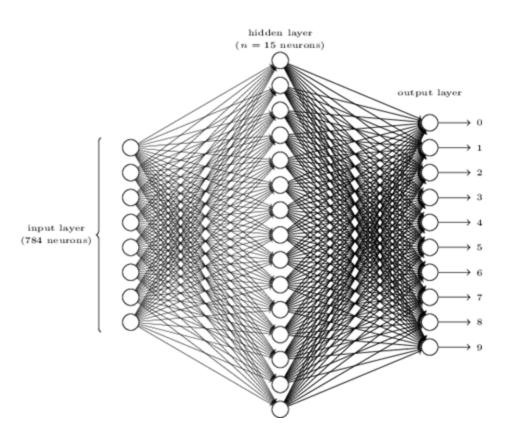
Convolutional Neural Networks

Nail Ibrahimli

Recognizing Digits with Neural Nets.

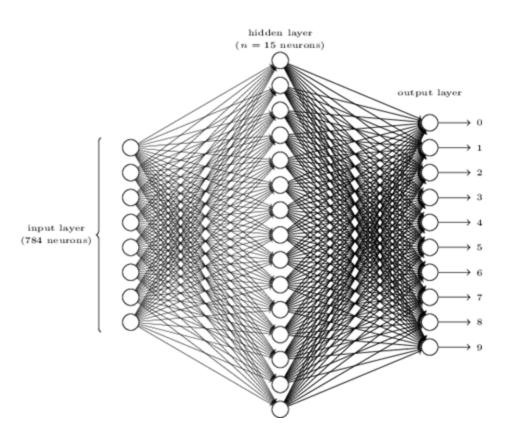


For x representing digit 6:

$$y(x) = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0)^T$$

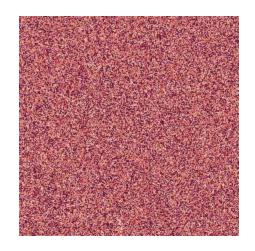
$$C(w,b) \equiv \frac{1}{2n} \sum_{x} \|y(x) - a\|^2$$

Complexity of the World:



Images have much higher resolutions and input dimensions.

Number of the categories and classes are usually much more than 10.



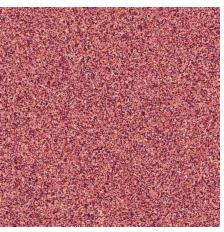


Image signals - stationarity

Image credits: Andy Warhol

Image signals - stationarity

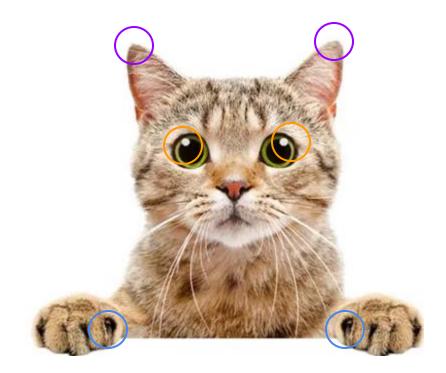


Image signals - compositionality

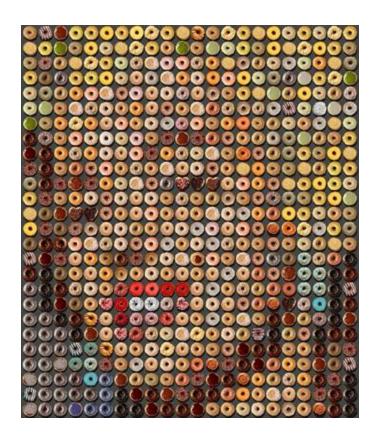


Image signals - compositionality

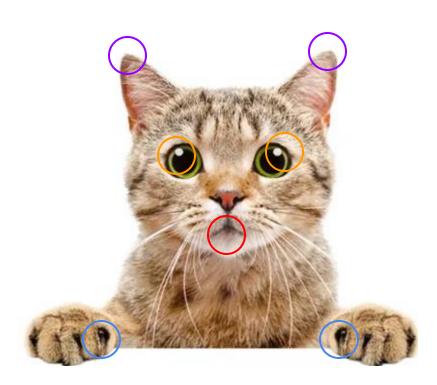


Image signals properties

- Locality neighboring pixels are correlated
- Stationarity similar features can occur multiple times in different positions in the image plane

