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Abstract

Although the properties of natural neighbour interpolation and its usefulness
with scattered and irregularly spaced data are well-known, its implementation
is still a problem in practice, especially in three and higher dimensions. We
present in this paper an algorithm to implement the method in two and three
dimensions, but it can be generalized to higher dimensions. Our algorithm,
which uses the concept of flipping in a triangulation, has the same time com-
plexity as the insertion of a single point in a Voronoi diagram or a Delaunay
triangulation.

1 Introduction

Datasets collected to study the Earth usually come in the form of two- or
three-dimensional scattered points to which attributes are attached. Unlike
datasets from fields such as mechanical engineering or medicine, geoscientific
data often have a highly irregular distribution. For example, bathymetric data
are collected at a high sampling rate along each ship’s track, but there can
be a very long distance between two ships’ tracks. Also, geologic and oceano-
graphic data respectively are gathered from boreholes and water columns;
data are therefore usually abundant vertically but sparse horizontally. In or-
der to model, visualize and better understand these datasets, interpolation
is performed to estimate the value of an attribute at unsampled locations.
The abnormal distribution of a dataset causes many problems for interpola-
tion methods, especially for traditional weighted average methods in which
distances are used to select neighbours and to assign weights. Such methods
have problems because they do not consider the configuration of the data.

*This research is supported by the Hong Kong’s Research Grants Council
(project PolyU 5068/00E).
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It has been shown that natural neighbour interpolation (Sibson, 1980,
1981) avoids most of the problems of conventional methods and therefore
performs well for irregularly distributed data (Gold, 1989; Sambridge et al.,
1995; Watson and Phillip, 1987). This is a weighted average technique based
on the Voronoi diagram (VD) for both selecting the set of neighbours of the
interpolation point z and determining the weight of each. The neighbours
used in an estimation are selected using the adjacency relationships of the
VD, which results in the selection of neighbours that both surround and are
close to x. The weight of each neighbour is based on the volume (throughout
this paper, ‘volume’ is used to define area in 2D, volume in 3D and hyper
volume in higher dimensions) that the Voronoi cell of x ‘steals’ from the
Voronoi cell of the neighbours in the absence of z. The method, which has
many useful properties valid in any dimensions, is further defined in Sect. 2.

Although the concepts behind natural neighbour interpolation are simple
and easy to understand, its implementation is far from being straightforward,
especially in higher dimensions. The main reasons are that the method re-
quires the computation of two Voronoi diagrams—one with and one without
the interpolation point—and also the computation of volumes of Voronoi cells.
This involves algorithms for both constructing a VD—or its geometric dual
the Delaunay triangulation (DT)—and deleting a point from it. By compari-
son, conventional interpolation methods are relatively easy to implement; this
is probably why they can be found in most geographical information systems
(GIS) and geoscientific modelling packages.

Surprisingly, although many authors present the properties and advantages
of the method, few discuss details concerning its implementation. The two-
dimensional case is relatively easy to implement as efficient algorithms for
constructing a VD /DT (Fortune, 1987; Guibas and Stolfi, 1985; Watson, 1981)
and deleting a point from it (Devillers, 2002; Mostafavi et al., 2003) exist.
Watson (1992) also presents an algorithm that mimics the insertion of z,
and thus deletion algorithms are not required. The stolen area is obtained
by ordering the natural neighbours around x and decomposing the area into
triangles.

In three and higher dimensions, things get more complicated because the
algorithms for constructing and modifying a VD /DT are still not well-known.
There exist algorithms to construct a VD/DT (Edelsbrunner and Shah, 1996;
Watson, 1981), but deletion algorithms are still a problem—only theoretical
solutions exist (Devillers, 2002; Shewchuk, 2000). Sambridge et al. (1995)
describe three-dimensional methods to compute a VD, insert a new point
in it and compute volumes of Voronoi polyhedra, but they do not explain
how the interpolation point can be deleted. Owen (1992) also proposes a
sub-optimal solution in which, before inserting the interpolation point x, he
simply saves the portion of the DT that will be modified and replaces it
once the estimation has been computed. The stolen volumes are calculated
in only one operation, but that requires algorithms for intersecting planes
in three-dimensional space. The idea of mimicking the insertion algorithm of
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Watson (1992) has also been generalized to three dimensions by Boissonnat
and Cazals (2002) and to arbitrary dimensions by Watson (2001). To calculate
the stolen volumes, both algorithms use somewhat complicated methods to
order the vertices surrounding x and then decompose the volume into simplices
(tetrahedra in three dimensions). The time complexity of these two algorithms
is the same as the one to insert one point in a VD/DT.

