
MODELLING OCEANOGRAPHIC DATA WITH THE THREE-DIMENSIONAL
VORONOI DIAGRAM

Hugo Ledoux and Christopher Gold

Dept. Land Surveying & Geo-Informatics, Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

 hugo.ledoux@polyu.edu.hk, christophergold@voronoi.com

KEY WORDS: GIS, Three-dimensional, Modeling, Oceanography, Triangulation, Algorithms, Data Structures, Dynamic

ABSTRACT:

Managing oceanographic data with traditional geographical information systems (GIS) is a difficult task because these systems have
been primarily designed for land-based applications. The main problem is that the nature of objects at sea is completely different
from the nature of objects found on the land: at sea most objects are represented by unconnected points that can have three-
dimensional coordinates, the datasets have 'abnormal' distribution and the objects tend to change position over time. We propose in
this paper using a spatial model based on the three-dimensional Voronoi diagram (VD) to handle topological relationships between
objects. We present the main properties of the 3D VD, algorithms to construct and modify it, and show how some 3D GIS operations
are greatly simplified when a spatial model is built upon it

1. INTRODUCTION

Data collected for marine applications have particular properties
that are usually not present in data collected on the land. First,
because almost no man-made objects are found at sea, the
objects (samples) are mostly represented by unconnected points,
to which some attributes are attached. Second, the samples are
usually collected from a boat, which results in datasets having
highly irregular distribution (samples are distributed according
to each ship's track). Two-dimensional datasets (e.g.
bathymetric samples having x-y coordinates and depth of water)
are very difficult to manage with traditional geographical
information systems (GIS) because their spatial model is built
for two-dimensional land applications and their data structure is
based on the ‘overlays’ as a definition of adjacencies between
objects (Gold and Condal, 1995). Three-dimensional
oceanographic datasets are usually composed of CTD data:
attributes (Conductivity-Temperature-Depth) of the water are
measured with a sensor that is moved through the water column.
A three-dimensional (volumetric) representation of the water is
built with many water columns collected along different ship
tracks. Samplings obtained in such a way are sparse in the
horizontal direction but abundant in the vertical direction. The
integration of such datasets into traditional GIS is problematic
because these systems usually deal only with surfaces and two-
dimensional objects, and, as a result, datasets must often be
‘reduced’ by one dimension (for example by ‘slicing’ it) to be
integrated and analysed. Some solutions exist – using 3D raster
data structures as in the work of Jones (1989), Raper (1989) and
O’Conaill et al. (1992) – but, as shown in Section 4 , they have
shortcomings for oceanographic data. A further important
consideration is that the marine environment is dynamic, which
means that objects are likely to move over time.

The many problems arising when using a traditional GIS for
handling marine data have been described by many researchers
(Davis, 1988; Li, 1993; Lockwood, 1995). Using a spatial
model based on the two-dimensional Voronoi diagram (VD), as
Gold and Condal (1995) propose, solves most of the problems
mentioned earlier. As explained in Section 2, the VD will adapt
naturally to the distribution of the data and its 'tiling' properties
can be used to manage the topological relationships between
unconnected objects. Moreover, unlike the structure of

traditional GIS, the topology can be updated locally. Wright and
Goodchild (1997), in a review, affirmed that this method was
the only published attempt at that time to solve many important
problems related to the nature of marine data. The only problem
not tackled by Gold and Condal is 3D volume-based
representations.

In this paper, we extend the work of Gold and Condal (1995)
and propose using the Voronoi diagram in three dimensions to
handle the topological relationships in oceanographic datasets.
As shown in Section 2, the concepts and properties of the VD
can all be generalized to three dimensions, and, as a result, we
have a spatial model capable of solving most of the problems
we have when dealing with oceanographic data. Although the
concepts easily generalize, their implementations are not
straightforward. For this reason, we discuss in Section 3 the
main construction and modification algorithms, and also
different data structures for storing the VD and its geometric
dual, the Delaunay tetrahedralization (DT). As described in
Section 4, such a spatial model has numerous advantages over
other knows methods. One of them is that many three-
dimensional spatial analysis operations are greatly simplified
and optimised, and we show in Section 5 how some of these
operations, when applied to an oceanographic dataset, can help
us to have a better understanding of it.

