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Abstract

Although the map algebra framework is very popular within the GIS commu-
nity for modelling fields, the fact that it is solely based on raster structures
has been severely criticised. Instead of representing fields with a regular tes-
sellation, we propose in this paper using the Voronoi diagram (VD), and argue
that it has many advantages over other tessellations. We also present a variant
of map algebra where all the operations are performed directly on VDs. Our
solution is valid in two and three dimensions, and permits us to circumvent the
gridding and resampling processes that must be performed with map algebra.

1 Introduction and Related Work

The representation and modelling of geographical data can be done with
two contrasting approaches: the object and the field models (Peuquet, 1984;
Couclelis, 1992; Goodchild, 1992). The former model considers the space as
being ‘empty’ and populated with discrete entities (e.g. a house or a road)
embedded in space and having their own properties. The latter model consid-
ers the space as being continuous, and every location in space has a certain
property (there is something at every location). The property can be consid-
ered as an attribute of the location in space, and the spatial variation of an
attribute over a certain spatial extent is referred to as a field. This is used
to represent continuous phenomena such as the ambient temperature or the
humidity of the soil.

To store object-based models in a geographical information system (GIS),
a variety of data structures with different properties have been developed
and implemented. For instance, several GISs explicitly store the adjacency
relationships between objects (e.g. TIGER (Boudriault, 1987) and ARC/-
INFO (Morehouse, 1985)), while some others use non-topological structures
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(e.g. the so-called spaghetti model) and reconstruct on-the-fly the spatial rela-
tionships when needed (Theobald, 2001). By contrast, within the GIS commu-
nity, field models are more or less synonymous with raster structures (Good-
child, 1992), i.e. a regular tessellation of the plane into squares (pixels) such
that each pixel contains the value of the attribute studied. The tools imple-
mented in most GISs to model and analyse different fields are based on the
map algebra, which is a framework developed for the analysis of fields stored
in a raster format (Tomlin, 1983). With this approach, each field is repre-
sented by a grid, and a set of primitive GIS operations on and between fields
can be used and combined together to extract information and produce new
fields. The framework, and its different operations, are further described in
Section 3.

Since its conception, several weaknesses and shortcomings of map alge-
bra have been discussed, and many have proposed improvements. Caldwell
(2000) introduces a new operator to extend the spatial analysis capabilities,
and Eastman et al. (1995) do the same to help the decision-making process.
Takeyama (1996) proposes Geo-Algebra, a mathematical formalisation and
generalisation of map algebra that integrates the concepts of templates and
cellular automata under the same framework. The templates, developed for
image algebra (Ritter et al., 1990), extends the concept of neighbourhood
of a location, and the addition of cellular automata permits us to model geo-
graphic processes. Pullar (2001) also uses the idea of templates and shows how
they can help to solve several practical GIS-related problems. As explained
in Section 3, the fact that map algebra was developed for raster structures is
problematic, firstly because of the dangers of using pixels for analysis (Fisher,
1997), and secondly because complete representations (as in a complete grid)
are rarely found in GIS applications, unless datasets come from photogramme-
try or remote sensing. Indeed, it is usually impossible to measure geographic
phenomena everywhere, and we have to resort to collect samples at some finite
locations and reconstruct fields from these samples. Thus, a raster structure
implies that some sort of manipulations have already been performed on a
field. Kemp (1993) states that “map algebra requires us to enforce a structure
on reality rather than allowing reality to suggest a more appropriate structure
for our analysis”, and shows that alternative representations (e.g. a triangu-
lated irregular network (TIN), or contour lines; the possible representations
are listed in Section 2) are a viable solution. She proposes to have operations—
similar to map algebra’s—for modelling fields, which are not all stored under
the same representation. She therefore defines a set of rules to convert the
different types of fields to other ones when binary operations are applied. For
example, if two fields, one stored as a TIN and the other as contour lines,
are analysed then the contours must first be converted to TIN before any
manipulation is done. Haklay (2004), also to avoid the drawbacks of raster
structures, proposes a system where only the data points (samples) and the
spatial interpolation function used to reconstruct the field are stored. Each
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field is thus defined mathematically, which permits us to manipulate different
fields in a formulaic form.

