
Spatial Interpolation: From Two to Three Dimensions 

  
Hugo Ledoux and Christopher Gold 

 

GIS Research Centre, School of Computing  
University of Glamorgan, Pontypridd, CF37 1DL, Wales, UK  

hledoux@glam.ac.uk   christophergold@voronoi.com
 

1.  Introduction 
Interpolation methods are an important part in a geographical information system 
(GIS) and have been used for years to model elevation data. They are crucial in the 
visualisation process (generation of contours), for the conversion of data from one 
format to another, to have a better understanding of a dataset or simply to identify bad 
samples. The result of interpolation—usually a surface that represents the real 
terrain—must be as accurate as possible because it often forms the basis for spatial 
analysis, e.g. runoff modelling or visibility analysis. Although interpolation helps in 
creating three-dimensional surfaces, it is intrinsically a two-dimensional operation for 
only the x-y coordinates of each sample are used and the elevation is considered as an 
attribute. With the new technologies available to collect information about the Earth, 
more and more three-dimensional data are collected. A typical dataset in geosciences 
has samples in 3D space (x-y-z coordinates) to which attributes are attached (e.g. the 
salinity of the water, or the percentage of gold in the rock). Because of the way they 
are collected, 3D geoscientific datasets have a highly anisotropic distribution. 
Geologic and oceanographic data are for example respectively gathered from 
boreholes and water columns; data are therefore usually abundant vertically but sparse 
horizontally. While most of the interpolation methods used in GIS intuitively extend to 
3D, it is not obvious that they preserve their properties or are appropriate for such 
datasets. 
In this paper, we discuss the extension to 3D of some of the interpolation methods 
found in GIS or geoscientific modelling packages. We first present some details 
concerning their generalisation, and then evaluate briefly their properties.  

2.  What is a Good Interpolation Method?  
Given a set of samples to which an attribute a is attached, spatial interpolation is the 
procedure used to estimate the value of the attribute at an unsampled location x. To 
achieve that, it creates a function f, called the interpolant, that tries to fit the samples as 
well as possible, based on some criteria. Interpolation is based on spatial 
autocorrelation, that is the attribute of two points close together in space is more likely 
to be similar than that of two points far from each other. Watson (1992) lists the 
essential aspects of an ‘ideal’ interpolation method: it must be exact (the surface must 
‘pass through’ the samples), continuous and smooth (the surface must have a 
continuous and finite slope everywhere), local (the interpolation function uses only 
some neighbouring samples), and must also be able to adapt to different densities and 
distributions of data. 
We describe in this paper only weighted-average interpolation methods, i.e. a local 
method that uses only some sample points, to which weights (an importance) are 
assigned. The interpolation function f of such methods has the following form:  
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where wi(x) is the weight of each neighbour pi (with respect to the interpolation 
location x) used in the interpolation process, and ai the attribute of pi.  

3.  From 2D to 3D 

3.1.  Nearest Neighbour 
This is not really an interpolation method, but it is nevertheless used. The value of an 
attribute at location x is simply assumed to be equal to the attribute of the nearest data 
point. Given a set S of data points, if interpolation is performed at many locations 
close to each other, the result is the Voronoi diagram (VD) of S (see Figure 1 for 2D 
and 3D examples), where all the points inside a Voronoi cell have the same value. 
 

 
Figure 1. Left: the 2D VD. Right: two 3D Voronoi cells adjacent to each other. 

In 2D, each Voronoi cell is a convex polygon, and in 3D it is a convex polyhedron. 
The VD actually creates a piecewise model, where the interpolation function inside 
each Voronoi cell is a constant function. Although the method is local, exact and 
relatively easy to implement (simply search for the closest data point), the 
interpolation function is discontinuous at the border of cells. 

3.2.  Distance-based Methods 
Distance-based methods are probably the most known methods and they are widely 
used in many fields. As shown in Figure 2, in 2D they often use a ‘searching circle’, 
whose radius is user-defined, to select the data points pi involved in the interpolation at 
location x. The weight assigned to each is typically based on the square of the distance 
from x to pi. Other weights can also be used, see Watson (1992) for a discussion. The 
size of the radius of the searching circle influences greatly the result of the 
interpolation. A very big radius means that the resulting surface will be smooth or 
‘flattened’. On the other hand, a radius that is too small might have dramatic 
consequences if for example no data points are inside the circle. This method has 



many problems when the data distribution is highly anisotropic or varies greatly in one 
dataset. Figure 2 shows one example with contour lines. 
 

