
3DCityDB extension for the
CityGML Energy ADE 0.8

(PostgreSQL version)

Giorgio Agugiaro

23 May 2017

7th CityGML Energy ADE Workshop, Grenoble, France

giorgio.agugiaro@ait.ac.at

Smart Cities and Regions Research Field

Center for Energy

AIT - Austrian Institute of Technology

Vienna, Austria

mailto:giorgio.agugiaro@ait.ac.at

Motivation & goals

▪ The CityGML Energy ADE has reached an acceptable level of maturity

▪ Growing demand for an ADE-aware DB solution (not only Energy ADE!)

▪ Work in progress by the 3DCityDB development team

• Automatic mapping from OO to ER model

• Automatic generation of DB schema

• Extension of the Importer/Exporter

• …

• All these fantastic goodies for any ADE!

• BUT: it will take time till it is ready

▪ So far, lack of existing DB implementations for the Energy ADE:

▪ partial AND/OR

▪ non-open AND/OR

▪ poorly or not documented at all

Motivation & goals

▪ Implementation of the Energy ADE for PostgreSQL

▪ (Manual) mapping from OO to ER

▪ Complete implementation (for PostgreSQL) of v. 0.8

▪ Particular care of documentation

▪ Released soon under to Apache 2.0 license

▪ Gather experience on how to extend to 3DCityDB

▪ Offer a shared starting point to collect feedback, experiences, suggestions…

▪ Contribute to foster adoption and further development of the Energy ADE

Design criteria (excerpt)

▪ Build upon the existing objects of the 3DCityDB… but keep the original

("vanilla") untouched (for the sake of the Importer/Exporter)

▪ Define a non-concurrent way of extending the 3DCityDB with any ADEs

(e.g. Energy ADE + UtilityNetwork ADE)

▪ Stay close to the original “style” of the 3DCityDB when it comes to tables,

constraints, naming conventions, data types, etc.

▪ Possibly keep the number of new tables in check

▪ Implementation for PostgreSQL, but avoid potential technology lock-ins for

future conversions to other DBs (as far as possible)

Implementation steps

▪ Define and agree upon rules to make the 3DCityDB "ADE-compatible"

▪ Enable to "register" any ADE

• Add a metadata module

• Add functions to help installing/removing an ADE

Implementation steps

▪ Define and agree upon rules to make the 3DCityDB "ADE-compatible"

▪ Enable to "register" any ADE

• Add a metadata module

• Add functions to help installing/removing an ADE

▪ Define rules how to map ADE-classes to new/existing tables

• Adopt naming convention for new DB entities

Implementation steps

▪ Define and agree upon rules to make the 3DCityDB "ADE-compatible"

▪ Enable to "register" any ADE

• Add a metadata module

• Add functions to help installing/removing an ADE

▪ Define rules how to map ADE-classes to new/existing tables

• Adopt naming convention for new DB entities

▪ Add an ADE-hook mechanism to certain existing functions. E.g.:

• delete_building() → must work also with ADE-AbstractBuilding

• delete_cityobject() → must work also with new CityObjects

• delete_cityobjectgroup() → must work also with new CityObjects

• get_envelope_cityobject() → same as above

Implementation steps

▪ Define and agree upon rules to make the 3DCityDB "ADE-compatible"

▪ Enable to "register" any ADE

• Add a metadata module

• Add functions to help installing/removing an ADE

▪ Define rules how to map ADE-classes to new/existing tables

• Adopt naming convention for new DB entities

▪ Add an ADE-hook mechanism to certain existing functions. E.g.:

• delete_building() → must work also with ADE-AbstractBuilding

• delete_cityobject() → must work also with new CityObjects

• delete_cityobjectgroup() → must work also with new CityObjects

• get_envelope_cityobject() → same as above

▪ (Enable/extend existing tools to be ADE-compatible: citygml4j,

Importer/Exporter, etc.)

▪ All rules are agreed upon within the 3DCityDB development team and are

being implemented for the next 3DCityDB release

Implementation steps

▪ Define and agree upon rules to make the 3DCityDB "ADE-compatible"

▪ Enable to "register" any ADE

• Add a metadata module

• Add functions to help installing/removing an ADE

▪ Define rules how to map ADE-classes to new/existing tables

• Adopt naming convention for new DB entities

▪ Add an ADE-hook mechanism to certain existing functions. E.g.:

• delete_building() → must work also with ADE-AbstractBuilding

• delete_cityobject() → must work also with new CityObjects

• delete_cityobjectgroup() → must work also with new CityObjects

• get_envelope_cityobject() → same as above

▪ (Enable/extend existing tools to be ADE-compatible: citygml4j,

Importer/Exporter, etc.)