2. PROPERTIES OF THE 3D VORONOI DIAGRAM

The Voronoi diagram for a set of points in a given space Rd is
the partitioning of that space into regions such that all locations
within any one region are closer to the generating point than to
any other. In two dimensions, each cell around a data point is a
convex polygon, having a defined number of neighbours; for
example in Figure 1 the point p has 7 neighbouring Voronoi
cells. In three dimensions, a Voronoi cell generalizes to a
convex polyhedron formed by convex faces, as shown in Figure
2. In any dimensions, the VD has a geometric dual structure
called the Delaunay triangulation. In 2D, this structure is
defined by the partitioning of the plane into triangles – where
the vertices of the triangles are the points generating each
Voronoi cell – that satisfy the empty circumcircle test (a circle
is empty when no points is in its interior, but more than three

points can be directly on the circle). The two-dimensional DT is
illustrated in Figure 1 by the dashed lines. The Delaunay
triangulation is popular for modelling surfaces because among
all the possible triangulations of a set of points, it creates one
where the minimum angle in each triangle is maximized
(triangles are as equilateral as possible), thus being useful for
interpolation. The generalization to three dimensions of the
Delaunay triangulation is the Delaunay tetrahedralization: each
triangle becomes a tetrahedron that satisfies the empty
circumsphere rule. The DT is unique for a set of points, except
when there are degenerate cases in the set (if five or more points
are cospherical in 3D). In these cases, an arbitrary choice must
be made among all the possible solutions. The number of
tetrahedra in a DT constructed with n points depends on the
configuration of these points, and can be up to O(n2).

Figure 1. Two-dimensional VD (bold lines) and DT (dashed
lines).

Most of the properties of the 2D VD/DT generalize to 3D,
except that the minimum angle in each Delaunay tetrahedra is
not maximized. There can indeed be almost 'flat' Delaunay
tetrahedra. These tetrahedra, called slivers, have their four
vertices almost lying on a plane and thus have a volume of
nearly zero. For many applications where the Delaunay
tetrahedralization is used, e.g. to perform simulation in
engineering or when the tetrahedra are used to perform
interpolation directly, these tetrahedra are bad and must be
removed. Here, one might wonder why use them if their
properties are not good? First, it should be said that in most
cases the Delaunay tetrahedralization has a tendency to favour
equilateral tetrahedra over slivers. Second, the Voronoi diagram
is not affected by them; the Voronoi cells in 3D will still be
'round' (i.e. relatively spherical) even if the DT has many
slivers. Third, many GIS operations (e.g. spatial analysis
functions) use the properties of the VD, and if only one
tetrahedron is not Delaunay, then the VD is corrupted.

Both the VD and the DT represent the same thing, just from a
different viewpoint. The duality between the two structures in
three dimensions is simple: each polyhedron becomes a point
and each line becomes a face, and vice-versa. For example, a

Figure 2. A Voronoi cell in 3D. The edges are the Delaunay
edges joining the generator to its natural neighbours.

Delaunay tetrahedron becomes a Voronoi vertex (its position is
the centre of the circumsphere around the tetrahedron); a
Delaunay edge becomes a (convex) Voronoi face; and a
Delaunay triangular face becomes an edge spanned by the two
Voronoi vertices that are dual to the two tetrahedra sharing the
face. For example, in Figure 2, the number of edges joining the
generator is equal to the number of faces of the Voronoi cell.