 
Figure 2. Left: inverse distance to a power interpolation. Right: problems with anisotropic 
datasets. 

The generalisation of this method to 3D is straightforward: a searching sphere with a 
given radius is used. The one-dimension criterion of the method (the distance) will 
affect even more the 3D method because the search must be performed in one more 
dimension. 

3.3.  Linear Interpolation in Triangles 
This method is popular for terrain modelling applications and is based on a 
triangulation of the data points. As is the case for the VD, a triangulation is a 
piecewise subdivision, and here a linear function is assigned to each piece (a triangle). 
Interpolating at location x means first finding inside which triangle x lies, and then the 
height is estimated by linear interpolation on the 3D plane defined by the three vertices 
forming the triangle. The last step can be efficiently performed by using barycentric 
coordinates, which are local coordinates defined within a triangle (see Figure 3 for 
details). To obtain satisfactory results, this method is usually used in 2D with a 
Delaunay triangulation (DT) because it maximizes the minimum angle of each 
triangle, in other words it creates triangles that are as equilateral as possible (see 
Figure 3). This ensures that the three vertices used in the interpolation process will 
most likely be close to the interpolation location. 
 

 
Figure 3.  Left: barycentric coordinates.  Right: Delaunay triangulation in 2D. The circle 
circumscribed to a Delaunay triangle is empty of any other data points. 

The generalisation of this method to 3D is straightforward: linear interpolation is 
performed within each tetrahedron of a 3D triangulation, and the barycentric 
coordinates can also be generalised to use volumes instead of areas. Finding ‘good’ 
tetrahedra is however more difficult than finding good triangles because the max-min 
property of Delaunay triangles does not generalise to 3D. A 3D DT can indeed contain 



some tetrahedra, called slivers, whose four vertices are almost coplanar; interpolation 
within such tetrahedra does obviously not yield good results. Different empirical 
methods have been developed to improve the shape of certain tetrahedra in a 3D DT 
(e.g. Cheng et al. (2000)), but they are quite complex to implement. 
The method is local and exact, but its major problem is that it is not continuous at the 
edges or faces of the 3D triangulation. 

3.4.  Natural Neighbour Interpolation 
It has been shown by different researchers (Gold, 1989; Sambridge et al., 1995; 
Watson, 1992) that the natural neighbour interpolation method (Sibson, 1981) avoids 
most of the problems the other methods have with anisotropic datasets. This is a 
method based on the Voronoi diagram for both selecting the data points involved in 
the process, and to assign them a weight. It uses two VDs: one for the set of data 
points, and another one where a point x is inserted at the interpolation location. The 
insertion of x modifies locally a VD: x ‘steals’ some parts of some Voronoi cells, as 
shown in Figure 4. The data points pi used for the interpolation are the ones whose 
Voronoi cell has been modified by the insertion of x, and the weight of each pi is 
proportional to the amount that was stolen (areas in 2D and volumes in 3D). The 
properties of the method are the same in any dimensions: it is local and exact, and the 
result is continuous everywhere. The first derivative is also continuous everywhere, 
except at the data points. It moreover adapts very well to geoscientific data because the 
neighbours used are based on the VD, which results in data points that both surround 
and are close to the interpolation location. 
 

 
Figure 4. Natural neighbour interpolation in 2D. 

Although natural neighbour interpolation yields good results, it has not been widely 
used, at least among the GIS community. This is probably due to the fact that it is a 
computationally expensive process, and its implementation is intricate, especially in 
3D. It requires the computation of two VDs—just constructing one in 3D is not that 
simple, see Sugihara and Hiroshi (1995)—and of volumes of cells. We have therefore 
proposed an algorithm (Ledoux and Gold, 2004), valid in any dimensions, that we 
believe is easier to implement as it is based on a known and relatively simple to 
implement algorithm to construct a VD.  



4.  Discussion 
We have shown that most of the weighted-average methods do generalise to 3D, but 
sometimes new problems appear, for example with triangulations in 3D. The flaws 
present in some 2D methods will often be amplified in three and higher dimensions. 
The main aspect not covered in the paper is the continuity of the surface, or 
interpolant. It is indeed possible to modify the methods described to ensure that the 
first derivative is continuous everywhere, for example Akima (1978) used higher order 
functions in each piece of a triangulation. Nevertheless, natural neighbour 
interpolation, as described, conforms to Watson’s criteria, except for the first 
derivative continuity at data points, which may be achieved by using additional 
functions (Gold, 1989). 
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