It should be noticed that the concept of field also generalises to three
dimensions, for the modelling of such phenomena as the salinity of water
bodies or the percentage of gold in the rock. Mennis et al. (2005) have recently
extended map algebra to three dimensions, the tessellation they use is regular
(the pixels become cubes called voxels) and the operations are straightforward
generalisations of their two-dimensional counterparts.

As an alternative to using raster structures and to converting back and
forth between different representations of a field, we propose in this paper
representing fields with the Voronoi diagram (VD), i.e. a tessellation of space
into ‘proximity’ regions. As explained in Section 4, the VD provides a nat-
ural way to represent continuous phenomena, and its properties are valid
in any dimensions, which makes it ideal for modelling d-dimensional fields.
Our proposition is similar to Haklay’s (Haklay, 2004)—get rid of raster and
keep only the samples!—but we argue that the VD has many advantages over
other tessellations. We also introduce in Section 5 a variant of the map al-
gebra framework where every field and every operation is based on the VD.
Perhaps the main contribution of this paper is that the framework is valid in
any dimensions. However, since most GIS-related applications are concerned
with two and three dimensions, the description and examples will focus on
these two cases.

2 Fields

A field is a model of the spatial variation of an attribute a over a spatial
domain, and it can be represented by a function mapping the location to the
value of a, thus

a = f(location). (1)

The function can theoretically have any number of independent variables (i.e.
the spatial domain can have any dimensions), but in the context of geo-
graphical data it is usually bivariate (x, y) or trivariate (x, y, z). The domain
can also incorporate time as a new dimension, and dynamic fields, such that
a = f(location, time), are thus obtained (Kemp, 1993). This notion is useful
for modelling phenomena in oceanography or meteorology that continually
change over time. Also, notice that in the case of modelling the elevation of a
terrain, the function is bivariate as the elevation is assumed to be a property
of the surface of the Earth, and no cliffs or overfolds are allowed (as in a
so-called 2.5D GIS).

Since fields are continuous functions, they must be discretised—broken into
finite parts—to be represented in computers. The space covered by a field can
be partitioned, or tessellated, into regular or irregular regions. In a regular
tessellation, all the regions will be of the same shape and size, while in an
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irregular one, elements of any shape and size are allowed. In the plane, each
region is a polygon, while in three dimensions it is a polyhedron. Regular
tessellations arbitrarily divide the space, while irregular tessellations follow
the outline of the data points (the samples that were collected to study the
field), albeit this is not a requirement. Subdividing the space based on the
samples has the main advantage of producing a tessellation that is adaptive
to the sample distribution and to the complexity of the phenomenon studied.
It also permits us to preserve the samples, which are the only “ground truth”
of the field studied, and have even been referred to as the meta-field (Kemp
and Vckovski, 1998). Converting scattered samples to a grid means that the
original data are ‘lost’.

Once the space is tessellated, the field function becomes a piecewise func-

tion: to each region is assigned a function describing the spatial variation in its
interior. As Goodchild (1992) points out, this function can be constant, linear,
or of a higher order. A constant function means that the value of the attribute
is constant within one region. An example of the use of a linear function is a
TIN: the spatial variation within each region (a triangle) is described by the
linear function (a plane) defined by the three vertices (usually samples) lifted
to their respective elevation. Akima (1978) shows the advantages of using
higher order functions in each region of a TIN—the main one being that the
slope of the terrain is continuous everywhere. For the two-dimensional case,
some other representations have also been mentioned and used, notably con-
tour lines and irregularly spaced points (the samples to which attributes are
attached). In our opinion, the latter representation is incomplete if the spatial
function used to reconstruct the field is not explicitly defined, and therefore
should not be considered a valid representation of a field.

