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Motivation & goals

▪ The CityGML Energy ADE has reached an acceptable level of maturity

▪ Growing demand for an ADE-aware DB solution (not only Energy ADE!)

▪ Work in progress by the 3DCityDB development team

• Automatic mapping from OO to ER model

• Automatic generation of DB schema

• Extension of the Importer/Exporter

• …

• All these fantastic goodies for any ADE!

• BUT: it will take time till it is ready

▪ So far, lack of existing DB implementations for the Energy ADE:

▪ partial AND/OR

▪ non-open AND/OR

▪ poorly or not documented at all



Motivation & goals

▪ Implementation of the Energy ADE for PostgreSQL

▪ (Manual) mapping from OO to ER

▪ Complete implementation (for PostgreSQL) of v. 0.8

▪ Particular care of documentation

▪ Released soon under to Apache 2.0 license

▪ Gather experience on how to extend to 3DCityDB

▪ Offer a shared starting point to collect feedback, experiences, suggestions…

▪ Contribute to foster adoption and further development of the Energy ADE



Design criteria (excerpt)

▪ Build upon the existing objects of the 3DCityDB… but keep the original 

("vanilla") untouched (for the sake of the Importer/Exporter)

▪ Define a non-concurrent way of extending the 3DCityDB with any ADEs 

(e.g. Energy ADE + UtilityNetwork ADE)

▪ Stay close to the original “style” of the 3DCityDB when it comes to tables, 

constraints, naming conventions, data types, etc.

▪ Possibly keep the number of new tables in check

▪ Implementation for PostgreSQL, but avoid potential technology lock-ins for 

future conversions to other DBs (as far as possible)



Implementation steps

▪ Define and agree upon rules to make the 3DCityDB "ADE-compatible"

▪ Enable to "register" any ADE

• Add a metadata module

• Add functions to help installing/removing an ADE
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Metadata module

(as of 22 May 2017)

Image source: Courtesy of Z. Yao, TU München
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Mapping rules (excerpt)

▪ New tables: db_prefix + table_name

▪ E.g Thermal_Zone -> NRG_THERMAL_ZONE



Mapping rules (excerpt)

▪ New tables: db_prefix + table_name

▪ With classes != CityObject, create own tables

▪ Example 1: Timeseries, Schedule:

• NRG_TIME_SERIES, NRG_SCHEDULE

▪ Example 2: Features (e.g. EnergyDemand, Occupants, Construction)

• NRG_ENERGY_DEMAND, NRG_OCCUPANTS, 

NRG_CONSTRUCTION





TABLE 

NRG_TIME_SERIES

TABLE 

NRG_TIME_SERIES_FILE



TABLE TIME_SERIES

TABLE TIME_SERIES_FILE



Mapping rules (excerpt)

▪ New tables: db_prefix + table_name

▪ With classes != CityObject, create own tables

▪ With "simple" ADE CityObjects, start from table CITYOBJECT and store the 

remaining attributes in another linked table

▪ E.g. EnergyConversionSystem → CITYOBJECT + NRG_CONV_SYSTEM

▪ Same approach as in the vanilla 3DCityDB
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Mapping rules (excerpt)

▪ New tables: db_prefix + table_name

▪ With classes != CityObject, create own tables

▪ With "simple" ADE CityObjects, start from table CITYOBJECT and store the 

remaining attributes in another linked table

▪ With "complex" ADE CityObjects, same as before + FK to referenced objects

▪ With ADE-extended CityObjects, same as before + FK to referenced objects

▪ E.g. ADE AbstractBuilding -> CITYOBJECT + BUILDING + NRG_BUILDING

+ FK to THERMAL_ZONE

+ FK  to ….

+ FK to SURF_GEOMETRY



Mapping rules (excerpt)

▪ Example: ADE-AbstractBuilding

CITYOBJECT + BUILDING + NRG_BUILDING

<- EXT_REF <- ROOM <- THERMAL_ZONE 

<- GEN_ATTR … <- USAGE_ZONE

<- GENERALIZATION ...

<- ENERGY_CONV_SYSTEM

<- WEATHER_DATA

<- TIMESERIES



Mapping rules (excerpt)

▪ In case of 1:n and m:n relations between ADE and vanilla CityGML 

objects, use an association table instead of a new column in a vanilla table

▪ Example 1: ThermalOpening to _Opening

▪ Example 2: ThermalBoudary to _BoundarySurface

In other words: KEEP THE VANILLA TABLES UNCHANGED!





Implementation steps

▪ Define and agree upon rules to make the 3DCityDB "ADE-compatible"

▪ Enable to "register" any ADE

• Add a metadata module

• Add functions to help installing/removing an ADE

▪ Define rules how to map ADE-classes to new/existing tables

• Adopt naming convention for new DB entities

▪ Add an ADE-hook mechanism to some "vanilla" functions. E.g.:

• delete_building() → must work also with an ADE-AbstractBuilding

• delete_cityobject() → must work also with new CityObjects

• delete_cityobjectgroup() → must work also with new CityObjects

• get_envelope_cityobject() → same as above

▪ (Enable/extend existing tools to be ADE-compatible: citygml4j, 

Importer/Exporter, etc.)

▪ All rules are agreed upon within the 3DCityDB development team and are 

being implemented for the next 3DCityDB release



DELETE functions (stored procedures)

▪ Provide for each "simple" and "complex" stand-alone ADE CityObject a 

prefixed delete function. E.g.

▪ nrg_delete_thermal_zone()

▪ nrg_delete_usage_zone()

▪ (Conceptually follows the vanilla approach)

▪ For the ADE-extended CityObjects (i.e. _AbstractBuilding), provide

▪ nrg_delete_building(), but it takes care only of NRG_BUILDING table 

▪ Add an ADE-hook within vanilla functions

▪ intern_delete_cityobject() → e.g. contained in delete_building()

▪ delete_cityobject()

▪ Same approach for get_envelope_*() functions



nrg_delete_cityobject()

▪ Each ADE has also to provide a general prefixed delete_cityobject() function 

for the new ADE-CityObjects

FUNCTION nrg_delete_cityobject()

GET classname and db_prefix FROM objectclass

CASE WHEN 

classname='ThermalZone' THEN citydb_pkg.nrg_delete_thermal_zone()

classname='UsageZone' THEN citydb_pkg.nrg_delete_usage_zone()

classname='xxx' THEN citydb_pkg.nrg_delete_xxx()

ELSE

END CASE



New ADE-aware delete_cityobject()

▪ The ADE-hook mechanism basically works like this:

▪ FUNCTION delete_cityobject(co_id)

▪ GET is_ade_class and db_prefix of the objectclass co_id

▪ IF is_ade_class IS TRUE THEN

call citydb. || db_prefix ||_delete_cityobject(co_id)

▪ ELSE

…

Same vanilla code of old citydb_pkg.delete_cityobject(co_id)

… 

▪ END IF



Conclusions

▪ The implementation of the Energy ADE v. 0.8 for PostgreSQL is nearly 

complete. Major showstoppers are 

▪ the completion of the documentation

▪ some minor last-minute changes in the metadata module

▪ Experiences so far have contributed to the definition of 

▪ the set of rules for the metadata module

▪ ADE-hook mechanism for existing functions

▪ Some (general) questions remain open

▪ How to deal with objects which might be repeated many times (e.g. 

constructions?)

▪ Current implementation of time series might be sub-optimal

▪ Performance issues have not been taken into account (yet)



Curious to try out?

Willing to participate?

Just contact us!
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