Compositionality - natural images are composed of features

One dimensional convolution

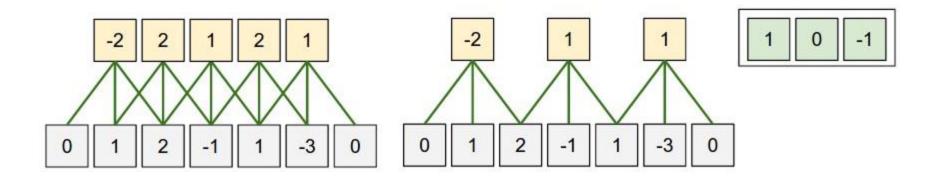
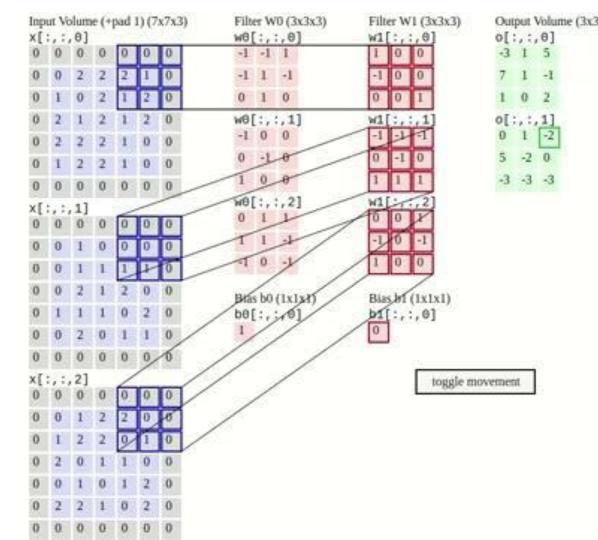


