulation of global tides on the Earth (thus using the
VD on a sphere).

In this paper, I extend to three dimensions the work presented in Mostafavi
and Gold (2004), and present a novel algorithm for keeping up-to-date a 3D
VD as the points defining it are moving over time. In other words, an al-
gorithm for the kinetic VD in three-dimensional space is presented. Such an
algorithm is interesting for two reasons: (i) it permits us to perform simulation
with the VD (which potential yields more accurate results); (ii) it is a step in
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Fig. 1. (a) VD of a set of points in the plane. The point p (whose Voronoi cell is
dark grey) has seven neighbouring cells (light grey). (b) Two Voronoi cells adjacent
to each other in R3 (they share the grey face).

the direction of integrating simulation models and GIS (that is if the VD is
used as an alternative spatial model to the usual point-line-polygon model, as
in the work of Gold (1996), Gahegan and Lee (2000) and Chen et al. (2004)).
Because the paper is fairly technical, important concepts related to the VD
are first introduced in Sect. 2, and then the algorithm itself is presented in
Sect. 3, along with a literature review of other potential methods. Sections 4
and 5 discuss the potential applications of the algorithm presented, and also
briefly its implementation. Notice that most of the concepts and methods dis-
cussed are firstly introduced by describing their two-dimensional counterparts
(because readers are often more familiar with these), and that most figures
are for the 2D case as it is much simpler to understand.

2 Voronoi Diagram & Related Issues

Let S be a set of n points in a n-dimensional Euclidean space Rn. The Voronoi
cell of a point p ∈ S, defined Vp, is the set of points x ∈ Rn that are closer to p
than to any other point in S. The union of the Voronoi cells of all generating
points p ∈ S form the Voronoi diagram of S, defined VD(S). Fig. 1 shows
two- and three-dimensional examples. The VD is arguably one of the most
important geometric/spatial structures in sciences because it is very simple,
and yet is so powerful that it helps in solving many theoretical problems, and
helps also for many real-world application; Aurenhammer (1991) and Okabe
et al. (2000) offer exhaustive surveys.

The Delaunay triangulation. The VD is closely related to another structure:
the Delaunay triangulation (DT). The DT is popular in 2D in many appli-
cation domains because it has many useful properties, among others are the
fact that the triangles created are as equilateral as possible, and that it can
be modified locally. In 3D, the Delaunay tetrahedralization is defined by the
partitioning of the space into tetrahedra—where the vertices of the triangles
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Fig. 2. DT in 2D of the same set of points as in Fig. 1(a).

are the points in S (generating each Voronoi cell)—that satisfy the empty cir-
cumsphere test (a sphere is empty is no points are in its interior, but points
can lie directly on the sphere). Fig. 2 illustrated the idea in 2D.

Duality. The VD and the DT are dual structures, which means that the knowl-
edge of one implies the knowledge of the other one. In other words, if one has
only one structure, he can always extract the other one. The concept of du-
ality is important for the construction, the manipulation and the storage of
the VD, because all the operations can be performed on its dual, and when
needed, the VD extracted. The algorithm in Sect. 3 uses this idea.

General position. An important concept when discussing the VD and the DT
is that of the position of the points in a set of points. A set S of points is said
to be in general position when the distribution of its points does not create any
ambiguity in the structures derived from the points (e.g. the VD or the DT).
For the VD and/or the DT in Rd, the degeneracies, or special cases, occur
when d + 1 points lie on the same hyperplane and/or when d + 2 points lie
on the same ball. For example, in three dimensions, when five or more points
in S are cospherical there is an ambiguity in the definition of DT(S): since
all the points lie on a sphere, all the tetrahedralizations of the points respect
the Delaunay criterion. When four or more points are coplanar in 3D, DT(S)
and VD(S) are unique, but problems with the computation of the structures
can arise (see for instance Sugihara and Inagaki (1995) and Field (1986)).