We present in this paper a simple natural neighbour interpolation algo-
rithm valid in two and three dimensions, but the method generalizes to higher
dimensions. Our algorithm works directly on the Delaunay triangulation and
uses the concept of flipping in a triangulation, as explained in Sect. 3, for
both inserting new points in a DT and deleting them. The Voronoi cells are
extracted from the DT and their volumes are calculated by decomposing them
into simplices; we show in Sect. 4 how this step can be optimised. The algo-
rithm is efficient (its time complexity is the same as the one for inserting a
single point in a VD/DT) and we believe it to be considerably simpler to
implement than other known methods, as only an incremental insertion algo-
rithm based on flips, with some minor modifications, is needed.

2 Natural Neighbour Interpolation

The idea of a natural neighbour is closely related to the concepts of the Voronoi
diagram and the Delaunay triangulation. Let S be a set of n points in d-
dimensional space. The Voronoi cell of a point p € S, defined V,, is the set
of points = that are closer to p than to any other point in S. The union of
the Voronoi cells of all generating points p in S form the Voronoi diagram
(VD) of S. The geometric dual of VD(SS), the Delaunay triangulation DT(S),
partitions the same space into simplices—a simplex represents the simplest
element in a given space, e.g. a triangle in 2D and a tetrahedron in 3D—
whose circumspheres do not contain any other points in S. The vertices of the
simplices are the points generating each Voronoi cell. Fig. 1(a) shows the VD
and the DT in 2D, and Fig. 1(b) a Voronoi cell in three dimensions. The VD
and the DT represent the same thing: a DT can always be extracted from a
VD, and vice-versa. The natural neighbours of a point p are the points in S
sharing a Delaunay edge with p, or, in the dual, the ones whose Voronoi cell
is contiguous to V,. For example, in Fig. 1(a), p has seven natural neighbours.

2.1 Natural Neighbour Coordinates

The concept of natural neighbours can also be applied to a point x that is
not present in S. In that case, the natural neighbours of x are the points in .S
whose Voronoi cell would be modified if the point z were inserted in VD(S).
The insertion of x creates a new Voronoi cell V, that ‘steals’ volume from the
Voronoi cells of its ‘would be’ natural neighbours, as shown in Fig. 2(a). This
idea forms the basis of natural neighbour coordinates (Sibson, 1980, 1981),
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which define quantitatively the amount V, steals from each of its natural
neighbours. Let D be the VD(S), and Dt = D U {z}. The Voronoi cell of a
point p in D is defined by V,,, and V; is its cell in D*. The natural neighbour
coordinate of x with respect to a point p; is

+
wi(x) = Vol‘(/Vpi ﬂ+VI) (1)
ol(Vi)

where Vol(V,,) represents the volume of V,,. For any z, the value of w;(x)
will always be between 0 and 1: 0 when p; is not a natural neighbour of
x, and 1 when x is exactly at the same location as p;. A further important
consideration is that the sum of the volumes stolen from each of the k natural
neighbours is equal to Vol(V,). Therefore, the higher the value of w;(x) is,
the stronger is the ‘influence’ of p; on x. The natural neighbour coordinates
are influenced by both the distance from z to p; and the spatial distribution
of the p; around .

(a) Voronoi diagram and Delaunay  (b) A Voronoi cell in 3D with its
triangulation (dashed lines) in 2D.  dual Delaunay edges joining the
generator to its natural neighbours.

Fig. 1. Voronoi diagram.

(a) Natural neighbour co- (b) 2D DT with and without z.
ordinates of z in 2D.