3. 3D VD/DT ALGORITHMS AND DATA
STRUCTURES

As mentioned in the previous section, both the VD and the DT
are geometrically equivalent. By having one structure, its dual
can always be constructed. Because it is easier, from an
algorithmic and data structure point-of-view, to manage
tetrahedra over arbitrary polyhedra (they have a constant
number of vertices and neighbours), we construct, store and
modify a VD by working only on its dual. The VD is extracted
from a DT in O(n) time, n being the number of data points in
the set.

We first describe in this section basic operations needed to
construct and modify a Delaunay tetrahedralization and then
discuss some possible data structures that can be used to
efficiently store the DT and/or the VD.

3.1 Flipping in 3D

A flip is a local topological operation that modifies the
configuration of adjacent tetrahedra in a tetrahedralization. If
we consider five points {a, b, c, d, e} in R3, there exist three
ways to tetrahedralize them: either with two, three or four
tetrahedra, depending on their configuration in space. Figure 3
shows one such configuration: the point e is inside a tetrahedron
abcd. Figure 4 shows the other configuration where the
polyhedron abcde is tetrahedralized with either 2 or 3
tetrahedra. Based on this, we can define different kinds of flips.
A flip14 is the operation that will insert e inside a tetrahedron
abcd (splitting it into 4 tetrahedra), and a flip41 is the inverse
operation that will delete e and merge together the 4 tetrahedra.
A flip23 transforms a tetrahedralization of 2 tetrahedra by one
with 3, and a flip32 is the inverse operation.

Figure 3. Flips 14 and 41.

3.2 Point Location

The point location problem involves finding which tetrahedron
in a DT contains a query point x. This is needed for different
operations, for example to insert a new point in a DT or to
interpolate, as it is explained in Section 5. The method we
describe here, called 'walking', was discussed in the earliest
papers about the construction of triangulations in two
dimensions (Gold et al., 1977; Green and Sibson, 1978).

Figure 4. Flips 23 and 32.

Its generalization to three dimensions is straightforward as the
method uses only the adjacency relationships between the
triangles. The idea is: starting from a given tetrahedron t, we
move to one of its neighbours t1 if the query point x and t1 are on
the same side of the triangular face shared by t and t1. We
continue walking from tetrahedron to tetrahedron until t1 has no
such neighbour, which means that t1 contains x. The method is
simple to implement as only one function – one that determines
if a point is left or right of a plane in 3D – is needed and no
extra storage is required. It is also very efficient in practice, as
Mücke et al. (1999) show.

3.3 Construction Algorithms

Many different algorithms can be used to construct a 3D VD.
One solution, as described in Brown (1979), involves firstly
constructing the convex hull of the set of points in (d + 1)
dimensions – 4D in our case – and then projecting the result
one dimension lower to get the Delaunay tetrahedralization.
Implementations of convex hull algorithms in higher
dimensions are readily available, e.g. Qhull (Barber et al.,
1996). Another solution is using the DeWall algorithm (Cignoni
et al., 1998), which is based on the divide-and-conquer
paradigm. These algorithms might be useful for the construction
of a DT, but local modifications (insertion of a new point,
deletion or movement of one) are either slow and complicated,
or simply impossible.

Algorithms that allow local modifications are called
'incremental insertion algorithms' and they proceed as follow to
construct a DT. Starting from a valid DT, each point of a set is
added one at a time and the tetrahedralization is updated after
each insertion. To insert a single point x in a DT, the following
steps are required. First, the tetrahedron that contains x must be
identified with the point location algorithm described in the
previous section. Then, all the tetrahedra whose circumspheres
contain x must be deleted and replaced by new ones. The first
increment insertion algorithm, valid in any dimensions, was
developed by Watson (1981). His idea is simple: all the
tetrahedra that 'conflict' with x are deleted from the DT and then
the hole thus created is filled by creating edges linking x to
every vertex of the hole (they prove that the new resulting
tetrahedra are guaranteed to be Delaunay). Although the
algorithm is simple to implement, the fact that the
tetrahedralization is temporarily destroyed can corrupt the
algorithm. Field (1986) explains the problems that are
encountered when implementing the method.

