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ABSTRACT:

Although interpolation methods are commonly used in geographical information systems (GIS) for modelling two-dimensional fields,
their three-dimensional counterparts are yet to be found in commercialsoftware, and this despite the fact that more and more 3D datasets
are available, especially in geosciences. In this paper, we discuss the generalisation to 3D of four weighted-average interpolation
methods that are commonly used for 2D fields. We evaluate their properties when they are used with geoscientific data, and we also
discuss implementation details. We restrict our analysis to methods that can be used in a context of interactive exploration of a dataset.

1 INTRODUCTION

Interpolation methods are an important part in a geographical in-
formation system (GIS) and have been used for years to model,
among others, elevation data. They are crucial in the visualisation
process (e.g. generation of contours lines), for the conversion of
data from one format to another (e.g. from scattered points to
raster), to have a better understanding of a dataset or simply to
identify ‘bad’ samples. The result of interpolation—usually a
surface that represents the real terrain—must be as accurate as
possible because it often forms the basis for spatial analysis, for
example runoff modelling or visibility analysis. Although inter-
polation helps in creating three-dimensional surfaces, it is intrin-
sically a two-dimensional operation for only thex−y coordinates
of each sample are used and the elevation is considered as an at-
tribute.

With the new technologies available to collect information about
the Earth, more and more three-dimensional data are collected. A
typical dataset in geosciences has samples in three-dimensional
space (x− y− z coordinates) to which one or more attributes are
attached. The attribute collected is usually a scalar, and typical
examples are the salinity or the temperature of the water, the per-
centage of gold in the rock, or the humidity of the air. Samples
are actually collected to study the spatial variability of an attribute
over a certain extent in space; ifa is the attribute studied, a contin-
uous functiona = f(x, y, z) is defined, this is called afield (see
Goodchild (1992) for more details). Because of the way they are
collected, three-dimensional geoscientific datasets often have a
highly anisotropic distribution. Geologic and oceanographic data
are, for example, respectively gathered from boreholes and water
columns: data are therefore usually abundant vertically but sparse
horizontally. To model such datasets, three-dimensional interpo-
lation methods that consider the specificities of the data must be
used. While most of the interpolation methods used in GIS in-
tuitively extend to 3D, it is not obvious that they preserve their
properties or are appropriate for such datasets.

In this paper, we discuss the generalisation to three dimensions
of some of the interpolation methods found in GIS or geosci-
entific modelling packages. We focus our attention on meth-
ods that can be applied in a context ofdynamicor interactive
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modelling (Anselin, 1999; Bailey and Gatrell, 1995; Gold, 1993).
This is an approach where the user does not only use standards
operations (e.g. GIS spatial analysis or statistical methods) on a
dataset, but actually interacts with it by manipulating and trans-
forming it and then looks at the consequences of his manipula-
tions. The emphasis is put on the interaction between the user and
the dataset through modification and visualisation tools. A sim-
ple example of this approach is a spreadsheet tool (e.g. Microsoft
Excel) where numerical data can be explored with the help of
different statistical tests and charts (histograms, scatter points,
pie charts, etc.). These charts are linked to the data, i.e. if some
numbers in the dataset are changed, the charts are automatically
updated. In the context of geoscientific modelling, one can think
of an environment where the samples can be inserted, deleted or
even moved at will by the user, and he gains insight about the
spatial variability of the field studied by manipulating the dataset
and observing the results. A key factor in interactive analysis
is the speed at which each function is performed, to ensure that
the user gets an (almost) instantaneous result from a query or
an operation, so that he is not disturbed by long waits. We dis-
cuss in Section 2 the properties that an interpolation method for
geoscientific data should have, and we present in Section 3 four
methods. For each, we present and evaluate their properties in 3D
space, and we also discuss implementation details to ensure that
they are computationally efficient.

2 WHAT IS A GOOD INTERPOLATION METHOD?

Given a set of samples to which an attributea is attached, spatial
interpolation is the procedure used to estimate the value of the
attribute at an unsampled locationx. To achieve that, it creates
a functionf , called the interpolant, that tries to fit the samples
as well as possible. Interpolation is based onspatial autocorre-
lation, that is the attribute of two points close together in space
is more likely to be similar than that of two points far from each
other. Watson (1992), in his authoritative book, lists the essential
properties of an ‘ideal’ interpolation method for bivariate geosci-
entific datasets. These properties can realistically be present for
trivariate datasets, and are as follows:

1. exact: the interpolant must ‘honour’ the data points, or ‘pass
through’ them.