Fig. 2. Two VD are required for the natural neighbour interpolation.
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2.2 Natural Neighbour Interpolation

Based on the natural neighbour coordinates, Robin Sibson developed a
weighted average interpolation technique that he named natural neighbour
interpolation (Sibson, 1980, 1981). The points used to estimate the value of
an attribute at location x are the natural neighbours of x, and the weight of
each neighbour is equal to the natural neighbour coordinate of x with respect
to this neighbour. If we consider that each data point in S has an attribute
a; (a scalar value), the natural neighbour interpolation is

k
flz) = Zwi(ﬂ?) a; (2)

where f(z) is the interpolated function value at the location x. The resulting
method is exact (f(z) honours each data point), and f(z) is smooth and
continuous everywhere except at the data points. To obtain a continuous
function everywhere, that is a function whose derivative is not discontinuous
at the data points, Sibson uses the weights defined in Eq. 1 in a quadratic
equation where the gradient at x is considered. To our knowledge, this method
has not been used with success with real data and therefore we do not use
it. Other ways to remove the discontinuities at the data points have been
proposed: Watson (1992) explains different methods to estimate the gradient
at 2 and how to incorporate it in Eq. 2; and Gold (1989) proposes to modify the
weight of each p; with a simple hermitian polynomial so that, as x approaches
p;, the derivative of f(x) approaches 0.

Modifying Eq. 2 to obtain a continuous function can yield very good re-
sults in some cases, but with some datasets the resulting surface can contain
unwanted effects. Different datasets require different methods and parameters,
and, for this reason, modifications should be applied with great care.

2.3 Comparison with Other Methods

With traditional weighted average interpolation methods, for example distance-
based methods, all the neighbours within a certain distance from the interpo-
lation location x are considered and the weight of each neighbour is inversely
proportional to its distance to x. These methods can be used with a certain
success when the data are uniformly distributed, but it is difficult to obtain
a continuous surface when the distribution of the data is anisotropic or when
there is variation in the data density. Finding the appropriate distance to
select neighbours is difficult and requires a priori knowledge of a dataset.
Natural neighbour interpolation, by contrast, is not affected by these issues
because the selection of the neighbours is based on the configuration of the
data.

Another popular interpolation method, especially in the GIS community;, is
the triangle-based method in which the estimate is obtained by linear interpo-
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lation within each triangle, assuming a triangulation of the data points is avail-
able. The generalization of this method to higher dimensions is straightfor-
ward: linear interpolation is performed within each simplex of a d-dimensional
triangulation. In 2D, when this method is used with a Delaunay triangulation,
satisfactory results can be obtained because the Delaunay criterion maximizes
the minimum angle of each triangle, i.e. it creates triangles that are as equi-
lateral as possible. This method however creates discontinuities in the surface
along the triangle edges and, if there is anisotropy in the data distribution, the
three neighbours selected will not necessarily be the three closest data points.
These problems are amplified in higher dimensions because, for example, the
maz-min angle property of a DT does not generalize to three dimensions. A
3D DT can contain some tetrahedra, called slivers, whose four vertices are
almost coplanar; interpolation within such tetrahedra does not yield good
results. The presence of slivers in a DT does not however affect natural neigh-
bour interpolation because the Voronoi cells of points forming a sliver will
still be ‘well-shaped’ (relatively spherical).

3 Delaunay Triangulation, Duality and Flips

In order to construct and modify a Voronoi diagram, it is actually easier to
first construct the Delaunay triangulation and extract the VD afterwards.
Managing only simplices is simpler then managing arbitrary polytopes: the
number of vertices and neighbours of each simplex is known and constant
which facilitates the algorithms and simplifies the data structures. Extracting
the VD from a DT in 2D is straightforward, while in 3D it requires more
work. In two dimensions the dual of a triangle is a point (the centre of the
circumcircle of the triangle) and the dual of a Delaunay edge is a bisector
edge. In three dimensions the dual of a tetrahedron is a point (the centre of
the circumsphere of the tetrahedron) and the dual of a Delaunay edge is a
Voronoi face (a convex polygon formed by the centre of the circumspheres of
every tetrahedron incident to the edge). In short, to get the Voronoi cell of a
given point p in a 3D DT, we must first identify all the edges that have p as a
vertex and then extract the dual of each (a face). The result will be a convex
polyhedron formed by convex faces, as shown in Fig. 1(b).

