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Abstract 

The modelling or reconstruction of buildings has two aspects – on the one hand we need a 

data structure and the associated geometric information, and on the other hand we need a set 

of tools to construct the building incrementally. This paper discusses both of these aspects, but 

starts from the simpler exterior model and geometry determination, and then looks at 

representations of the building interiors. 

 

Our starting point is a set of raw LIDAR data, as this is becoming readily available for many 

areas. This is then triangulated in the x-y plane using standard Delaunay techniques to 

produce a TIN. The LIDAR values will then show buildings as regions of high elevation 

compared with the ground. Our initial objective is to extrude these buildings from the 

landscape in such a manner that they have well defined wall and roof planes. We may have 

already been provided with the building footprint from national mapping information, or we 

may need to extract it from the triangulation. We do this by superimposing a coarse Voronoi 

cell structure on the data, and identifying wall segments within each. We then examine the 

triangulated interior (roof) data, identify planar segments and connect them to form the final 

surface model of the building embedded in the terrain. This is done using Euler Operators and 

Quad-Edges. Building interiors are added by using an extension of these. 

1. Previous work 

We have previously demonstrated (Tse and Gold, 2002) that a TIN may be represented with 

advantage using the Quad-Edge data structure of Guibas and Stolfi (1985), and that this 

structure is closely related to the basic Euler Operators used in CAD systems for boundary 

representation (b-rep) modelling of exterior surfaces (e.g. Mantyla, 1988; Lee, 1999). Other 

structures may also be used (e.g. Baumgart, 1972; Weiler, 1986). Based on this equivalence 

the TIN model may be modified using these Euler Operators, to permit the modelling of 

seamless exterior surfaces of buildings or other structures, for example by the splitting or 

merging of faces, the creation or deletion of bridges or tunnels, etc. Fig. 1 shows the basic 

Quad-Edge element, and Fig. 2 shows the elementary Splice Operator. Fig. 3 shows a simple 



 
 

triangulation network, the Quad-Edges and the topological loops around faces and nodes. 

Note that this represents both the primal and the dual structure: loops around Delaunay nodes 

are equivalent to Voronoi cell boundaries, and loops around Voronoi nodes are equivalent to 

Delaunay triangle boundaries. 

 

Quad-Edge data structure 
 

        
Fig. 1: Quad-Edge structure       Fig. 2: Splice operation 

 

    

Fig. 3: Quad-Edge navigation 

Euler Operators to create a tunnel or bridge 
In the CAD industry the most common elementary operations on surface models (b-reps) are 

called Euler Operators. These have been shown (Tse and Gold, 2002) to be simply constructed 

from the Quad-Edge operations Make-Edge (for a new edge) and Splice (to join or split two 

Quad-Edges). Each Euler Operator has an inverse. Shown here are MEV (Make Edge and 

Vertex, Fig. 4), MEF (Make Edge and Face, Fig. 5) and how to construct a tunnel or a bridge 

(Fig. 6). Fig. 7 shows two simple examples. 



 
 

 

Fig. 4: Connecting two Quad-Edges with MEV 

 
Fig. 5: Splitting a polygon with MEF 

 

Fig. 6: Tunnel Construction 

 

 

Fig. 7: Bridges and tunnels 

Building Extraction with Provided Mapping Information  
If we are given the building footprint we may insert points into the terrain model along these 

boundary lines, and use the Euler Operators to extrude the building vertically (Tse and Gold, 

2001). This will give a flat roof at the average height of the LIDAR data within the boundary, 

with the building modelled by Quad-Edges. Fig. 8 shows the terrain with the building 

footprints, and Fig. 9 shows the extruded buildings. 



 
 

 

Fig. 8: Building footprints on terrain    Fig. 9: Extruded buildings 

2. Building Construction from LIDAR data alone 

In principle it should be possible to extract good approximations of buildings from a 

sufficiently dense set of elevation data. In practice this is difficult. There are two steps: firstly 

to extract the vertical walls, and then to model the roof. There are two basic approaches: to 

attempt to fit a pre-defined template to the data (e.g. Vosselman, 2003; Rottensteiner and 

Briese, 2003); or to attempt to construct a building-like shape by extracting features from 

elevation data (e.g. vertical walls or roof planes). The first approach is limited by the models 

included in the system, while the second will only approximate the building form, and will 

often need subsequent rectification. We take the second approach, and only assume properties 

of “buildings” when absolutely necessary. 

Automatic Wall Extraction 
While it is not difficult to identify the near-vertical triangles in the TIN it is not a simple task 

to form a complete building from these segments. The remote sensing literature has many 

examples of attempts to first detect line segments and then glue them together. 