While the dependent variable a in the function representing a field can
theoretically be a vector (mostly used in physics to model for instance the
magnetic field), we assume in this paper that it is always a scalar. Depending
on the scale of measurement used for the values of the attribute, different
types of fields are possible:

Continuous scale: the value of an attribute can have any value. Tempera-
ture, precipitation or salinity are examples because they can be measured
precisely. The interval and ratio scales commonly used in GIS, as defined
by Stevens (1946), fall into this category. We refer to this type of field as
a continuous field.

Discrete scale: the values of an attribute are simply labels. Stevens’s nom-

inal and ordinal scales fall into this category. Nominal values are mean-
ingless: an example is a map of Europe where each location contains the
name of the country. Ordinal values are labels that can be ordered, e.g. a
certain region can be categorised according to its suitability to agriculture
from 1 to 5: 1 being poor, and 5 very good. We refer to this type of field
as a discrete field.
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Fig. 1. The map algebra operations with a raster structure. (a) A binary local
operation. (b) An unary focal operation. (c) A zonal operation that uses a set of
zones (fzones) stored as a grid.

Notice that here the terms “continuous” and “discrete” refer to the scale of
measurement, and not to the spatial continuity of a field. Indeed, both types of
fields are spatially continuous, as they are represented by a function. It is also
important to notice that not all operations are possible on both types of fields.
While many arithmetic operations (addition, subtraction, multiplication, etc.)
are possible on continuous fields, they are meaningless for discrete fields.

3 Map Algebra

Map algebra refers to the framework, first developed and formalised by Tomlin
(1983), to model and manipulate fields stored in a raster structure. It is called
an algebra because each field (also called a map) is treated as a variable, and
complex operations on fields are formed by a sequence of primitive operations,
like in an equation (Berry, 1993). A map algebra operation always takes a
field (or many fields) as input and returns a new field as output (the values
of the new field are computed location by location). Operations can be unary
(input is a single field), binary (two fields) or n-ary (n fields); because n-ary
operations can be obtained with a series of binary operations we describe here
only the unary and binary cases. Tomlin (1983) describes three categories of
operations:

Local operation: (Figure 1a) the value of the new field at location x is based
on the value(s) of the input field(s) at location x. An unary example is
the conversion of a field representing the elevation of a terrain from feet
to meters. For the binary case, the operation is based on the overlay in
GIS: the two fields f1 and f2 are superimposed, and the result field fr is
pointwise constructed. Its value at location x, defined fr(x), is based on
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both f1(x) and f2(x). An example is when the maximum, the average or
the sum of the values at each location x is sought.

Focal operation: (Figure 1b) the value of the new field at location x is com-
puted as a function of the values in the input field(s) in the neighbourhood
of x. As Worboys and Duckham (2004) describe, the neighbourhood func-
tion n(x) at location x associates with each x a set of locations that are
“near” to x. The function n(x) can be based on distance and/or direc-
tion, and in the case of raster it is usually the four or eight adjacent pixels.
An unary example is the derivation of a field representing the slope of a
terrain, from an elevation field.

Zonal operation: (Figure 1c) given a field f1 and a set of zones, a zonal
operation creates a new field fr for which every location x summarises or
aggregates the values in f1 that are in a given zone. The set of zones is
usually also represented as a field, and a zone is a collection of locations
that have the same value (e.g. in a grid file, all the adjacent cells having the
same attribute). For example, given a field representing the temperature
of a given day across Europe and a map of all the countries (each country
is a zone), a zonal operation constructs a new field such that each location
contains the average temperature for the country.

