
UML class diagrams in a nutshell

Giorgio Agugiaro

Last update: 31 December 2024

2

License

This presentation is licensed under the Creative Commons License CC
BY-NC-SA 4.0. According to CC BY-NC-SA 4.0 permission is granted to
share this document, i.e. copy and redistribute the material in any
medium or format, and to adapt it, i.e. remix, transform, and build
upon the material under the following conditions:

• Attribution: You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

• NonCommercial: You may not use the material for commercial purposes.
• ShareAlike: If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.
• No additional restrictions: You may not apply legal terms or technological measures that legally

restrict others from doing anything the license permits.

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

UML in a nutshell

3

UML stands for Unified Modelling Language and is a general-purpose,
development modelling language in the field of software engineering
that is intended to provide a standard way to visualise the design of
a system.

When working with class diagrams, three are the main items to look for:

• Classes ("what?")

– Attributes

– Methods (not treated in these slides)

• Multiplicity ("how many?")

• Relations ("how do classes relate to each other?")

Intro

Classes

Relations

Packages

Namespaces

UML in a nutshell

4

Intro

Classes

Relations

Packages

Namespaces

"has"

This is a simple way of reading
such a relation, e.g. "Class 1 has
Class 2". Alternatively, it is
explicitly indicated by the "Role"
word, always written near the
target.

Association multiplicity

Association between classes

Class inheritance (subtyping)

"is a (subclass of)"

"is a (superclass of)"

UML in a nutshell

5

Aggregation represents a weak form of "has-a" or
"whole/part" relationship between the aggregate
(the whole) and its parts.
• The life cycle of the parts is not tightly coupled to the

life cycle of the aggregate. If the aggregate is
destroyed, its parts can continue to exist

• The contained objects can be part of multiple
aggregates

Composition represents a strong form of the
"has-a" or "whole/part" relationship,
characterized by a strong ownership and a
coincidental lifecycle between the whole and its
parts.
• The whole is responsible for the creation and

destruction of its parts. The lifecycles of the parts are
tightly coupled with the lifecycle of the whole.

• Each part is contained in only one whole at a time and
cannot be shared among multiple wholes

Intro

Classes

Relations

Packages

Namespaces

"consists of"

Aggregation between classes

Composition between classes

"is part of"

"consists of"

"is part of"

(Empty diamond!)

(Full diamond!)

UML in a nutshell

6

• Examples of composition (left) and aggregation (right) between classes

Intro

Classes

Relations

Packages

Namespaces

Image source: Adapted from https://i.sstatic.net/WC2eJ.png

https://i.sstatic.net/WC2eJ.png

7

explained with...

Class

8

Intro

Classes

Relations

Packages

Namespaces

Objects
(Instances of the class)

FYI: This a Lego "stud"

9

Intro

Classes

Relations

Packages

Namespaces

Attributes /
Properties Multiplicity

Attributes / Properties type:
Can have a simple or
complex structure.
E.g. length = double (for the
value) + CharacterString (for
the Unit of Measure)

Enumerations contain
closed sets of possible
values
(Codelists contain open sets
of possible values)

10

Intro

Classes

Relations

Packages

Namespaces

How to represent in UML that Lego does not
produce only bricks, but also other elements?

11

Intro

Classes

Relations

Packages

Namespaces

12

Intro

Classes

Relations

Packages

Namespaces

We can simply add another
class. However, the two
classes share some
properties.

Is there a more elegant way
to model them?

13

Intro

Classes

Relations

Packages

Namespaces

Relation: "is a (subclass of)“
(Generalisation)

An abstract class
cannot be

instantiated

These child classes
inherit all properties
of the parent class

14

Intro

Classes

Relations

Packages

Namespaces

How to represent in UML that:
1) a Lego model (e.g. a house) is made of Lego

bricks, and
2) a set of building instructions is generally also

included when you buy it?

15

Intro

Classes

Relations

Packages

Namespaces

Relation:
"is a component of”

(Aggregation)

Directed association

Role name

Multiplicity

16

Intro

Classes

Relations

Packages

Namespaces

Finally, wow to represent in
UML that the bricks and the
building instructions are
contained in a box?

17

Intro

Classes

Relations

Packages

Namespaces

A package groups elements that belong together.
It also provides a namespace for the grouped elements.
A namespace is required to avoid name collisions

Namespaces

18

• Imagine that we are modelling class "EARTH".

• Look at these are 3 examples of different meanings of the word "earth": if we create 3
classes, all called "Earth", we (or the computer) may not know anymore what is
what...

Intro

Classes

Relations

Packages

Namespaces

Planet Soil Electrical engineering

Images source: Wikipedia (starting from https://en.wikipedia.org/wiki/Earth_(disambiguation))

https://en.wikipedia.org/wiki/Earth_(disambiguation)

Namespaces

19

• Hence, we need a namespace!!

• You can think of a namespace as a sort of "surname" for a person. It helps reducing
the cases of confusion with two or more people with the same name...

• So, we may end up with:

– Astronomy:Earth

– Geology:Earth

– Electricity:Earth

Intro

Classes

Relations

Packages

Namespaces

h
tt

p
s:

//
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/

Ea
rt

h
_(

d
is

am
b

ig
u

at
io

n
)

https://en.wikipedia.org/wiki/Earth_(disambiguation)

Namespaces

20

• In UML, the concept of package is used to represent the namespace

• All classes within the same package are intended to belong together and share some
common characteristics

• In the case of class earth example, you'd need three different packages in order to
separate the 3 different earth classes and avoid semantic misunderstanding

• In CityGML, for example, there are several packages. The one called "Building"
contains all classes to model a building, the one called "Terrain" contains all classes to
model a digital representation of the terrain, etc.

Intro

Classes

Relations

Packages

Namespaces

Namespaces

21

• In an XML document, the definition of the namespaces is given in the header, using
the tag xmlns (stands for... xml namespace ☺)

• For classes (and their properties/attributes) it is then indicated before the name using
a ":" (colon) as separator

Intro

Classes

Relations

Packages

Namespaces

Thank you for your attention!

22

Dr. Giorgio Agugiaro
g.agugiaro@tudelft.nl
3D Geoinformation Group
TU Delft
The Netherlands
https://3d.bk.tudelft.nl/gagugiaro

mailto:g.agugiaro@tudelft.nl
https://3d.bk.tudelft.nl/gagugiaro

	Slide 1: UML class diagrams in a nutshell
	Slide 2: License
	Slide 3: UML in a nutshell
	Slide 4: UML in a nutshell
	Slide 5: UML in a nutshell
	Slide 6: UML in a nutshell
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Namespaces
	Slide 19: Namespaces
	Slide 20: Namespaces
	Slide 21: Namespaces
	Slide 22: Thank you for your attention!