2. continuous: a single and unique value must be obtained at
each location. This is called aC0 interpolant in mathemat-
ics.

3. smooth: it is desirable for some applications to have a func-
tion for which the first or second derivative is possible every-
where; such functions are respectively referred to asC1 and
C2 interpolants.

4. local: the interpolation function uses only some neighbour-
ing samples to estimate the value at a given location. This
ensures that a sample with a gross error will not propagate
its error to the whole interpolant.

5. adaptability , i.e. the function should give realistic results
for anisotropic data distributions and/or for datasets where
the data density varies greatly from one location to another.

In the context of dynamic/interactive modelling, we add to this
list:

6. the method must becomputationally efficient.

7. the method must require as little input as possible from the
user, i.e. it should beautomatic and not rely on user-defined
parameters that requirea priori knowledge of the dataset.

We describe in the next section four interpolation methods, com-
monly found in GIS and geoscientific software, that respect some
of the criteria of an ideal method for an interactive system. The
major omission from our list is Kriging (Matheron, 1971; Oliver
and Webster, 1990), which, although possessing many of the ideal
properties and being popular in many application domains be-
cause it produces an interpolant that minimises the error variance
at each location, cannot be realistically be used in an dynamic en-
vironment. Indeed, the Kriging estimation is based on a function
characterising the dependence between the attributes of any two
samples that are at a given distance from each other. This function
is obtained by studying the variance of the attributes according to
the distance and the direction, and fitting a simple function. This
is done manually by the user, and is a somewhat time-consuming
process that is impossible to do every time the dataset is modified.

The four interpolation methods discussed are all weighted-avera-
ge methods, which are methods that use only some sample points,
to which weights (◦importance) are assigned. The interpolation
functionf of such methods have the following form:

f(x) =

Pk
i=1

wi(x) aiPk
i=1

wi(x)
(1)

wherewi(x) is the weight of each neighbourpi (with respect to
the interpolation locationx) used in the interpolation process, and
ai the attribute ofpi.

3 FROM TWO TO THREE DIMENSIONS

3.1 Nearest Neighbour

Nearest neighbour is a simple interpolation method: the value of
an attribute at locationx is simply assumed to be equal to the
attribute of the nearest data point. Given a setS of data points
in a d-dimensional space, if interpolation is performed with this
method at many locations close to each other, the result is the
Voronoi diagram (VD) ofS, where all the points inside a Voronoi

Figure 1: The VD for a set of points in the plane.

Figure 2: Two 3D Voronoi cells adjacent to each other.

cell have the same value (see Figure 1 and Figure 2 for respec-
tively the 2D and 3D examples). The Voronoi cell of a point
p ∈ S, definedVp, is the set of pointsx ∈ R

d that are closer top
than to any other point inS. In 2D,Vp is a convex polygon, and in
3D it is a convex polyhedron. Observe that the size and the shape
of a Voronoi cell is determined by the distribution of the points:
when the data is dense the cells are smaller. The union of the
Voronoi cells of all generating pointsp ∈ S form VD(S). The
VD actually creates a piecewise model, where the interpolation
function inside each Voronoi cell is a constant function.

Although the method possesses many of the properties listed in
Section 2 (it is exact, local and can handle anisotropic data dis-
tributions), it cannot be used with geoscientific data if realistic
results are wanted because it fails lamentably properties 2 and 3.
The interpolation function is indeed discontinuous at the border
of cells. It can nevertheless be useful in some applications: it is
for example often used in remote sensing to avoid averaging or
blurring the resulting image, and it is also useful for nominal or
ordinal data, e.g. rock types.

The implementation of the method sounds easy: simply find the
closest data point and assign its value to the interpolation loca-
tion. The difficulty lies in finding an efficient way to get the clos-
est data point. The simplest way consists of measuring the dis-
tance for each of then points in the dataset, but this is too slow
for large datasets. To speed up this brute-force algorithm, aux-
iliary data structures that will spatially index the points must be
used. They usually subdivide hierarchically the space into cells
(usually squares or rectangles) and build a tree that usesO(n)
space; examples of such trees are the KD-tree, the R-tree and the
octree (see van Oosterom (1999) for a survey of two-dimensional
structures: the three-dimensional methods are simple extensions).
Thus, to find the nearest neighbour, it suffices to navigate in the
tree and simply test the points in the adjacent cells. Locating the
cell containing a test point can for example be done efficiently (in
O(log n) time) with a KD-tree.