Image convolution



Kernels

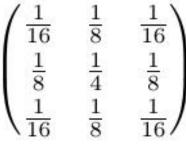
Input image

Convolution Kernel

Feature map

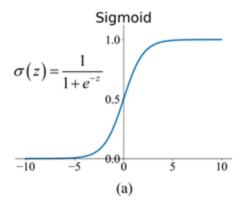
Input image

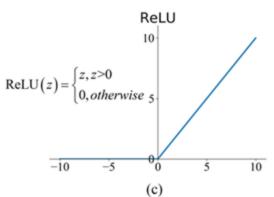
Kernel

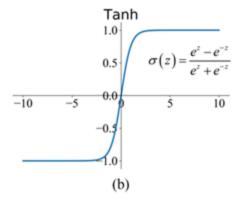


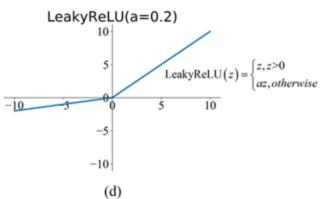
Feature map

Activations



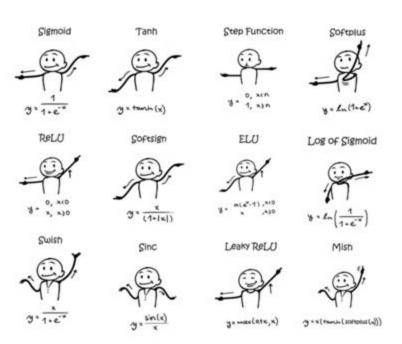




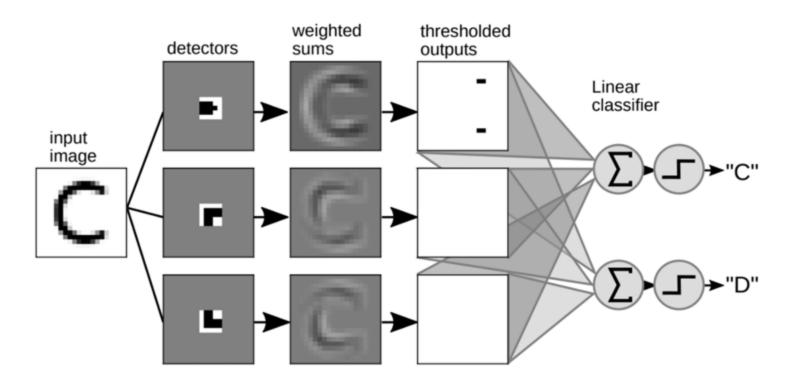


Activations

PyTorch activation functions

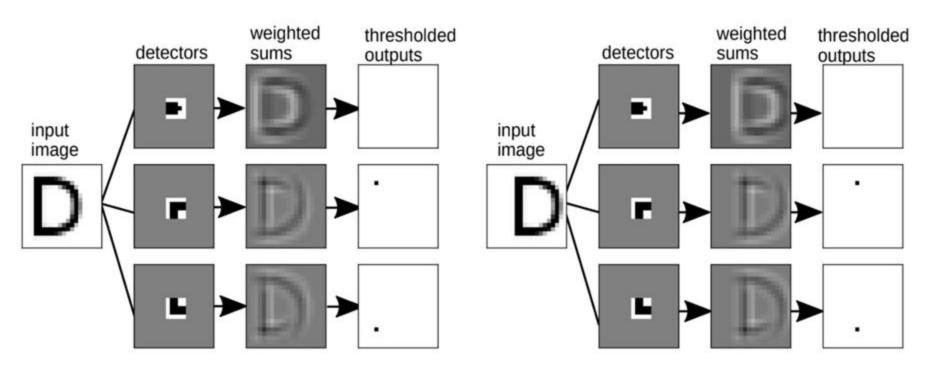


Convolution motivation



Slide credit: Yann Lecun

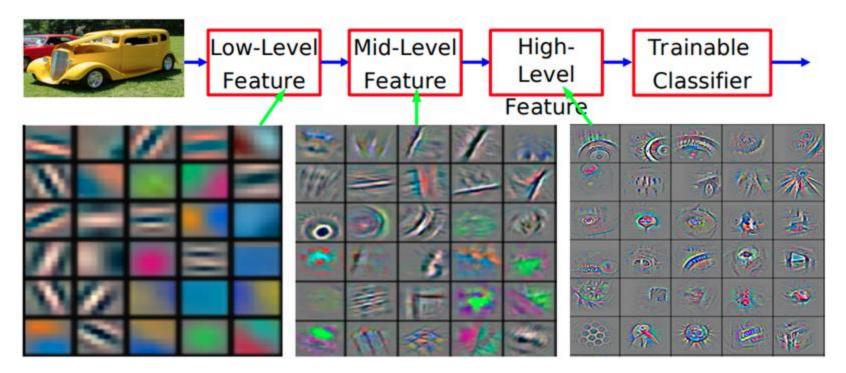
Convolution motivation



19

Slide credit: Yann Lecun

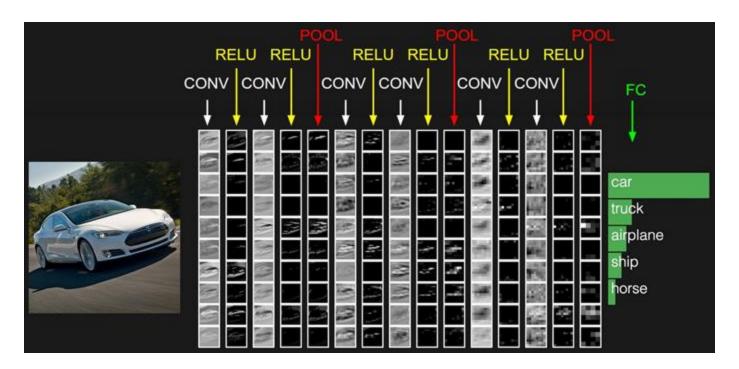
Convolutional features



Slide credit: Yann Lecun

Image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)