Another incremental insertion algorithm, due to Joe (1991), is
numerically more stable because a complete tetrahedralization
is kept during the whole updating process. The conflicting
tetrahedra are deleted and replaced by new ones by a sequence
of flips. The first step is the insertion of x in the tetrahedron that
contains it by using a flip14. The four new tetrahedra are then
added to a stack that will control the sequence of flips to

perform to restore the 'Delaunayness' in the tetrahedralization.
Each tetrahedron on the stack must be tested against its
neighbours, if it is not Delaunay then a flip – a flip23 or a
flip32, depending on the configuration of adjacent tetrahedra –
will destroy some tetrahedra and replace them by other ones
(the new ones are then pushed on the stack). The algorithm
terminates when the stack is empty. The time complexity of this
algorithm, and of Watson’s algorithm, is O(n2) for a set of n
points, not just for the insertion of a single point. This is worst-
case optimal since a DT of n points can theoretically have up to
O(n2) tetrahedra.

3.4 Deletion Algorithms

The deletion of a single vertex in a Delaunay tetrahedralization
is often simply referred to as the ‘inverse of the incremental
insertion algorithm’. Like the insertion operation, it is a local
operation that involves modifying only some adjacent tetrahedra
of a DT. Figure 5 illustrates a two-dimensional example where
the vertex x is deleted from a Delaunay triangulation. Although
the problem appears to be simple, it is a much more difficult
task to implement than the insertion of a point, and very few
algorithms can be found in the literature.

Figure 5. Left: x is the vertex to be deleted in a 2D Delaunay
triangulation. Right: re-triangulation of the polygon.

The most elegant algorithm, which is valid in any dimensions, is
by Devillers (2002). In two dimensions, the method involves
deleting all the triangles incident to the vertex x and re-
triangulating the hole by using a priority queue of the potential
triangles that could be used to fill the hole. Devillers' algorithm
states that the potential triangle having the smallest power – the
power is a geometric function defined in Aurenhammer (1987)
– with respect to x is guaranteed to be Delaunay. Because the
operation is local, the number of edges k incident to a vertex is
usually used to analyse deletion algorithms. Devillers' method
has a time complexity of O(k log k) in two dimensions.
Although possible, the implementation of the algorithm in 3D
requires many modifications to handle the degenerate cases,
and, to our knowledge, has not been implemented yet. Because
the number of tetrahedra present in a Delaunay
tetrahedralization of n points varies depending on the
configuration of the points, the time complexity of the method
in 3D is O(t log k), where t is the number of tetrahedra needed
to fill the hole. A simpler solution involves keeping a list of all
potential tetrahedra and testing (Delaunay empty circumsphere
test) them against each vertex forming the hole. The resulting
algorithm is slower – a time complexity of O(t k) – and an
implementation can be found in CGAL (Devillers and Teillaud,
2003).

However, these methods temporarily destroy the
tetrahedralization and some problems can arise. For this reason,
we have developed a method that uses the flips described in
Section 3.1 and an algorithm similar to the one implemented in
CGAL. The methods works fine for most cases and we are
currently working on making it fully robust for all the
degenerate cases.

3.5 Movement of Points

When a point is continually moving over time, it makes no
sense to continually insert, delete and re-insert it again
somewhere else, because it is a costly operation. Instead, it can
simply be moved and the topological relationships locally
updated when it is needed. Roos (1991) and Gold (1991) detail
a method that uses flipping to update the adjacency
relationships of a 2D Delaunay triangulation as one vertex is
moving over time. The movement of only one vertex to another
location involves updating, by flips, all the topological
relationships that will be modified from the starting point to the
end point. If the location of the point is just slightly changed,
the topological relationships will probably not need to be
updated, but as soon as the moving point enters or leaves the
circumcircle of a neighbouring triangle, a flip must be
performed.