We discuss in this section the main operations required for the construction
of a DT and for implementing the natural neighbour interpolation algorithm
described in Sect. 4. Among all the possible algorithms to construct a VD /DT,
we chose an incremental insertion algorithm because it permits to firstly con-
struct a DT and then modify it locally when a point is added or deleted.
Other potential solutions, for example divide-and-conquer algorithms or the
construction of the convex hull in (d 4+ 1) dimensions, might be useful for the
initial construction, but local modifications are either slow and complicated,
or simply impossible.
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3.1 Flipping

A flip is a local topological operation that modifies the configuration of adja-
cent simplices in a triangulation. Consider the set S = {a,b, ¢, d} of points in
the plane forming a quadrilateral, as shown in Fig. 3(a). There exist exactly

flip13

—_—

-
flip3l
a: b a b

(a) (b)

Fig. 3. Two-dimensional flips.

two ways to triangulate S: the first one contains the triangles abc and bed; and
the second one contains the triangles abd and acd. Only the first triangulation
of S is Delaunay because d is outside the circumcircle of abe. A flip22 is the
operation that transforms the first triangulation into the second, or vice-versa.
It should be noticed that when S does not form a quadrilateral, as shown in
Fig. 3(b), there is only one way to triangulate S: with three triangles all in-
cident to d. A flip18 refers to the operation of inserting d inside the triangle
abc and splitting it into three triangles; and a flip31 is the inverse operation
that is needed for deleting d. The notation for the flips refers to the numbers
of simplices before and after the flip.

The concept of flipping generalizes to three and higher dimensions (Law-
son, 1986). The flips to insert and delete a point generalize easily to three
dimensions and become respectively flip1/ and flip41, as shown in Fig. 4(b).
The generalization of the flip22 in three dimensions is somewhat more compli-
cated. Consider a set S = {a,b,c,d, e} of points in R3, as shown in Fig. 4(a).
There are two ways to triangulate S: either with two or three tetrahedra. In
the first case, the two tetrahedra share a face, and in the latter case the three

b 2::1 ‘ - ‘

Fig. 4. Three-dimensional flips.
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tetrahedra all have a common edge. A flip23 transforms a triangulation of
two tetrahedra into another one containing three tetrahedra; a flip32 is the
inverse operation.

3.2 Constructing a DT by Flips

Consider a d-dimensional Delaunay triangulation 7 and a point z. What
follow are the steps to insert x in 7 by flips, assuming that the simplex 7 con-
taining « has been identified (see Devillers et al. (2002) for different methods).
After the insertion of x, one or more simplices of 7 will be in ‘conflict’ with
x, i.e. their circumspheres will contain x. We must identify, delete and replace
these conflicting simplices by other ones. A flipping algorithm first splits 7 into
d + 1 simplices with a flip (e.g. a flip13 in 2D). Each new simplex must then
be tested to make sure it is Delaunay; this test involves only two simplices:
the new simplex and its adjacent neighbour that is not incident to x (there is
only one). If the new simplex is not Delaunay then a flip is performed. The
new simplices thus created must be tested later. The process continues until
every simplex incident to x is Delaunay. This idea can be applied to construct
a DT: each point is inserted one at a time and the triangulation is updated
between each insertion.

This incremental insertion algorithm is valid in any dimensions, i.e. there
always exists a sequence of flips that will permit the insertion of a single point
in a d-dimensional DT. For a detailed description of the algorithm, see Guibas
and Stolfi (1985) and Edelsbrunner and Shah (1996) for respectively the two-

and d-dimensional case.