2.1 Construction of the VD/DT

The construction of a VD, or a DT, is a well-known problem in computational
geometry and different efficient algorithms, based on different computational
geometry paradigms, are available; see for instance Edelsbrunner and Shah
(1996), Watson (1981) or Cignoni et al. (1998).

Predicates. An important consideration is that for all the construction al-
gorithms, essentially only two basic geometric tests (called predicates) are
required: Orient determines if a given point is over, under or lies on a plane
defined by three points; and InSphere determines if a given point is inside,
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Fig. 3. Flips in (a) two dimensions, and (b) three dimensions.

outside or lies on a sphere defined by four points. Both tests can be reduced to
the computation of the determinant of a matrix, see Guibas and Stolfi (1985)
for more details.

2.2 Flips

A flip is a local topological operation that modifies the configuration of some
adjacent tetrahedra (Lawson, 1986; Edelsbrunner and Shah, 1996). The con-
cept of flip is valid in any dimensions for triangulations. In 2D, many algo-
rithms to construct and modify a triangulation use the flip22, as illustrates
in Fig. 3(a). It permits us to transform a triangulation of four points into
the only other one possible. In 3D, the same idea can be applied to a set
S = {a, b, c, d, e} of five points in general position. According to Lawson
(1986), there are exactly two ways to tetrahedralize such a polyhedron: ei-
ther with two or three tetrahedra. As illustrated in Fig. 3(b), in the first
case, the two tetrahedra share a triangular face bcd, and in the latter case the
three tetrahedra all have a common edge ae. A flip23 is the operation that
transforms one tetrahedralization of two tetrahedra into another one with
three tetrahedra; and a flip32 is simply the inverse operation. Notice that the
numbers refer to the number of triangles/tetrahedra before and after the flip.

It is worth noticing that three-dimensional flips do not always apply to
adjacent tetrahedra (Joe, 1989). For example, in Fig. 3(b), a flip23 is possible
on the two adjacent tetrahedra abcd and bcde if and only if the line ae passes
through the triangular face bcd (which also means that the union of abcd and
bcde is a convex polyhedron). If not, then a flip32 is possible if and only if
there exists in the tetrahedralization a third tetrahedron adjacent to both
abcd and bcde.

2.3 Star, Link and Ears

Three concepts related to triangulations are here introduced, and they will be
used in Sect. 3 where the proposed algorithm is described.
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Fig. 4. The star and the link of a vertex v.
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Fig. 5. Perspective view of the outside of a polyhedron. Two adjacent triangular
faces (e.g. in light grey) form a 2-ear, and three triangular faces incident to the same
vertex (e.g. in dark grey) form a 3-ear.

Star. Let v be a vertex in a d-dimensional triangulation. Referring to Fig. 4,
the star of v, denoted star(v), consists of all the simplices that contain v; it
forms a star-shaped polytope. For example, in two dimensions, all the triangles
and edges incident to v form star(v), but notice that the edges and vertices
disjoint from v—but still part of the triangles incident to v—are not contained
in star(v). Also, observe that the vertex v itself is part of star(v), and that a
simplex can be part of a star(v), but not some of its facets.

Link. The set of simplices incident to the simplices forming star(v), but ‘left
out’ by star(v), form the link of v, denoted link(v), which is a (d − 1) trian-
gulation. For example, if v is a vertex in a tetrahedralization, then link(v) is
a two-dimensional triangulation formed by the vertices, edges and triangular
faces that are contained by the tetrahedra of star(v), but are disjoint from v.

Ear. Let P be a simplicial polyhedron, i.e. made up of triangular faces. An
ear of P is conceptually a potential, or imaginary, tetrahedron that could be
used to tetrahedralize P . As shown in Fig. 5, such a tetrahedron—that does
not exist yet—can be constructed by the four vertices spanning either two
adjacent faces, or three faces all sharing a vertex (the vertex has a degree
of 3). The former ear is denoted a 2-ear, and the latter a 3-ear. A 3-ear is
actually formed by three 2-ears overlapping each other. In practice, a 2-ear
can be identify by an edge on P because only two faces are incident to it.
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A polyhedron P will have many ears, but observe that not every ear is
a potential tetrahedron to tetrahedralize P , as some adjacent faces form a
tetrahedron lying outside P . Referring again to Fig. 5, a 2-ear abcd is said to
be valid if and only if the line segment ad is inside P ; and a 3-ear abcd is valid
if and only if the triangular face abc is inside P .