These ideas generalize to three dimensions, although, to our
knowledge, no implementation is known. We are also currently
working on implementing the method by using flip23 and flip32
to update the DT as one vertex is moving.

3.6 Possible Data Structures

When choosing a data structure to store a Delaunay
tetrahedralization (or a Voronoi diagram), there is a trade-off
between the size of the data structure and the topological
relationships stored. For example, a very simple data structure
means that when some operations are performed more work will
have to be made (e.g. to retrieve the boundaries of Voronoi
cells), while a data structure where the DT and its dual are both
stored will speed up the use of these operations.
The simplest data structure to store the DT is the tetrahedron-
based data structure where each record represents a tetrahedron
with four pointers to its vertices and four pointers to its
neighbouring tetrahedra. Many implementations of the DT (e.g.
CGAL) use this data structure because it is simple and yields a
fast construction. However, in our case, the VD will be needed
for many spatial analysis functions and storing both might be
advantageous. One solution is using the facet-edge structure
(Dobkin and Laszlo, 1989), which stores symmetrically both the
primal and dual of a three-dimensional subdivisions. As it name
implies, the 'atom' of the structure is a pair of an edge and a face
and operators to navigate from edges to edges on a same face or
to visit all the faces incident to a given edge are available.
Construction operators are also available. Although this
solution seems attractive, it has been found difficult to
implement in practice and, to our knowledge, has not been used
for 'real projects'.

We are currently working on a simpler data structure, the
'augmented quad-edge', that also stores symmetrically the
primal and dual 3D subdivisions. It uses the popular quad-edge
structure (Guibas and Stolfi, 1985) originally developed for 2D
subdivisions to store individually each cell (tetrahedron or
Voronoi cell). The cells are linked together by the dual edge to
the face shared by the two cells. The data structure is very
simple to implement as only the quad-edge operators with
minor modifications are needed to construct and modify the DT
and the VD at the same time. The major limitation of this data
structure is its high storage requirements.

4. VORONOI DIAGRAM AS A SPATIAL MODEL

Two-dimensional GIS's vector-based representations describe
individually each object with geometric primitives, usually

points, lines and polygons. The structure of these systems is
based on the 'overlays', i.e. that the topology between objects is
based on the intersection of lines, and, moreover, the building
of this topology is a global process that needs to be done each
time there is a modification on the map. The vectorial
representation has also been extended to 3D, for example by
Molenaar (1992), but the same 'problems' are present.
Modelling three-dimensional oceanographic data with such a
spatial model is obviously impossible because, firstly, the
definition of topology is not appropriate, and secondly, the
movement of objects is almost impossible.

The other spatial model used in the GIS and 3D modelling
systems is the raster representation. Such a spatial model
divides the space into regular cells that are usually squares in
2D and cubes in 3D (this is also called a voxel representation).
The raster representation is particularly useful to represent
fields or continuous phenomena because cells cover the whole
space. Although being a popular representation in geosciences
because the model gives a simple definition of spatial
relationships, it cannot represent each object individually (the
original data are 'lost' when converting them to raster) and the
volume of data can become enormous if one wants to have a
fine resolution, especially in 3D. To overcome the latter
problem, the octree (Samet, 1990), where voxels are indexed
and merged together to save space, can be used.

A spatial model for oceanographic data should ideally be able to
represent both discrete objects and continuous phenomena. The
Voronoi diagram has properties from both the vector and the
raster spatial models: each individual object can be represented,
and the ‘tiling’ properties give a definition of adjacency even
for unconnected objects (each point generates one cell and this
cell has some neighbours). Field-type data can be represented
by assigning an attribute value to each Voronoi cell. There are
several reasons for using a spatial model based on the Voronoi
diagram over other models:
1. This is an adaptive method, i.e. the size of the cells depends

on the distribution of the data points.
2. This is an automatic method that does not need user-defined

parameters to be constructed.
3. Original data are kept and not ‘lost’, as is the case with

raster representation.
4. By using the dual of the VD, the Delaunay

tetrahedralization, the rendering is optimised since
triangular elements are the primitives of choice for most
graphics packages and video cards.