Although the operations are arguably simple, the combination of many makes
map algebra a rather powerful tool. It is indeed being used in many commer-
cial GISs, albeit with slight variations in the implementations and the user
interfaces (Bruns and Egenhofer, 1997). It should be noticed that the three
categories of operations as not restricted to the plane, and are valid in any di-
mensions (Mennis et al. (2005) have recently implemented them with a voxel
structure). Despite its popularity, the biggest handicap to the use of map al-
gebra is arguably that is was developed for regular tessellations only, although
the concepts are theoretically valid with any tessellation of space (Takeyama,
1996; Worboys and Duckham, 2004). Using raster structures has many draw-
backs. Firstly, the use of pixels as the main element for storing and analysing
geographical data has been criticised (Fisher (1997) summarises the issues).
The problems most often cited are: (1) the meaning of a grid is unclear (are
the values at the centre of each pixel, or at the intersections of grid lines?),
(2) the size of a grid (if a fine resolution is wished, then the size of a grid
can become huge), (3) the fact that the space is arbitrarily tessellated with-
out taking into consideration the objects embedded in that space. Secondly,
in order to perform binary operations, the two grids must “correspond”, i.e.
that the spatial extent, the resolution and the orientation of the two grids
must be the same, so that when they are overlaid each pixel corresponds to
one and only one pixel in the other grid. If the grids do not correspond, then
resampling of one grid (or both) is needed. This involves the interpolation
of values at regularly distributed locations with different methods such as
nearest neighbour or bilinear interpolation, and each resampling degrades the
information represented by the grid (Gold and Edwards, 1992). Thirdly, un-



A Voronoi-based Map Algebra

less a grid comes from a sensor (remote sensing or photogrammetry), we can
assume that it was constructed from a set of samples. Converting samples to
grids is dangerous because the original samples, which could be meaningful
points such as the summits, valleys or ridges or a terrain, are not present in
the resulting grid. Also, when a user only has access to a grid, he often does
not know how it was constructed and what interpolation method was used,
unless meta-data are available.

4 Voronoi Diagrams

Let S be a set of n points in a d-dimensional Euclidean space R
d. The Voronoi

cell of a point p ∈ S, defined Vp, is the set of points x ∈ R
d that are closer

to p than to any other point in S. The union of the Voronoi cells of all gen-
erating points p ∈ S form the Voronoi diagram of S, defined VD(S). In two
dimensions, Vp is a convex polygon (see Figure 2a), and in 3D it is a convex
polyhedron (see Figure 2b). It is relatively easy to implement algorithms to
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Fig. 2. (a) The VD for a set of points in the plane. (b) Two Voronoi cells adjacent
to each other in 3D (they share the grey face). (c) The insertion of point x in a VD
creates a new Voronoi cell that steals area to its ‘would be’ natural neighbours.

construct a VD in two dimensions (Fortune, 1987; Guibas and Stolfi, 1985)
and to delete a single point from one (Devillers, 2002). In three dimensions,
the algorithms are more complex but still implementable and efficient. The
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most popular algorithms to construct a 3D VD are incremental (Edelsbrun-
ner and Shah, 1996; Watson, 1981), which means that a VD is constructed
by adding every point one by one. The deletion of a point is also possible in
three dimensions, and it is a local operation (Ledoux et al., 2005). All these
algorithms exploit the fact that the VD is the dual structure of the Delau-
nay triangulation—the knowledge of one structure implies the knowledge of
the other—and perform their operations on the dual Delaunay triangulation
because it is simpler to manipulate triangles/tetrahedra over arbitrary poly-
gons/polyhedra.

Since most fields in geography must first be sampled to be studied, we
argue in this paper that the Voronoi tessellation has many advantages over
other tessellations for representing fields. First, it gives a unique and consis-
tent definition of the spatial relationships between unconnected points (the
samples). As every point is mapped in a one-to-one way to a Voronoi cell, the
relationships are based on the relations of adjacency between the cells. For
example in Figure 2a, the point p has seven neighbours (the lighter grey cells).
Note that the points generating these cells are called the natural neighbours of
the point p because they are the points that are naturally both close to p and
‘around’ p (Sibson, 1981). This is particularly interesting for Earth sciences
because the datasets collected often have highly anisotropic distribution, es-
pecially three-dimensional datasets in oceanography or geology because they
are respectively gathered from water columns and boreholes (data are there-
fore usually abundant vertically but sparse horizontally). Second, the size and
the shape of Voronoi cells is determined by the distribution of the samples of
the phenomenon studied, thus the VD adapts to the distribution of points.
Observe in Figure 2a that where the data distribution is dense the cells are
smaller. Third, the properties of the VD are valid in any dimensions. Fourth, it
is dynamically modifiable, which permits us to reconstruct the field function,
and to add or delete samples at will.