3 Moving Points in a VD/DT

It should first be said that when a point in a VD/DT is continually moving
over time and if one is interested in every intermediate state of the VD/DT,
it makes no sense to continually insert, delete and reinsert it again somewhere
else, because it is a computationally expensive operation. A more efficient
option is to literally move the point and update the topological relationships
of the VD/DT when needed. In other words, instead of using “discrete up-
dates”, “continuous updates” to the VD/DT are made. Discrete updates are
nevertheless an adequate solution for many applications where points move a
lot and where the intermediate states are not important (just the start and
end states are of interest). De Fabritiis and Coveney (2003) use for instance a
combination of discrete and continuous updates (depending on the situation)
for the simulation of fluids. Similarly, for the simulation of physical processes
(where molecules are moving only by very small distances), Guibas and Russel
(2004) found that continuous updates permit them to update the VD/DT in
approximately half to three quarters the time it takes to recompute the whole
structure.

The algorithms to maintain a VD/DT of a set S of points up-to-date as
one or more points in S are moving are based on the following observation.

Observation 1 Let T be the DT(S) of a set S of points in Rd in general
position. If one point p is moved by a sufficiently small amount so that S
stays in general position at all times, then the combinatorial structures of
DT(S) (and of VD(S)) will not change (see Fig. 6).

Notice that S will remain in general position until p is cospherical (lies on
the same ball in Rd) with d + 1 other points in S. At the critical moments
when the loss of general position arise, the topological structures of VD(S)
and DT(S) will be modified; the critical moments are called topological events.
Observe in Fig. 6(c) that the VD where one point is moving looks different as
the point is moving, but that the adjacency relationship of the Voronoi cell of
the moving point remain the same.

The result of Observation 1 is that in order to move one or more points in
S, one has to detect when the topological events will arise, and modify VD(S)
and/or DT(S) consequently.
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Fig. 6. (a) The combinatorial structure of the DT will not change as long as the
vertex p is moved within the white polygon. (b) p has moved but S is still in
general position. The combinatorial structure of DT(S) has not changed. Only the
location of p has changed, and so have the edges incident to it. (c) Example of the
consequences of moving p on the VD.

3.1 Related Work in Two Dimensions

The Observation 1 was used by Roos (1991) who analysed the complexity of
the movement of points in a two-dimensional VD, and proposed an algorithm
to update the VD. Although he discusses the movement of points in a VD,
the algorithm he developed is based on the dual (because it is simpler and
because the VD can be trivially extracted). When a topological event arise,
the update to the DT is made with a flip. He considers that all (or most) of
the points in S are moving according to a linear trajectory and that they have
a constant velocity. His algorithm starts by computing DT(S), then all the
potential topological events for all the quadrilaterals (every pair of adjacent
triangles in DT(S) is tested) are computed and put in a priority queue (e.g. a
balanced search tree), sorted according to the time they will arise. The time is
computed by finding the zeros of the InCircle (two-dimensional counterpart
of InSphere, as briefly discussed in Sect. 2.1) developed into a polynomial; in
other words, the aim is to find when the four points forming a quadrilateral will
become cocircular (if ever). After that, the first topological event is popped
from the queue, DT(S) modified with a flip22, and the queue is updated
because the flip has changed locally some triangles. The algorithm continues
until there are no topological events left in the queue. The algorithm is efficient
as only O(log n) is needed for each topological event (n being the number of
points in the set).