5. Local updates to the model are possible.

5. 3D SPATIAL ANALYSIS FUNCTIONS AND
APPLICATIONS

Once the VD/DT is built, many spatial analysis operations are
possible and even simplified. This section gives some examples
of these.

5.1 Spatial Interpolation with the VD

Interpolation methods are used to estimate the value of an
attribute at unsampled locations. They are required to model,
visualise and better understand a dataset, and also to convert a
dataset to another format (e.g. from scattered data to voxels).
Traditional GIS interpolation methods (e.g. distance-based and
triangle-based methods) can be generalized to 3D but they have
many flaws when dealing with datasets having a highly irregular
distribution. These flaws are caused by the fact that these
methods do not consider the configuration of the data. It has

been shown that natural neighbour interpolation (Sibson, 1981)
avoids most of the problem of traditional methods and performs
well for irregularly distributed data (Gold, 1989; Watson,
1992). This is a method entirely based on the Voronoi diagram
for both selecting the neighbours and assigning a weight to each
of them; and it is valid in any dimensions. To interpolate at
location x in 3D, a temporary point x must be inserted into the
VD. The neighbours involved in the interpolation process are
the neighbours of x, and the weight of each is defined by the
volume that the Voronoi cell of x steals from the Voronoi cell
of the neighbour in the absence of x.

Although the method has been implemented with success for
2D applications (Watson, 1992), its use in 3D is quite limited
because its implementation is a complicated process that
requires the computation of two VD – one with x and another
one without – and also of the volume of Voronoi cells. An
algorithm that uses flipping and an incremental insertion
algorithm, as described in Sections 3.1 and 3.3, has recently
been developed by the authors of this paper (Ledoux and Gold,
2004). The algorithm is efficient (its time complexity is the
same as the one for inserting a single point in a VD/DT) and we
believe it to be considerably simpler to implement than other
known methods, as only an incremental algorithm based on
flips, with some minor modifications, is needed.

5.2 Extraction of Iso-Surfaces

It is notorious that three-dimensional data are very difficult to
visualise, even within a 3D environment that offers translation,
rotation and zoom functions. One of the best ways to better
understand a dataset is to extract and visualise in 3D an iso-
surface from it. An iso-surface (see Figure 6), also called an
implicit surface, is the three-dimensional analogous concept of
an iso-contour line in two dimensions: it represents the space
where the attribute of a dataset has the same value. The most
common algorithm to extract iso-surfaces, called marching
cubes (Lorensen and Cline, 1987), was designed to work with a
voxel input only. This algorithm can nevertheless be easily
rewritten to work with a set of adjacent tetrahedra instead of
cubes: each tetrahedron of a DT is visited and the intersections
between the implicit surface and each edge of the tetrahedron
are computed by linear interpolation. There are three possible
cases for each tetrahedron: no intersection; three edges intersect
and therefore a triangular face of the implicit surface is created;
or four intersections, in that case two triangular faces must be
created. The resulting implicit surface is formed of many
adjacent, but topologically unconnected, triangular faces, which
is ideal for fast rendering.

With the new techniques developed in recent years in computer
graphics, it is possible to draw many iso-surfaces and view them
all by using 'transparency' techniques, by assigning different
colours to each, by 'peeling off' surfaces and by navigating
inside and outside to see the shape. Visualisation therefore
plays an important role in understanding a dataset, as it
becomes a form of qualitative spatial analysis. Head et al.
(1997) give more examples of how visualisation can help to
better understand an oceanographic dataset.

