Documentation for fieldgml

Complex Type: CircleType

[Table of contents]

Super-types: AbstractCurveSegmentType < ArcStringType (by extension) < ArcType (by restriction) < CircleType (by extension)
Sub-types: None
Name CircleType
Abstract no
Documentation A Circle is an arc whose ends coincide to form a simple closed loop. The "start" and "end" bearing are equal and shall be the bearing for the first controlPoint listed. The three control points must be distinct non-co-linear points for the Circle to be unambiguously defined. The arc is simply extended past the third control point until the first control point is encountered.
XML Instance Representation
<...
numDerivativesAtStart="integer [0..1]

'The attribute \"numDerivativesAtStart\" specifies the type of continuity between this curve segment and its predecessor. If this is the first curve segment in the curve, one of these values, as appropriate, is ignored. The default value of \"0\" means simple continuity, which is a mandatory minimum level of continuity. This level is referred to as \"C 0 \" in mathematical texts. A value of 1 means that the function and its first derivative are continuous at the appropriate end point: \"C 1 \" continuity. A value of \"n\" for any integer means the function and its first n derivatives are continuous: \"C n \" continuity. NOTE: Use of these values is only appropriate when the basic curve definition is an underdetermined system. For example, line string segments cannot support continuity above C 0 , since there is no spare control parameter to adjust the incoming angle at the end points of the segment. Spline functions on the other hand often have extra degrees of freedom on end segments that allow them to adjust the values of the derivatives to support C 1 or higher continuity.'

"

numDerivativesAtEnd="integer [0..1]

'The attribute \"numDerivativesAtEnd\" specifies the type of continuity between this curve segment and its successor. If this is the last curve segment in the curve, one of these values, as appropriate, is ignored. The default value of \"0\" means simple continuity, which is a mandatory minimum level of continuity. This level is referred to as \"C 0 \" in mathematical texts. A value of 1 means that the function and its first derivative are continuous at the appropriate end point: \"C 1 \" continuity. A value of \"n\" for any integer means the function and its first n derivatives are continuous: \"C n \" continuity. NOTE: Use of these values is only appropriate when the basic curve definition is an underdetermined system. For example, line string segments cannot support continuity above C 0 , since there is no spare control parameter to adjust the incoming angle at the end points of the segment. Spline functions on the other hand often have extra degrees of freedom on end segments that allow them to adjust the values of the derivatives to support C 1 or higher continuity.'

"

numDerivativeInterior="integer [0..1]

'The attribute \"numDerivativesInterior\" specifies the type of continuity that is guaranteed interior to the curve. The default value of \"0\" means simple continuity, which is a mandatory minimum level of continuity. This level is referred to as \"C 0 \" in mathematical texts. A value of 1 means that the function and its first derivative are continuous at the appropriate end point: \"C 1 \" continuity. A value of \"n\" for any integer means the function and its first n derivatives are continuous: \"C n \" continuity. NOTE: Use of these values is only appropriate when the basic curve definition is an underdetermined system. For example, line string segments cannot support continuity above C 0 , since there is no spare control parameter to adjust the incoming angle at the end points of the segment. Spline functions on the other hand often have extra degrees of freedom on end segments that allow them to adjust the values of the derivatives to support C 1 or higher continuity.'

"

interpolation="circularArc3Points [0..1]

'The attribute \"interpolation\" specifies the curve interpolation mechanism used for this segment. This mechanism uses the control points and control parameters to determine the position of this curve segment. For an ArcString the interpolation is fixed as \"circularArc3Points\".'

"

numArc="1 [0..1]

'An arc is an arc string consiting of a single arc, the attribute is fixed to \"1\".'

"
>
Start Choice [1]

'GML supports two different ways to specify the control points of a curve segment. 1. A sequence of \"pos\" (DirectPositionType) or \"pointProperty\" (PointPropertyType) elements. \"pos\" elements are control points that are only part of this curve segment, \"pointProperty\" elements contain a point that may be referenced from other geometry elements or reference another point defined outside of this curve segment (reuse of existing points). 2. The \"posList\" element allows for a compact way to specifiy the coordinates of the control points, if all control points are in the same coordinate reference systems and belong to this curve segment only. The number of direct positions in the list must be three.'


Start Choice [3..3]
<gml:pos> ... </gml:pos> [1]
<gml:pointRep> ... </gml:pointRep> [1]

'Deprecated with GML version 3.1.0. Use \"pointProperty\" instead. Included for backwards compatibility with GML 3.0.0.'

End Choice
<gml:posList> ... </gml:posList> [1]
<gml:coordinates> ... </gml:coordinates> [1]

'Deprecated with GML version 3.1.0. Use \"posList\" instead.'

End Choice
</...>
Diagram
h-18810745
Schema Component Representation
<complexType name="CircleType">
<complexContent>
<extension base=" gml:ArcType "/>
</complexContent>
</complexType>