 

Our approach is always to preserve a tessellation model, with connectivity, rather than 

attempting to connect line segments. We apply a coarse Voronoi diagram over the original 

data, with perhaps 50-100 LIDAR points in each cell. We then attempt to modify these cells 

so that the building boundaries (defined as a partition between “high” points and “low” 

points”) are a subset of the Voronoi cell edges. We can split cells along the high/low edge to 

achieve this. 

 

Proposition 1: Buildings are collections of  contiguous elevations that are higher than the surrounding terrain. 

Their boundaries are “walls”. 

 

The approach is based on calculating the eigenvalues and eigenvectors of the 3 x 3 



 
 

variance-covariance matrix of the coordinates of the points within a cell. The first eigenvector 

(with the largest eigenvalue) “explains” as much of the overall variance as possible, the 

second (perpendicular) eigenvector explains as much as possible of what is left, and the third 

(perpendicular to the other two) contains the residue. (For example, a wrinkled piece of paper 

might have the first eigenvector oriented along the length of the paper, the second along its 

width, and the third “looking” along the wrinkles.) Thus the eigenvector of the smallest 

eigenvalue indicates the orientation of a wall segment, if present, and looks along it. 

 

The next step is to locate the line parallel to the smallest eigenvector that best separates 

“high” elevations from “low” ones within each Voronoi cell. This is achieved iteratively, by 

testing various positions of this line in order to find the greatest difference between the means 

of the elevation values in the Voronoi cell that are on each side of the line. (In order to 

minimize the effect of sloping roofs or terrain, only those elevations close to the line are used.) 

If this maximum difference is not sufficiently large then no wall segment was detected. 

 

Proposition 2: Walls have a specified minimum height, and this height difference is achieved within a very few 

“pixels”. 

 

The Voronoi cells are then split along these lines, by adding a generator on each side of this 

line, at the mid-point. This gives a set of “high” Voronoi cells surrounded by “low” ones. 

Building boundaries are then determined by walking around the cells forming the high region, 

using the topological consistency of the Voronoi tessellation. This must form a closed region, 

or else the high region is not considered to be a building. The building outline is then 

estimated from the Voronoi boundary segments – but only those that were created with the 

eigenvector technique, not those Voronoi cell boundaries that only connect them. Fig. 10 

shows the Voronoi structure and the “high” LIDAR points, as well as the wall segments 

detected. Fig. 11 shows the “high” Voronoi cells before they are split, and Fig. 12 shows the 

approximation of the walls based on the split cells. 

  

Proposition 3: A building consists of  a high region entirely surrounded by walls. 

 

 



 
 

     

Fig. 10: Voronoi cells and wall segments  Fig. 11: Initial “high” Voronoi cells 

     
Fig. 12: “High” Voronoi cells after splitting 

 

3. Roof Modelling 

Simple Roof 
Once the building boundary is determined, the interior points may be used to model the roof 

structure. Unlike other techniques, no assumptions are made about the form of the roof, 

except that it is made up of planar segments. (The method may be extended to detect other 

basic shapes if required.) Each of the interior triangles has an associated vector normal. The 

“smallest” eigenvector is used as described previously to estimate the main axis of the roof, 

all vector normals are plotted on a unit semicircle perpendicular to this, and clusters are found 

where all normals are very close to the same orientation. The mean of each cluster indicates 

the orientation of one or more planar roof segments with the same orientation. This works 

well even if the data is fairly noisy, and the scatter of the vector normals is fairly large. (If 

there are two or more parallel planes in the roof structure, these may be separated at this stage 

by constructing the Delaunay triangulation in x-y space for the data points of the cluster, 



 
 

extracting the Minimum Spanning Tree, and separating the two or more parallel roof portions. 

The general technique is described later.) Fig. 13 shows a simple roof, Fig. 14 shows the 

vector normals and Fig. 15 shows the clusters of unit vectors (small circles) on the semicircle. 

Each roof plane is described by its vector normal plus a “visible” point on the roof plane that 

is within the bounds of the cluster used to estimate the vector normal. This is usually just the 

mean of the x-y-z values of the relevant data points. It is not necessary that all triangles within 

a roof segment have vector normals in the cluster – just enough to detect the plane. Fig. 16 

shows the resulting roof planes for clean data, and Fig. 17 for noisy data. 

 

Intersections of wall and roof planes are then calculated, and the building extruded or bevelled 

using Euler Operators to give the final b-rep building form. 

 

Proposition 4: Roofs are made up of  planar segments, most of  whose constituent triangles have similar vector 

normals. 