5.3 Temporal Data and Real-Time Applications

The VD permits insertion, deletion and movement of objects
with local modifications only; thus every operation is reversible.
As shown in Gold (1996), by simply keeping a 'log file' of every
operation done it is possible to rebuild each topological state of
a map, at any time. This solves a big problem with temporal

Figure 6. Example of an iso-surface extracted from 3D data
points.

data and GIS, and it is valid both in 2D and 3D. There is no
need to keep various 'snapshots' on the data at different time for
further analysis: when a map a at specific time is desired, it is
reconstructed from the original data from the log file. A map
can also be viewed like a 'movie' of the changes during a certain
period of time with for example boats and water moving.

This spatial model also permits 'real-time' applications, i.e. as
data are collected at sea, they can be quickly processed and
added to the system for analysis, without rebuilding the whole
topological relationships. This permits us to directly evaluate at
sea the quality of a survey done and to correct mistakes or add
new data while the boat is still near the site. Hatcher and Maher
(1999) present more examples of real-time GIS applications at
sea.

6. DISCUSSION

The main objective of our research is to build a complete spatial
model to manage and analyse oceanographic data. We have
presented the main properties of the 3D Voronoi
diagram/Delaunay tetrahedralization and showed that it can
indeed solve most of the problems arising when other methods
are used. We have already implemented many construction and
modification operators and we are planning to implement all the
algorithms discussed in this paper. We have also developed
some 3D spatial analysis functions and are currently working on
building a more complete list. Finally, the results of this
research are not only limited to oceanographic data, as the
needs for modelling these data are similar to the needs in other
fields, such as geology and atmospheric sciences.

7. ACKNOWLEDGEMENTS

The first author would like to thank the support from Hong
Kong’s Research Grants Council through a research
studentship. The second author acknowledges the Research
Grants Council, Hong Kong, project PolyU 5068/00E for the
support of this research.

8. REFERENCES

Aurenhammer, F., 1987. Power diagrams: properties,
algorithms and applications. SIAM J. Comput., 16: 78-96.

Barber, C.B., Dobkin, D.P. and Huhdanpaa, H.T., 1996. The
Quickhull algorithm for convex hulls. ACM Transactions on
Mathematical Software, 22(4): 469-483.

Brown, K.Q., 1979. Voronoi diagrams from convex hulls.
Information Processing Letters, 9(5): 223-228.

Cignoni, P., Montani, C. and Scopigno, R., 1998. DeWall: a
fast divide & conquer Delaunay triangulation algorithm in Ed.
Computer-Aided Design, 30(5): 333-341.

Davis, B.E. and Davis, P.E., 1988. Marine GIS: Concepts and
Considerations, Proc. GIS/LIS '88, Falls Church, VA, USA.

Devillers, O., 2002. On Deletion in Delaunay Triangulations.
International Journal of Computational Geometry and
Applications, 12(3): 193-205.

Devillers, O. and Teillaud, M., 2003. Perturbations and Vertex
Removal in a 3D Delaunay Triangulation, Proc. 14th ACM-
SIAM Symp. Discrete Algorithms (SODA), Baltimore, MD,
USA, pp. 313-319.

Dobkin, D.P. and Laszlo, M.J., 1989. Primitives for the
Manipulation of Three-Dimensional Subdivisions.
Algorithmica, 4: 3-32.

Field, D.A., 1986. Implementing Watson's algorithm in three
dimensions, Proc. 2nd Annual Symp. Computational Geometry.
ACM Press, Yorktown Heights, New York, USA.

Gold, C.M., 1989. Surface Interpolation, spatial adjacency and
GIS. In: J. Raper (Ed.), Three Dimensional Applications in
Geographic Information Systems. Taylor & Francis, pp. 21-35.

Gold, C.M., 1991. Problems with Handling Spatial Data – the
Voronoi Approach. CISM Journal, 45(1): 65-80.

Gold, C.M., 1996. An Event-Driven Approach to Spatio-
Temporal Mapping. Geomatica, Journal of the Canadian
Institute of Geomatics, 50(4): 415-424.