Another solution consists of building the VD for the set of points
and identifying inside which cell the interpolation point lies. In
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Figure 3:(a) Inverse distance to a power interpolation.(b) Prob-
lems with anisotropic datasets.

fact, the Delaunay triangulation (DT)—which is the dual of the
VD—can also be constructed as the two structures are equiva-
lent, i.e. that the knowledge of one structure implies the knowl-
edge of the other. Many algorithms exist to construct a three-
dimensional VD/DT, see for example the incremental methods of
Watson (1981) or Edelsbrunner and Shah (1996). More details
about the latter method are available in Section 3.4. For a set of
n points inR

3 these algorithms construct the VD/DT inO(n2),
which is worst-case optimal since the complexity of the VD/DT
for some distribution of points is quadratic. Finally, identifying
the cell containing a query point is very efficient and is expected
to take onlyO(n1/4) when the points are randomly distributed
(see M̈ucke et al. (1999) for the details).

3.2 Distance-based Methods

Distance-based methods are probably the most known methods
and they are widely used in many fields. As shown in Figure 3a,
in two dimensions they often use a ‘searching circle’, whose ra-
dius is user-defined, to select the data pointspi involved in the
interpolation at locationx. The weight assigned to each is typ-
ically based on the square of the distance fromx to pi. Other
weights can also be used, see Watson (1992) for a discussion.
The size of the radius of the searching circle influences greatly
the result of the interpolation: a very big radius means that the
resulting surface will be smooth or ‘flattened’; on the other hand,
a radius that is too small might have dramatic consequences if for
example no data points are inside the circle. A good knowledge
of the dataset is thus required to select this parameter.

This method has many flaws when the data distribution is highly
anisotropic or varies greatly in one dataset because a fixed-radius
circle will not necessarily be appropriate everywhere in the data-
set. Figure 3b shows one example where one circle, when used
with a dataset extracted from contour lines, clearly gives erro-
neous results at some locations. The major problem with the
method comes from the fact that the criterion, for both selecting
data points and assigning them a weight, is one-dimensional and
therefore does not take into account the spatial distribution of the
data points close to the interpolation location. A criterion based
on areas and volumes for respectively bivariate and trivariate data
yields better results, as Sections 3.3 and 3.4 explain.
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Figure 4: Barycentric coordinates.

Figure 5: Delaunay triangulation of the same set of points as in
Figure 1.

The generalisation of this method to three dimensions is straight-
forward: a searching sphere with a given radius is used. The
same problems with the one-dimensionality of the method will
be even worse because the search must be performed in one more
dimension. The method has too many problems to be considered
for geoscientific datasets: the interpolant is not guaranteed to be
continuous, especially when the dataset has an anisotropic distri-
bution, and the criterion has to be selected carefully by the user.

The implementation problems are also similar to the ones en-
countered with the previous method, and an auxiliary data struc-
ture must be used to avoid testing all the points in a dataset.

3.3 Linear Interpolation in Triangles

This method is popular for terrain modelling applications and is
based on a triangulation of the data points. As is the case for the
VD, a triangulation is a piecewise subdivision of the space cov-
ered by the data points, and in the context of interpolation a linear
function is assigned to each piece (each triangle). Interpolating
at locationx means first finding inside which trianglex lies (see
Mücke et al. (1999) for an efficient method), and then the height
is estimated by linear interpolation on the plane defined by the
three vertices forming the triangle. This can be efficiently im-
plemented by using barycentric coordinates, which are local co-
ordinates defined within a triangle (see Figure 4 for details). To
obtain satisfactory results, this method is usually used in 2D with
a Delaunay triangulation because, among all the possible triangu-
lations of a set of points in the plane, it maximizes the minimum
angle of each triangle. In other words it creates triangles that are
as equilateral as possible (see Figure 5). A Delaunay triangula-
tion is a triangulation for which the circle circumscribed to each
triangle is empty, i.e. it does not contain in its interior any other
point in the set. This ensures that the three vertices used in the
interpolation process will most likely be close to and around the
interpolation location.