 

    
Fig. 13: Simple roof      Fig. 14: Roof vector normals 

  

Fig. 15: Vector clusters on the unit semicircle 

 



 
 

    

Fig. 16: Roof planes from clean data    Fig. 17: Roof planes from noisy data 

Complex Roof 
The above method only works for roofs with a simple axis. Where planar segments have 

many orientations a different technique is required, using the projection of the vector normals 

onto the unit hemisphere. Others have used different projections (e.g. Hofmann et al., 2003).  

Where several triangles have similar orientations – usually from the same roof segment – 

there will be a cluster of points that can be determined by first constructing the Delaunay 

triangulation on the hemisphere and then extracting the Minimum Spanning Tree (MST, 

which is a subset of the Delaunay triangulation). These clusters are then used to identify 

planar segments as before. Fig. 18 shows a complex roof, while Fig. 19 shows a 2D projection 

of the triangulation of the vector normals on the hemisphere and Fig. 20 shows this in a 3D 

view. Fig. 21 shows the MST in 2D, and Fig 22 shows it in 3D. Four clusters can be seen, 

corresponding to the four roof planes. Fig. 23 shows the classified roof triangles, and Fig. 24 

shows the fitted planes. 

 

Roof planes can be considered to meet at triple junctions (cases of four planes meeting can be 

treated as two triple junctions with a very short edge between them). Vector algebra gives a 

concise calculation of these plane intersections, and thus the general form of a roof may be 

represented as a triangulation of the “visible points” on each roof plane. The building’s form 

may then be extruded using Euler Operators as previously described. 

 

Proposition 5: The relationships between roof  planes may be represented as a dual triangulation. 

 



 
 

 

Fig. 18: Complex roof surface 

    
Fig. 19: Triangulation of unit hemisphere   Fig. 20: Unit hemisphere – 3D view 

 

       

Fig 21: MST of unit hemisphere     Fig. 22: MST – 3D view 



 
 

 
Fig. 23: Roof triangle clusters from normals 

 
Fig. 24: Roof planes from clusters 

Building Interiors 

This gives the exterior building shape, embedded in the topography, defined with the 

Quad-Edge structure. However, where interior information is to be added this structure needs 

to be augmented.  

 

The Quad-Edge structure described previously has, in addition to its topological pointers to 

adjacent edges, two pointers to the vertices of the primal edge and two pointers to the left and 

right faces (Fig. 1). However, in 3D the dual of a face is an edge (Fig. 25), so these pointers 

may be assigned to Quad-Edges of dual cells. The Augmented Quad-Edge structure has been 

developed to represent space-filling cells individually with Quad-Edge structures, linked 

through the equivalent set of dual cell edges. Thus if the original building (and adjacent 

ground) determined from LIDAR data was constructed as a single “Polyhedral Earth” model, 

using the standard Quad-Edge structure, the dual edges referred to by the original face 

pointers would each connect to “Earth” at one end and “Air” at the other. 

 

Proposition 6: Building exteriors, together with the adjacent terrain, form a portion of  the global “Polyhedral 

Earth”. 

 

The Augmented Quad-Edge is designed to link face pointers in one space with Quad-Edges in 

the dual space – a good example of this is the 3D Voronoi diagram and dual Delaunay 



 
 

tetrahedralization, where Delaunay edges represent Voronoi faces, and vice versa. This 

structure is ideally placed to represent cellular complexes and their adjacencies (Ledoux and 

Gold, In Press). Thus the addition of a hollow building interior is achieved by adding an 

interior cell where most of the edges correspond to those forming the previously-constructed 

building exterior. Additional rooms may be added by partitioning this interior cell, while the 

simultaneously-constructed dual cell edges form a structure for navigating the interior (Fig. 

26 – two tetrahedra are linked by the dual Voronoi edges that penetrate the common face). Fig. 

27 shows the basic relationships between adjacent rooms using this structure, consisting of the 

standard Quad-Edge operators and the “through” and “adjacent” operators from the 

Augmented Quad-Edge. Clearly this approach is equally valid for subterranean constructions 

as well as above-ground buildings. 

 

Proposition 7: Building interiors may be constructed as individual polyhedra, linked together and to the exterior by 

edges of  the dual graph. 

 

     
Fig. 25: 3D dual relationships    Fig. 26: 3D navigation via the dual 
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Fig. 27: Relationships between rooms 

 

Conclusions 

We have outlined a procedure for the direct extraction of building exteriors from LIDAR data 

without any prior knowledge of the data. This is based on five propositions that are necessary 

in order to recognize the basic elements of our buildings. Two additional propositions are 



 
 

given in order to provide a topological context for building interiors. While the resulting 

building forms have only limited precision they can be rectified with additional conditions as 

desired in any particular urban context. 
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