Similar algorithms have also been proposed, see for instance Bajaj and
Bouma (1990) and Imai et al. (1989). Moreover, Gold (1990) and Gold et al.
(1995) (with more details in Mostafavi (2001) and Mostafavi and Gold (2004))
propose a different algorithm and give more implementation details. They
focus on the operations necessary to move a single point p, and then explain
how to have many points move. To detect topological events, only the triangles
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inside star(p) and the ones incident to the edges of link(p) need to be tested,
and the changes in the DT are also made with flip22 operations.

3.2 Related Work in Three Dimensions

The work of Roos (1991) has been generalised to three- and higher-dimensional
space by Albers et al. (Albers, 1991; Albers and Roos, 1992; Albers et al.,
1998). Their work is mostly theoretical as they aim to find upper bounds on
the number of topological events when the points are moving according to
some trajectories. They state that only the two-dimensional case has been
implemented, and they demonstrate that in three dimensions the flip23 and
flip32 can be used to update the DT. Gavrilova and Rokne (2003) discuss
the movement of d-dimensional balls (not only points, but balls with defined
radii) while the additively weighted Voronoi diagram (or Apollonius diagram)
is maintained up-to-date with flips; the operations are performed on the dual
of the Apollonius diagram. Their algorithm is exactly the same as Albers
et al.’s, but they show how the InSphere test must be modified to consider
the radius of each ball.

The major impediment to the implementation of Albers et al.’s algorithm
in three dimensions is that, as Gavrilova and Rokne (2003) observe, calculating
the zeros of the function InSphere can not be done analytically, as is the case
for the InCircle function. Indeed, the polynomial for the three-dimensional
case has a high degree (8th degree) and iterative numerical solutions must
be sought. That results in a much slower implementation, and it could also
complicate the update of the DT when the set of points contains degeneracies.
On the other hand, Guibas et al. (2004) recently proposed a generic framework
for handling moving objects. The methods they use for the kinetic 3D VD/DT
is theoretically the same as in Roos (1991), but they use different methods for
finding the zeros of polynomials (InSphere) using fixed precision and exact
arithmetic, and they claim that 3D VDs/DTs can be updated relatively fast
in most cases.

It appears that the computational geometry community is more inter-
ested in studying the complexity of the problem than implementing it. To my
knowledge, the only reports of implementations are that of Guibas and Russel
(2004) and Guibas et al. (2004), whose algorithm has recently been added to
CGAL1, and some reports in related disciplines where there is a real need. For
instance, Ferrez (2001) and Schaller and Meyer-Hermann (2004) did practical
implementations of the algorithm for respectively the simulation of granular
materials and cell tissues. Ferrez’s algorithm is for spheres in Laguerre space
(power distance is used), and thus the regular tetrahedralization is built; this
is almost the same as the DT, for only the InSphere test has to be modified
slightly. Both seem to have missed out several theoretical issues, e.g. they do
not consider Observation 1, and use ‘time steps’ to move a point. In other

1The Computational Geometry Algorithms Library (www.cgal.org).



10 Hugo Ledoux

words, a point is simply moved to a certain location without first verifying if
topological events will arise. Flips are performed after each move to restore
the Delaunay criterion, and their only constraints is that the combinatorial
structures must stay valid between two steps, i.e. a point is not allowed to
penetrate another tetrahedron. While this could work for some cases, defining
a time step that works for all cases is impossible, and they do not consider the
fact that unlike in two dimensions, it is sometimes impossible to flip adjacent
tetrahedra. Their solution could therefore not work for every cases, and more
importantly, their tetrahedralization does not respect the Delaunay criterion
at all times, which could be problematic for some applications.