▪ All rules are agreed upon within the 3DCityDB development team and are

being implemented for the next 3DCityDB release

Metadata module

(as of 22 May 2017)

Image source: Courtesy of Z. Yao, TU München

TABLE

"SCHEMA"

TABLE

"ADE"

TABLE

"OBJECTCLASS"

TABLE "ADE"
TABLE "SCHEMA"

TABLE

"OBJECTCLASS"

Implementation steps

▪ Define and agree upon rules to make the 3DCityDB "ADE-compatible"

▪ Enable to "register" any ADE

• Add a metadata module

• Add functions to help installing/removing an ADE

▪ Define rules how to map ADE-classes to new/existing tables

• Adopt naming convention for new DB entities

▪ Add an ADE-hook mechanism to certain existing functions. E.g.:

• delete_building() → must work also with ADE-AbstractBuilding

• delete_cityobject() → must work also with new CityObjects

• delete_cityobjectgroup() → must work also with new CityObjects

• get_envelope_cityobject() → same as above

▪ (Enable/extend existing tools to be ADE-compatible: citygml4j,

Importer/Exporter, etc.)

▪ All rules are agreed upon within the 3DCityDB development team and are

being implemented for the next 3DCityDB release

Mapping rules (excerpt)

▪ New tables: db_prefix + table_name

▪ E.g Thermal_Zone -> NRG_THERMAL_ZONE

Mapping rules (excerpt)

▪ New tables: db_prefix + table_name

▪ With classes != CityObject, create own tables

▪ Example 1: Timeseries, Schedule:

• NRG_TIME_SERIES, NRG_SCHEDULE

▪ Example 2: Features (e.g. EnergyDemand, Occupants, Construction)

• NRG_ENERGY_DEMAND, NRG_OCCUPANTS,

NRG_CONSTRUCTION

TABLE

NRG_TIME_SERIES

TABLE

NRG_TIME_SERIES_FILE

TABLE TIME_SERIES

TABLE TIME_SERIES_FILE

Mapping rules (excerpt)

▪ New tables: db_prefix + table_name

▪ With classes != CityObject, create own tables

▪ With "simple" ADE CityObjects, start from table CITYOBJECT and store the

remaining attributes in another linked table

▪ E.g. EnergyConversionSystem → CITYOBJECT + NRG_CONV_SYSTEM

▪ Same approach as in the vanilla 3DCityDB

Mapping rules (excerpt)

▪ New tables: db_prefix + table_name

▪ With classes != CityObject, create own tables

▪ With "simple" ADE CityObjects, start from table CITYOBJECT and store the

remaining attributes in another linked table

▪ With "complex" ADE CityObjects, same as before + FK to referenced objects

▪ E.g. UsageZone -> CITYOBJECT + USAGE_ZONE

+ FK to SCHEDULE

+ FK to SURF_GEOMETRY

Mapping rules (excerpt)

▪ New tables: db_prefix + table_name

▪ With classes != CityObject, create own tables

▪ With "simple" ADE CityObjects, start from table CITYOBJECT and store the

remaining attributes in another linked table

▪ With "complex" ADE CityObjects, same as before + FK to referenced objects

▪ With ADE-extended CityObjects, same as before + FK to referenced objects

▪ E.g. ADE AbstractBuilding -> CITYOBJECT + BUILDING + NRG_BUILDING

+ FK to THERMAL_ZONE

+ FK to ….

+ FK to SURF_GEOMETRY

Mapping rules (excerpt)

▪ Example: ADE-AbstractBuilding

CITYOBJECT + BUILDING + NRG_BUILDING

<- EXT_REF <- ROOM <- THERMAL_ZONE

<- GEN_ATTR … <- USAGE_ZONE

<- GENERALIZATION ...

<- ENERGY_CONV_SYSTEM

<- WEATHER_DATA

<- TIMESERIES

Mapping rules (excerpt)

▪ In case of 1:n and m:n relations between ADE and vanilla CityGML

objects, use an association table instead of a new column in a vanilla table

▪ Example 1: ThermalOpening to _Opening

▪ Example 2: ThermalBoudary to _BoundarySurface

In other words: KEEP THE VANILLA TABLES UNCHANGED!