The generalisation of this method to 3D is as follows: linear
interpolation is performed within each tetrahedron of a 3D tri-
angulation. Note that the barycentric coordinates can be gener-
alised to linearly interpolate inside a tetrahedron. Finding ‘good’
tetrahedra is however more difficult than finding good triangles
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Figure 6:(a) A four-sided convex polygon can be triangulated by
two different ways, but the Delaunay criterion guarantees that the
triangles created will be as equilateral as possible.(b) In three
dimensions, five vertices can be triangulated with either two or
three tetrahedra. Although the triangulation at the bottom has
two nicely shaped tetrahedra, they are not Delaunay (the point
e is inside the sphere defined by the pointsa, b, c andd). The
triangulation at the top is Delaunay, but contains one very thin
tetrahedron spanned by the pointsa, b, d ande.

because themax-minproperty of Delaunay triangles does not
generalise to 3D. A 3D DT can indeed contain some tetrahedra,
calledslivers, whose four vertices are almost coplanar (see Fig-
ure 6); interpolation within such tetrahedra obviously does not
yield good results. Note that slivers do not have two-dimensional
counterparts.

Despite the occasional presence of slivers, Delaunay tetrahedra
still have a more desirable shape than arbitrary tetrahedra. Ra-
jan (1991) shows that the smallest sphere containing a Delaunay
tetrahedron is smaller than that of any other tetrahedron, i.e. that
Delaunay tetrahedra tend to have a round shape. Also, Cheng
et al. (2000) show that a triangulation where all the tetrahedra are
well-shaped can be obtained as follows: start with the DT, assign
some importance to some data points forming slivers, and modify
locally some tetrahedra (with the help offlips, see next section) to
obtain aregular triangulationof the set of points (Edelsbrunner
and Shah, 1996).

As mentioned in Section 3.1, there exist different algorithms to
construct and navigate efficiently in a 3D DT, and the linear in-
terpolation itself is done in constant time since only four data
points are involved. When used on a triangulation having well-
shaped tetrahedra, the linear interpolation method possesses all
the ingredients of an ideal method but one: the first (or second)
derivative of the resulting function is not possible at the vertices,
edges and faces of the triangulation. Akima (1978) solved this
problem in two dimensions by using higher order functions in
each piece of the triangulation, and the same could be done in
three dimensions.
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Figure 7: Natural neighbour coordinates in 2D for the interpola-
tion pointx. The shaded polygon isVx.

3.4 Natural Neighbour Interpolation

It has been shown by different researchers (Gold, 1989; Sam-
bridge et al., 1995; Watson, 1992) that the natural neighbour in-
terpolation method (Sibson, 1981) avoids most of the problems
the other methods have with anisotropic datasets. This is a method
based on the Voronoi diagram for both selecting the data points
involved in the process, and assigning them a weight. It uses two
VDs: one for the set of data points, and another one where a
point x is inserted at the interpolation location. Let us describe
the method for the two-dimensional case. The insertion ofx lo-
cally modifies a VD: the Voronoi cellVx of x ‘steals’ some parts
of some Voronoi cells, as shown in Figure 7. This idea forms
the basis of natural neighbour coordinates (Sibson, 1980, 1981),
which define quantitatively the amountVx steals from each of its
natural neighbours. LetD be the VD(S), andD+ = D ∪ {x}.
The Voronoi cell of a pointp in D is defined byVp, andV+

p is its
cell in D+. The natural neighbour coordinate ofx with respect
to a pointpi is

wi(x) =
Area(Vpi

∩ V+
x )

Area(V+
x )

(2)

whereArea(Vpi
) represents the area ofVpi

. For anyx, the value
of wi(x) will always be between 0 and 1: 0 whenpi is not a nat-
ural neighbour ofx, and 1 whenx is exactly at the same loca-
tion aspi. A further important consideration is that the sum of
the areas stolen from each of thek natural neighbours is equal
to Area(V +

x ). Therefore, the higher the value ofwi(x) is, the
stronger is the ‘influence’ ofpi on x. The natural neighbour co-
ordinates are influenced by both the distance fromx to pi and
the spatial distribution of thepi aroundx. Note that the method
is valid in any dimensions, for a Voronoi diagram exists in any
dimensions. Hence, volumes are stolen in three dimensions, and
hyper-volumes in higher dimensions.