3.3 A Flip-based Algorithm

I discuss in the following a new algorithm to move points in R3 and update
the VD/DT when topological events arise. Since the implementation of Albers
et al.’s algorithm is intricate, I describe a generalisation to three dimensions
of Gold and Mostafavi’s method (Gold, 1990; Gold et al., 1995; Mostafavi,
2001; Mostafavi and Gold, 2004). Unlike Albers et al.’s method where all
the pairs of simplices must be tested, the algorithm I present permits us to
move one or only a few points in the set S by using only local information,
i.e. if p is moved, only the geometry of the neighbouring tetrahedra of p will
be used, and tetrahedra not in the neighbourhood of p or the trajectory do
not need to be tested. Moreover, it is not necessary to find the zeros of the
function InSphere because the topological events are detected by testing the
intersections between the circumsphere of neighbouring tetrahedra and the
trajectory of p.

The different types of tetrahedra that must be considered are first dis-
cussed, then the algorithm to move a single point is presented, and finally
the movement of several points in S is discussed. The concepts described are
direct generalisations of the algorithm of Gold and Mostafavi, and I describe
the intricacies that one more dimension brings. The algorithm is based on the
same operations that are necessary for constructing a VD, the flips, and is
thus conceptually very simple and easy to implement.

Types of tetrahedra

Three types of tetrahedra, with respect to the moving point p, must be defined
(see Fig. 7(a) for an example in the plane):

Real tetrahedra: are the tetrahedra τi that are incident to the faces of link(p),
but outside star(p).

Imaginary tetrahedra: are the ears σi of star(p), as defined in Section 2.3.
They are imaginary because they do not exist yet, but some would exist
if p was removed or moved somewhere else. Remember that 2-ears and
3-ears can exist.
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p

Fig. 7. (a) The different types of triangles needed to move the vertex p along the
trajectory. Real triangles are the dark shaded ones, and one example of an imaginary
triangle is light shaded. Notice that a behind triangle is always also a real triangle.
(b) p must be moved to the closest intersection of a circumcircle along the trajectory.
The triangle having the closest intersection is the shaded triangle (a real triangle).

Behind tetrahedra: are real tetrahedra that are ‘behind’ p and its trajectory.
In theory, they are not mandatory, but in practice they permit us to
test fewer tetrahedra (for the intersection with the trajectory), and not to
retest tetrahedra that have been previously tested. The criterion for a real
tetrahedron τ to be a behind tetrahedron is if the orthogonal projection
of the centre of its circumsphere, denoted sphere(τ), onto the trajectory
falls behind p, see Fig. 7(a).

The algorithm

The general idea of the algorithm is that, given the moving point p and its final
destination x, we must move p step-by-step to the closest topological event,
perform a flip, and then do these two operations again until p reaches the
location x. As shown in Fig. 7(b), the closest topological event is the location
along the trajectory (the line segment px) where the intersection between px
and the circumspheres of the real tetrahedra of p and the imaginary tetrahedra
of p (only the valid ears are tested) is the closest. Observe that there are two
cases possible (this is illustrated in Fig. 8):

(1) p is ‘moving in’ the circumsphere of a real tetrahedron;
(2) p is ‘moving out’ of the circumsphere of an imaginary tetrahedron.

The new algorithm I present, MoveOnePoint (Fig. 3.3), is for moving a
single point in a set S (while all the other ones are fixed). It is assumed that
S is in general position. MoveOnePoint start by initialising a list, denoted
B, containing all the behind tetrahedra of p. B is built by checking if the
orthogonal projection of every centre of sphere(τi) falls ‘before’ the trajectory
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Fig. 8. Two cases are possible when p is moved along a trajectory. At all times,
the real triangles are the light shaded ones. (a) The closest intersection is with a
real triangle. (b) p is moved to the circumcircle, a flip22 is performed and the real
triangles are updated. (c) The next closest intersection is with an imaginary triangle
(dark shaded triangle). (d) p is moved to the circumcircle, a flip22 is performed and
the real triangles are updated. Notice also that the behind triangles are updated,
while they were not when p moved in a real triangle.