4 A Flip-Based Natural Neighbour Interpolation Algorithm

Our algorithm to implement natural neighbour interpolation performs all the
operations directly on the Delaunay triangulation (with flips) and the Voronoi
cells are extracted when needed. We use a very simple idea that consists of
inserting the interpolation point x in the DT, calculating the volume of the
Voronoi cell of each natural neighbour of z, then removing x and recalculating
the volumes to obtain the stolen volumes. Two modifications are applied to
speed up the algorithm. The first one concerns the deletion of x from the DT.
We show in Sect. 3 that every flip has an ‘inverse’, e.g. in 2D, a flip13 followed
by a flip31 does not change the triangulation; in 3D, a flip23 creates a new
tetrahedron that can then be removed with a flip32. Therefore, if x was added
to the triangulation with a sequence [ of flips, simply performing the inverse
flips of [ in reverse order will delete z. The second modification concerns
how the overlap between Voronoi cells with and without the presence of x is
calculated. We show that only some faces of a Voronoi cell (in the following,
a Voronoi face is a (d — 1)-face forming the boundary of the cell, e.g. in 2D
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it is a line and in 3D it is a polygon) are needed to obtain the overlapping
volume.

Given a set of points S in d dimensions, consider interpolating at the
location z. Let T be the DT(S) and p; the natural neighbours of x once it
is inserted in DT(S). The simplex 7 that contains x is known. Our algorithm
proceeds as follow:

1. z is inserted in 7, thus getting 7+ = 7 U {z}, by using flips and the
sequence [ of flips performed is stored in a simple list.

2. the volume of V" is calculated, as well as the volumes of each th .

3. 1 is performed in reverse order and the inverse flip is performed each time.
This deletes z from 7.

4. the volume of V,, are re-calculated to obtain the natural neighbour coor-
dinates of x with respect to all the p;; and Eq. 2 is finally calculated.

To remember the order of flips in two dimensions, a simple list containing the
order in which the p; became natural neighbours of x is kept. The flipl3 adds
three p;, and each subsequent flip22 adds one new p;. In 3D, only a flip23
adds a new p; to x; a flip32 only changes the configuration of the tetrahedra
around x. We store a list of edges that will be used to identify what flip was
performed during the insertion of z. In the case of a flip23, we simply store
the edge zp; that is created by the flip. A flip32 deletes a tetrahedron and
modifies the configuration of the two others such that, after the flip, they are
both incident to z and share a common face abx. We store the edge ab of this
face. Therefore, in two dimensions, to delete z we take one p;, find the two
triangles incident to the edge xp; and perform a flip22. When x has only three
natural neighbours, a flip31 deletes x completely from the 7. In 3D, if the
current edge is xp;, a flip32 is used on the three tetrahedra incident to zp;;
and if ab is the current edge, then a flip23 is performed on the two tetrahedra
sharing the face abx.

4.1 Volume of a Voronoi Cell

The volume of a d-dimensional Voronoi cell is computed by decomposing it
into d-simplices and summing their volumes. The volume of a d-simplex 7 is
easily computed:

1 0 d

Vol(T)—d!’det <'01 1)1)‘ (3)
where v is a d-dimensional vector representing the coordinates of a vertex and
det is the determinant of the matrix. Triangulating a 2D Voronoi cell is easily
performed: since the polygon is convex a fan-shaped triangulation can be done.
In 3D, the polyhedron is triangulated by first fan-shaped triangulating each
of its Voronoi faces, and then the tetrahedra are formed by the triangles and
the generator of the cell.

In order to implement natural neighbour interpolation, we do not need to
know the volume of the Voronoi cells of the p; in 7 and 7, but only the
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difference between the two volumes. As shown in Fig. 2(a), some parts of a
Voronoi cell will not be affected by the insertion of z in 7, and computing
them twice to subtract afterwards is computationally expensive and useless.
Notice that the insertion or deletion of x in a DT modifies only locally the
triangulation—only simplices inside a defined polytope (defined by the p; in
Fig. 2(b)) are modified. Each p; has many edges incident to it, but only the
edges inside the polytope are modified. Therefore, to optimise this step of the
algorithm, we process only the Voronoi faces that are dual to the Delaunay
edges joining two natural neighbours of z. In 7, the Voronoi face dual to the
edge xp; must also be computed. Only the complete volume of the Voronoi
cell of x in 77 needs to be known.