Surprisingly, although many authors present the properties and
advantages of the method, few discuss details concerning its im-
plementation, and this is probably why its use is not widespread
among the GIS community. The two-dimensional case is rela-
tively easy to implement as efficient algorithms for construct-
ing a VD/DT (Fortune, 1987; Guibas and Stolfi, 1985; Watson,
1981) and deleting a point from it (Devillers, 2002; Mostafavi
et al., 2003) exist. In three dimensions, things get more compli-
cated because the algorithms to modify a VD/DT and computing
volumes are more complex (e.g. deleting a single vertex from a
DT is for example rather tricky to implement, as Ledoux et al.
(2005) show). To our knowledge, the only efficient algorithm
is due to Boissonnat and Cazals (2002) and consists of mimick-
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Figure 8:flip23andflip32.

ing the insertion of the interpolation pointx to avoid deleting it
afterwards. The stolen volume is obtained by a somewhat com-
plicated method that ‘orders’ the vertices surroundingx and then
decomposes the volume into tetrahedra. The implementation of
this method is rather intricate.

We have therefore proposed a simple alternative that is valid in
any dimensions (Ledoux and Gold, 2004). Our algorithm is based
on the well-knownflipping algorithm (Edelsbrunner and Shah,
1996) to insert a point in ad-dimensional Delaunay triangula-
tion, and exploits the duality between a DT and the VD. Only
minor modifications to Edelsbrunner and Shah’s algorithm are
needed to compute the natural neighbour coordinates. In brief,
a flip is a local topological operation that modifies the configu-
ration of adjacent tetrahedra in a triangulation (flips are actually
possible in any dimensions, but for the sake of simplicity we only
discuss the 3D case here). Consider a setS = {a, b, c, d, e} of
points inR

3, as shown in Figure 8. There are two ways to trian-
gulateS: either with two or three tetrahedra. In the first case, the
two tetrahedra share a facebcd, and in the latter case the three
tetrahedra all have a common edgeae. A flip23 transforms a
triangulation of two tetrahedra into another one containing three
tetrahedra; aflip32 is the inverse operation. Also, it has been
shown that a single point can be inserted in a DT by applying a
sequence of flips (Joe, 1991). Our idea was simply to ‘remem-
ber’ the sequence of flips used to insert a point, and reverse it to
delete it. We also showed that only the volume of some faces of
a Voronoi cell need to be computed in this context. The resulting
algorithm is efficient (its time complexity is the same as the one
for inserting a single point in a VD/DT), and we believe it to be
considerably simpler to implement than other known methods, as
only an incremental insertion algorithm based on flips, with some
minor modifications, is needed.

Although computationally more intensive than the other methods,
natural neighbour interpolation possesses all the properties enu-
merated in Section 2, except that the first derivative is undefined
at the data points. To obtain a differentiable function everywhere,
Sibson uses the weights defined in Equation 2 in a quadratic equa-
tion where the gradient atx is considered. To our knowledge, this
method has not been used with success with real data and there-
fore we do not use it. Other ways to remove the discontinuities
at the data points have been proposed: Watson (1992) explains
different methods to estimate the gradient atx and how to incor-
porate it in Equation 1; and Gold (1989) proposes to modify the
weight of eachpi with a simple hermitian polynomial so that, as
x approachespi, the derivative off(x) approaches 0.

Modifying Equation 1 to obtain a continuous function can yield
very good results in some cases, but with some datasets the re-
sulting surface can contain unwanted effects. Different datasets
require different methods and parameters, and, for this reason,
modifications should be applied with great care.

4 DISCUSSION

We have shown that most of the weighted-average methods do
generalise to 3D, but sometimes new problems appear, for exam-
ple with triangulations in three-dimensions or with the computa-
tional efficiency. Also, the flaws present in some two-dimensional
methods will often be amplified in three and higher dimensions.
Natural neighbour interpolation seems to be the method that is the
most appropriate for modelling geoscientific dataset because it is
robust, entirely objective, and gives good results when the data
distribution is highly irregular. We have already implemented in
two and three dimensions the algorithm described in this paper
and we hope our method will make it possible for the GIS com-
munity to take advantage of natural neighbour interpolation for
modelling geoscientific data.
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