Input: DT(S) T ; the point p to move; final destination x
Output: T is modified: p is at location x
1: initialise B {let B be a simple dynamic list}
2: while p is not at location x do
3: τ1 ← get tetra (real or imaginary) having closest intersection with trajectory
4: move p to intersection
5: if τ1 is a real tetrahedron then
6: τ ← get tetrahedron inside star(p) adjacent to τ1
7: if τ ∪ τ1 is convex then
8: flip23(τ, τ1)
9: else

10: flip32(τ, τ1, τ2)
11: end if
12: else {τ1 is an imaginary tetrahedron}
13: if τ1 is a 2-ear then
14: remove from B the 2 tetrahedra outside star(p) incident to τ1
15: flip23(τ1)
16: add τ1 to B {the ear becomes a behind tetrahedron}
17: else {τ1 is a 3-ear}
18: remove from B the 3 tetrahedra outside star(p) incident to τ1
19: flip32(τ1)
20: add τ1 to B {the ear becomes a behind tetrahedron}
21: end if
22: end if
23: end while

Fig. 9. Algorithm MoveOnePoint(T , p, x)

px; if it is then τi is added to B. Although it is not a necessity to store lists
for the real and imaginary tetrahedra, it might be a good idea to built them
at the beginning and simply update them as flips are performed. The lists
are not necessary because at each step of the process the real and imaginary
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tetrahedra can be efficiently retrieved on the fly by simply identifying all the
tetrahedra forming star(p); the data structure used to store the DT should
permit that, but these are not discussed here because of space constraints.

In order to get the tetrahedron (real or imaginary) whose circumsphere has
the closest intersection, a simple test that computes the intersection between
a line segment and a sphere is used. As explained in Bourke (1992), the idea is
to start with the parametric equation of the line segment px, such that at t = 0
we are at location p, and at t = 1 we are at location x. By substituting the
equation of px with the equation of a sphere, we can get a quadratic equation
that has no solution (no intersection), one solution (sphere is tangent to px),
or two solutions (the line intersects the sphere). We also know where along
the line segment the intersection(s) occur(s): if t < 0 then it is before p,
and if t > 0 it is after x. Observe that when we are dealing with imaginary
tetrahedra, the intersection with the highest value of t is to be considered as
we are moving out of a sphere, while the smallest value of t is considered for
real tetrahedra.

When S is in general position, the rest of the algorithm is straightforward.
Indeed, Albers et al. (1998) show that when p is moved to the closest topo-
logical event, then a flip (either flip23 or flip32) is always possible, i.e. there
will not be unflippable cases.

An important point is that when p moves out of an imaginary tetrahedron,
the list B must be updated. As shown in Fig. 8, the behind tetrahedra are
modified when an ear is flipped, but not when p moves in the circumsphere of a
real tetrahedron. In three dimensions, the ear σ flipped becomes a tetrahedron
τ (spanned by the four vertices of σ) that must be added to B. The two or
three neighbours of τ (depending if σ was a 2- or 3-ear) outside star(p) must
also be deleted from B.

Moving several points

Let S be a set of points in R3, where several points are moving over time. Each
point is moving according to a linear trajectory and has a velocity v; the time
taken to reach its next topological event, called tt, is therefore tt = d/v, where
d is the distance to the closest intersection between its trajectory and the
circumspheres of the real and imaginary tetrahedra. As explained in Mostafavi
and Gold (2004), to ensure that at a given time t all the moving points are
where they should be, a global time needs to be kept (e.g. since the start
of the simulation at t = 0). If only tt was considered, then a case where a
point having many topological events close to each others would delay the
movement of other points.

Three types of time must therefore be considered: t is the current time
(time elapsed since t = 0); tt is the time to the next topological event; and tp
is the predicted time (global time) for a point to reach the next topological
event. The three types are linked:
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tp = t+ tt . (1)

To ensure that the points are moved in the correct order, i.e. in such a way
that the combinatorial structure of the VD/DT stays valid, a priority queue
containing the tip of every moving point i ∈ S is kept. At each step, the point
i whose tip is the earliest is popped from the queue and processed. After the
movement of the point i, tip must be recalculated: the updated ti becomes
tip, and a new tip must be computed with the new tit. The types of time are
depicted in Fig. 10 for the movement of two points a and b. Observe that a

a

b

current position of a

current position of b

ta

tb
tbt

tat

tbp

tap

time

time

t = 0

Fig. 10. The three types of time needed for moving several points at the same time.
The next movement to be made is for point b, since tbp is before tap. (Figure after
Mostafavi and Gold (2004))

went through two topological events before reaching its current position, and
that b went through three. The total predicted time for point b is before that
of point a, so b will be moved before a (although tat < tbt).