If a constant function is assigned to each Voronoi cell, the VD permits us
to elegantly represent discrete fields. To know the value of a given attribute
at a location x, one simply has to find the cell containing x—Mücke et al.
(1999) describe an efficient way to achieving that. To reconstruct a continuous

field from a set of samples, more elaborate techniques are needed since the
VD creates discontinuities at the border of each cell. The process by which
the values at unsampled locations are estimated is called interpolation, and
many methods have been developed over the years. An interesting one in our
case is the natural neighbour interpolation method (Sibson, 1981), because it
has been shown by different researchers to have many advantages over other
methods when the distribution of samples is highly anisotropic and is an
automatic method that does not require user-defined parameters (Gold, 1989;
Sambridge et al., 1995; Watson, 1992). This is a method entirely based on the
VD for both selecting the samples involved in the interpolation process, and
to assign them a weight (an importance). It uses two VDs: one for the set
of samples, and another one where a point x is inserted at the interpolation
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location. The method is based on the area (or volume in three dimensions)
that a new point inserted at the interpolation location x ‘steals’ from some
of the Voronoi cells already present, as shown in Figure 2c. The resulting
function is exact (the samples are honoured), and also smooth and continuous
everywhere except at the samples themselves. See Gold (1989) and Watson
(1992) for further discussion of the properties of the method, and Ledoux
and Gold (2004) for a description of an algorithm to implement it in any
dimensions.

5 A Voronoi-based Map Algebra

With a Voronoi-based map algebra, each field is represented by the Voronoi
diagram of the samples that were collected to study the field. This eliminates
the need to first convert to grids all the datasets involved in an operation
(and moreover to grids that have the same orientation and resolution), as
the VD can be used directly to reconstruct the fields. The permanent storage
of fields is also simplified because only the samples need to be stored in a
database, and the VD can be computed efficiently on-the-fly and stored in
memory (problems with huge raster files, especially in three dimensions, are
thus avoided).

When a field is represented by the VD, unary operations are simple and ro-
bust. To obtain the value of the attribute at location x (for a local operation),
the two interpolation methods described in the previous section for discrete
and continuous fields can be used directly. Also, the neighbouring function
needed for focal operations is simply the natural neighbours of every location
x, as defined in the previous section. Figure 3a shows a focal operation per-
formed on a field f1. Since at location x there are no samples, a data point
is temporarily inserted in the VD to extract the natural neighbours of x (the
generators of the shaded cells). The result, fr(x), is for example the average
of the values of the samples; notice that the value at location x is involved in
the process and can be obtained easily with natural neighbour interpolation.

Although Kemp (1993) claims that “in order to manipulate two fields
simultaneously (as in addition or multiplication), the locations for which there
are simple finite numbers representing the value of the field must correspond”,
we argue that there is no need for two VDs to correspond in order to perform
a binary operation because the value at any locations can be obtained readily
with interpolation functions. Moreover, since the VD is rotationally invariant
(like a vector map), we are relieved from the burden of resampling datasets
to be able to perform operations on them.

When performing a binary operation, if the two VDs do not correspond—
and in practice they rarely will do!—the trickiest part is to decide where the
‘output’ data points will be located. Let two fields f1 and f2 be involved in
one operation, then several options are possible. First, the output data points
can be located at the sampled locations of f1, or f2, or even both. An example



Hugo Ledoux and Christopher Gold

(a) (b)

f1

n(x)

fr(x) fr

f1

f2

fr

f1(x)

f2(x)

fr(x)

x x

Fig. 3. Two Voronoi-based map algebra operations. The top layer represents the
spatial extent of the fields, and x is a location for which the value in the resulting
field fr (bottom layer) is sought. (a) A unary focal operation performed on the field
f1. The third layer represents the neighbourhood function n(x). (b) A binary local
operation performed on the fields f1 and f2.

where the output data points have the same locations as the samples in f1

is shown in Figure 3b. Since there are no samples at location x in f2, the
value is estimated with natural neighbour interpolation. The result, fr(x),
could for example be the average of the two values f1(x) and f2(x). It is also
possible to randomly generate a ‘normal’ distribution of data points in space
(e.g. a Poisson distribution) and to output these. But one should keep in mind
that in many applications the samples can be meaningful, and we therefore
recommend to always keep the original samples and if needed to densify them
by randomly adding some data points. The VD also permits us to vary the
distribution of data points across space, for example having more data points
where the terrain is rugged, and less for flat areas.