Gold, C.M., Charters, T.D. and Ramsden, J., 1977. Automated
contour mapping using triangular element data structures and an
interpolant over each triangular domain. In: J. George (Editor),
Proc. Siggraph '77. Computer Graphics, pp. 170-175.

Gold, C.M. and Condal, A.R., 1995. A Spatial Data Structure
Integrating GIS and Simulation in a Marine Environment.
Marine Geodesy, 18: 213-228.

Green, P.J. and Sibson, R., 1978. Computing Dirichlet
tessellations in the plane. The Computer Journal, 21(2): 168-
173.

Guibas, L.J. and Stolfi, J., 1985. Primitives for the
Manipulation of General Subdivisions and the Computation of
Voronoi Diagrams. ACM Transactions on Graphics, 4: 74-123.

Hatcher, G.A.J. and Maher, N., 1999. Real-time GIS for Marine
Applications. In: D.J. Wright and D. Bartlett (Eds), Marine and
Coastal Geographic Information Systems. Taylor & Francis,
London, pp. 137-147.

Head, M.E.M., Luong, P., Costolo, J.H., Countryman, K. and
Szczechowski, C., 1997. Applications of 3-D visualizations of
oceanographic data bases, Proc. Oceans '97-MTS/IEEE, pp.
1210-1215.

Joe, B., 1991. Construction of three-dimensional Delaunay
triangulations using local transformations. Computer Aided
Geometric Design, 8: 123-142.

Jones, C.B., 1989. Data structures for three-dimensional spatial
information systems in geology. International Journal of
Geographic Information Systems, 3(1): 15-31.

Lorensen, W.E. and Cline, H.E., 1987. Marching Cubes: A
High Resolution 3D Surface Construction Algorithm.
Computer Graphics, 4: 163-168.

Ledoux, H. and Gold, C.M., 2004. An Efficient Natural
Neighbour Interpolation Algorithm for Geoscientific Modelling,
Proc. 11th Int. Symp. Spatial Data Handling (23-25 August
2004), Leicester, UK. to appear.

Li, R. and Saxena, N.K., 1993. Development of an Integrated
Marine Geographic Information System. Marine Geodesy, 16:
293-307.

Lockwood, M. and Li, R., 1995. Marine Geographic
Information Systems – What Sets Them Apart? Marine
Geodesy, 18: 157-159.

Molenaar, M., 1992. A topology for 3D vector maps. ITC
Journal, 1: 25-33.

Mücke, E.P., Saias, I. and Zhu, B., 1999. Fast randomized point
location without preprocessing in two- and three-dimensional
Delaunay triangulations. Computational Geometry, 12: 63-83.

O'Conaill, M.A., Bell, S.B.M. and Mason, N.C., 1992.
Developing a prototype 4D GIS on a transputer array. ITC
Journal, 1992(1): 47-54.

Raper, J., (Ed.) 1989. Three Dimensional Applications in
Geographic Information Systems. Taylor & Francis, London.

Roos, T., 1991. Dynamic Voronoi diagrams, Universität
Würzburg, Germany.

Samet, H., 1990. The Design and Analysis of Spatial Data
Structures. Addison-Wesley Publishing Company, Reading,
Massachusetts, USA, 493 pp.

Sibson, R., 1981. A brief description of natural neighbour
interpolation. In: V. Barnett (Editor), Interpreting Multivariate
Data. Wiley, New York, USA, pp. 21-36.

Watson, D.F., 1981. Computing the n-dimensional Delaunay
tessellation with application to Voronoi polytopes. The
Computer Journal, 24(2): 167-172.

Watson, D.F., 1992. Contouring: A Guide to the Analysis and
Display of Spatial Data. Pergamon Press, Oxford, UK.

Wright, D.J. and Goodchild, M.F., 1997. Data from the Deep:
Implications for the GIS Community. The International Journal
of Geographical Information Science, 11(6): 523-528.