After a point i has been moved, the tjp of all the points j that were ‘influ-
enced’ by the movement must update their tjt (and thus their tjp). The move-
ment of i modifies the shapes of all the tetrahedra incident to i, and since
these can be the real tetrahedra of other points, the points j that forming
link(i), plus the points forming the link of these, must be updated.

4 Applications

The FLM based on the VD could obviously be used for simulation purposes in
three dimensions, provided that we can formalise the physical forces applying
to every location in space. Because the movement of points in a VD is rather
computationally expensive (when all the points are moving simultaneously),
the simulation of atmospheric or oceanographic phenomena on a large scale
might not be the most suitable examples right now—we want to obtain the
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weather forecast for tomorrow, today! A representative example is the simu-
lation of underground water, for instance for a city. Questions such as “where
does the ground water come from?”, “how does it travel?”, and “where do
water contaminants come from, and where are they going?”, can all be an-
swered if we can adequately model the phenomenon. The work presented in
this paper has already been used, by Dr Mostafavi at the Université Laval,
Québec City, Canada (Mostafavi, 2006), for the development of a prototype
GIS modelling underground water. His team is currently working on defining
the governing equations to obtain the vector and the velocity of every point
in three dimensions, and it is hoped that the kinetic VD will yield results that
are more accurate than the ones with methods currently used.

5 Discussion

It should be noticed that the simulation of environmental processes is one but
many of the potential applications of the kinetic three-dimensional Voronoi
diagram. As briefly mentioned, it can be very useful in other disciplines, such
as in engineering of physics. It is potentially also a tool for the interactive
modelling of datasets (Anselin, 1999), one can think of an application where
the user can “play” at will with a dataset by adding, removing or moving
objects.

The description of the algorithm MoveOnePoint, as presented in this
paper, is not totally complete because the degenerate cases were not covered
(it assumed that the set of points is in general position). Fixing an algo-
rithm so that it is robust for all inputs/situations is usually a cumbersome
and difficult task, especially for 3D geometric algorithms that are plagued
with special cases (Schirra, 1997). The handling of degenerate cases (copla-
nar/cospherical points, collisions between points, etc.) was left out because of
space constraints, but details and insights are available in Ledoux (2006).

It should also be stated that the algorithm presented offers one solution
to the general problem of managing temporal data in a GIS. Indeed, if, as
Gold has been advocating for years (Gold, 1991; Gold et al., 1997), the VD is
used to manage topological relationships between objects in a map, then we
obtain a spatial model where insertion, deletion and movement of objects is
possible locally, without the need to reconstruct from scratch the topological
relationships when there is a modification to the map. This means that every
operation is reversible. As shown in Gold (1996) and Mioc (2002), by simply
keeping a ‘log file’ of every operation done it is possible to rebuild each ‘topo-
logical state’ of a VD, at any time. There is no need to keep various ‘snapshots’
of the data at different times for further analysis: when a representation at a
specific time is required, it is reconstructed from the original data and from
the log file. The work of Gold (1996) and Mioc (2002) was made for the VD in
2D, but, as shown in Sect. 2, the construction is also possible in 3D, and so is
the deletion of vertices (Devillers, 2002; Ledoux et al., 2005). At this moment,
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only algorithms for the VD of points in 3D have been implemented, but, as
is the case for 2D (Karavelas, 2004), we can envision that in the forseeable
future efficient algorithms for 3D VD for a set in which lines and surfaces are
present will be available.
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