Implementation steps

▪ Define and agree upon rules to make the 3DCityDB "ADE-compatible"

▪ Enable to "register" any ADE

• Add a metadata module

• Add functions to help installing/removing an ADE

▪ Define rules how to map ADE-classes to new/existing tables

• Adopt naming convention for new DB entities

▪ Add an ADE-hook mechanism to some "vanilla" functions. E.g.:

• delete_building() → must work also with an ADE-AbstractBuilding

• delete_cityobject() → must work also with new CityObjects

• delete_cityobjectgroup() → must work also with new CityObjects

• get_envelope_cityobject() → same as above

▪ (Enable/extend existing tools to be ADE-compatible: citygml4j,

Importer/Exporter, etc.)

▪ All rules are agreed upon within the 3DCityDB development team and are

being implemented for the next 3DCityDB release

DELETE functions (stored procedures)

▪ Provide for each "simple" and "complex" stand-alone ADE CityObject a

prefixed delete function. E.g.

▪ nrg_delete_thermal_zone()

▪ nrg_delete_usage_zone()

▪ (Conceptually follows the vanilla approach)

▪ For the ADE-extended CityObjects (i.e. _AbstractBuilding), provide

▪ nrg_delete_building(), but it takes care only of NRG_BUILDING table

▪ Add an ADE-hook within vanilla functions

▪ intern_delete_cityobject() → e.g. contained in delete_building()

▪ delete_cityobject()

▪ Same approach for get_envelope_*() functions

nrg_delete_cityobject()

▪ Each ADE has also to provide a general prefixed delete_cityobject() function

for the new ADE-CityObjects

FUNCTION nrg_delete_cityobject()

GET classname and db_prefix FROM objectclass

CASE WHEN

classname='ThermalZone' THEN citydb_pkg.nrg_delete_thermal_zone()

classname='UsageZone' THEN citydb_pkg.nrg_delete_usage_zone()

classname='xxx' THEN citydb_pkg.nrg_delete_xxx()

ELSE

END CASE

New ADE-aware delete_cityobject()

▪ The ADE-hook mechanism basically works like this:

▪ FUNCTION delete_cityobject(co_id)

▪ GET is_ade_class and db_prefix of the objectclass co_id

▪ IF is_ade_class IS TRUE THEN

call citydb. || db_prefix ||_delete_cityobject(co_id)

▪ ELSE

…

Same vanilla code of old citydb_pkg.delete_cityobject(co_id)

…

▪ END IF

Conclusions

▪ The implementation of the Energy ADE v. 0.8 for PostgreSQL is nearly

complete. Major showstoppers are

▪ the completion of the documentation

▪ some minor last-minute changes in the metadata module

▪ Experiences so far have contributed to the definition of

▪ the set of rules for the metadata module

▪ ADE-hook mechanism for existing functions

▪ Some (general) questions remain open

▪ How to deal with objects which might be repeated many times (e.g.

constructions?)

▪ Current implementation of time series might be sub-optimal

▪ Performance issues have not been taken into account (yet)

Curious to try out?

Willing to participate?

Just contact us!

AIT Austrian Institute of Technology
your ingenious partner

Dr. Giorgio Agugiaro

Center for Energy

Smart Cities and Regions Research Field

AIT - Austrian Institute of Technology

giorgio.agugiaro@ait.ac.at

ACKNOWLEDGEMENTS

Patrick Holcik (AIT)

Zhihang Yao, Thomas Kolbe (TU München)

Claus Nagel (virtualcitySYSTEMS)

mailto:giorgio.agugiaro@ait.ac.at

	Slide 1: 3DCityDB extension for the CityGML Energy ADE 0.8 (PostgreSQL version)
	Slide 2: Motivation & goals
	Slide 3: Motivation & goals
	Slide 4: Design criteria (excerpt)
	Slide 5: Implementation steps
	Slide 6: Implementation steps
	Slide 7: Implementation steps
	Slide 8: Implementation steps
	Slide 9: Implementation steps
	Slide 10: Metadata module (as of 22 May 2017)
	Slide 11
	Slide 12
	Slide 13: Implementation steps
	Slide 14: Mapping rules (excerpt)
	Slide 15: Mapping rules (excerpt)
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Mapping rules (excerpt)
	Slide 20: Mapping rules (excerpt)
	Slide 21: Mapping rules (excerpt)
	Slide 22: Mapping rules (excerpt)
	Slide 23: Mapping rules (excerpt)
	Slide 24
	Slide 25: Implementation steps
	Slide 26: DELETE functions (stored procedures)
	Slide 27: nrg_delete_cityobject()
	Slide 28: New ADE-aware delete_cityobject()
	Slide 29: Conclusions
	Slide 30
	Slide 31: AIT Austrian Institute of Technology