The Voronoi cells of the points in S forming the convex hull of S are
unbounded. That causes problems when a natural neighbour of z is one of
these points because the volume of its Voronoi cell, or parts of it, must be
computed. The simplest solution consists of bounding S with an artificial
(d + 1)-simplex big enough to contain all the points.

4.2 Theoretical Performances

By using a flipping algorithm to insert x in a d-dimensional DT 7, each flip
performed removes one and only one conflicting simplex from 7. For example,
in 3D, the first flipl4 deletes the tetrahedron containing x and adds four
new tetrahedra to 7*; then each subsequent flip23 or flip32 deletes only one
tetrahedron that was present in 7 before the insertion of z. Once a simplex is
deleted after a flip, it is never re-introduced in 7+. The work needed to insert
2 in 7 is therefore proportional to r, the number of simplices in 7 that conflict
with z. As already mentioned, each 2D flip adds a new natural neighbour to
2. The number of flips needed to insert z is therefore proportional to the
degree of x (the number of incident edges) after its insertion. Without any
assumptions on the distribution of the data, the average degree of a vertex
in a 2D DT is 6; which means an average of four flips are needed to insert x
(one flip13 plus three flip22). This is not the case in 3D (a flip32 does not add
a new natural neighbour to x) and it is therefore more complicated to give a
value to r. We can nevertheless affirm that the value of r will be somewhere
between the number of edges and the number of tetrahedra incident to x in
T7; these two values are respectively around 15.5 and 27.1 when points are
distributed according to a Poisson distribution (Okabe et al., 1992). Because
a flip involves a predefined number of adjacent simplices, we assume it is
performed in constant time. As a result, if x conflicts with r simplices in 7
then O(r) time is needed to insert it.

Deleting = from 7+ also requires r flips; but this step is done even faster
than the insertion because operations to test if a simplex is Delaunay are not
needed, nor are tests to determine what flip to perform. The volume of each
Voronoi cell is computed only partly, and this operation is assumed to be done
in constant time. In the natural neighbour interpolation algorithm, if k is the
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degree of x in a d-dimensional DT, then the volume of & Voronoi cells must be
partly computed twice: with and without = in 7. As a conclusion, our natural
neighbour interpolation algorithm has a time complexity of O(r), which is the
same as an algorithm to insert a single point in a Delaunay triangulation.
However, the algorithm is obviously slower by a certain factor since x must be
deleted and parts of the volumes of the Voronoi cells of its natural neighbours
must be computed.

5 Conclusions

Many new technologies to collect information about the Earth have been
developed in recent years and, as a result, more data are available. These
data are usually referenced in two- and three-dimensional space, but so-
called four-dimensional datasets—that is three spatial dimensions plus a time
dimension—are also collected. The GIS, with its powerful integration and spa-
tial analysis tools, seems the perfect platform to manage these data. It started
thirty years ago as a static mapping tool, has recently evolved to three dimen-
sions (Raper, 1989) and is slowly evolving to higher dimensions (Mason et al.,
1994; Raper, 2000). Interpolation is an important operation in a GIS. It is
crucial in the visualisation process (generation of surfaces or contours), for
the conversion of data from one format to another, to identify bad samples in
a dataset or simply to have a better understanding of a dataset. Traditional
interpolation methods, although relatively easy to implement, do not yield
good results, especially when used with datasets having a highly irregular dis-
tribution. In two dimensions, these methods have shortcomings that create
discontinuities in the surface and these shortcomings are amplified in higher
dimensions.

The method detailed in this paper, natural neighbour interpolation, al-
though more complicated to implement, performs well with irregularly dis-
tributed data and is valid in any dimensions. We have presented a simple, yet
efficient, algorithm that is valid in two, three and higher dimensions. We say
‘simple’ because only an incremental algorithm based on flips, with the minor
modifications described, is required to implement our algorithm. We have al-
ready implemented the algorithm in two and three dimensions and we hope
our method will make it possible for the GIS community to take advantage
of natural neighbour interpolation for modelling geoscientific data.
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