As with the other map algebra operations, a zonal operation must also
output a field because its result might be used subsequently as the input
in another operation. With a Voronoi-based map algebra, the output has to
be a VD, and the major difficulty in this case it that we must find a VD
that conforms (or approximates) the set of zones. Since zones come from
many sources, different cases will arise. The first example is a remote sensing
image that was classified into several groups (e.g. land use). Such a dataset
can easily be converted to a VD: simply construct the VD of the centre of
every pixel. Although this results in a huge VD, it can easily be simplified by
deleting all data points whose natural neighbours have the same value. Notice
in Figure 4 that the deletion of a single point is a local operation, and the
adjacent cells will simply merge and fill up the space taken by the original
cell. The second example is with in situ data, for instance in oceanography
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x

Fig. 4. Simplification of a discrete field represented with the VD. The data point
x is completely surrounded by data points having the same value (here the value is
defined by the colour), and deleting it does not change the field.

a dataset indicating the presence (or not) of fish in a water body. The VD
of such a dataset can obviously be used directly. The third example is a set
of arbitrary zones, such as a vector map of Europe. In two dimensions, it is
possible to approximate the zones with a VD (Suzuki and Iri, 1986), but the
algorithm is complex and the results are not always satisfactory. A simpler
option is to define a set of “fringe” points on each side of a line segment,
and label each point with the value associated to the zone. Gold et al. (1996)
show that the boundaries can be reconstructed/approximated automatically
with Voronoi edges. An example is shown in Figure 5: a set of three zones
appears in Figure 5a, and in Figure 5d the Voronoi edges for which the values
on the left and right are different are used to approximate the boundaries
of the zones. Since each location x in the output field of a zonal operation
summarises the values of a field in a given zone, we must make sure that
the locations used for the operation are sufficient and distributed all over the
zone. Let us go back to the example of the temperature across Europe to
find the average in each country. Figure 5a shows a vector map with three
countries, and the temperature field f1 is represented by a VD in Figure 5b.
Notice that when the two datasets are overlaid (Figure 5c), many Voronoi
cells cover more than one zone. Thus, simply using the original samples (with
a point-in-polygon operation) will clearly yield inaccurate results. The output
field fr, which would contain the average temperature for each country, must
be a VD, and it can be created with the fringe method (Figure 5d). Because
the value assigned to each data points correspond to the temperature for the
whole zone, we suggest estimating, with the natural neighbour interpolation,
the value at many randomly distributed locations all over each zone.

6 Discussion

The wide popularity of map algebra is probably due to its simplicity: simple
operations performed on a simple data structure that is easy to store and
manipulate. Unfortunately this simplicity has a hefty price. Tomlin’s map al-
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Fig. 5. (a) A vector map of three zones. (b) A continuous field represented with
the VD. (c) When overlaid, notice many Voronoi cells overlap the zones. (d) Ap-
proximation of the borders of the zones with the VD.

gebra forces an unnatural discretisation of continuous phenomena and implies
a fair amount of preprocessing of datasets, which is usually hidden to the
user. As stated in Gold and Edwards (1992), continual reuse and resampling
of gridded datasets produce massive degradation of the information conveyed
by the data, and can lead to errors and misinterpretations in the analysis.

As we have demonstrated in this paper, the tessellation of the space with
the Voronoi diagram has many advantages for modelling fields, and a Voronoi-
based map algebra permits us to circumvent the gridding and resampling
processes when we want to manipulate several fields. Although the algorithms
to manipulate VDs are admittedly more complex than the ones for raster
structures, they are readily available and efficient, and that for the two- and
three-dimensional cases.
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