Convolutional features



Convolutional kernels

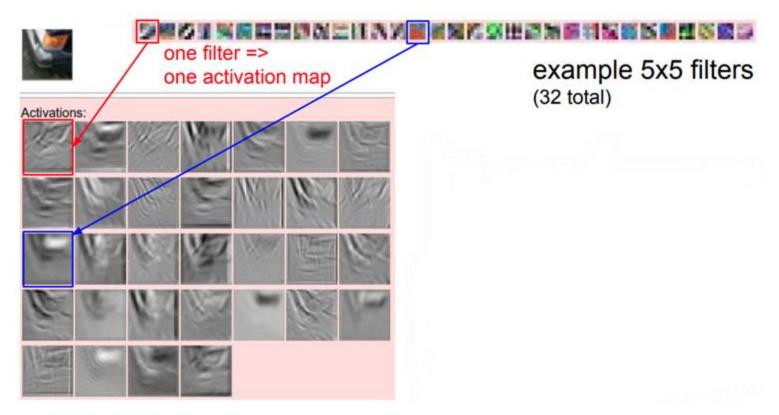


Image credits: Stanford CS 231n

Convolutional low-level features

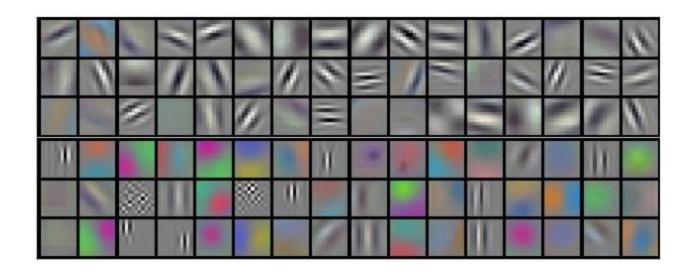
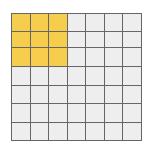
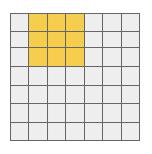
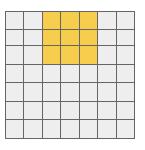


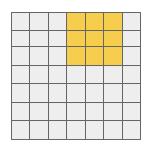
Image credit: Stanford CS231n

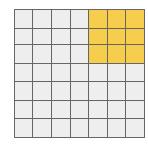
N=7,F=3,S=1

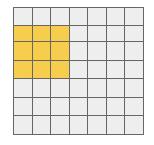


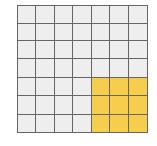




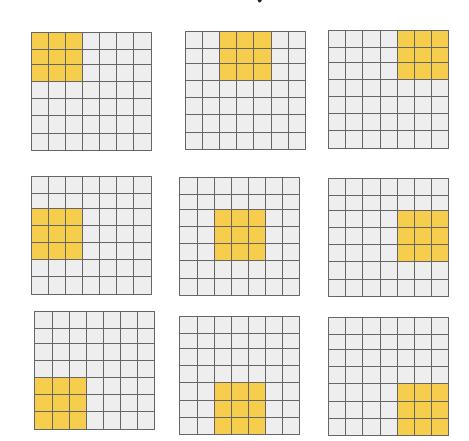


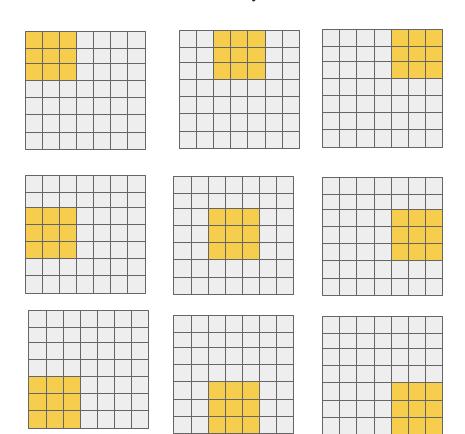




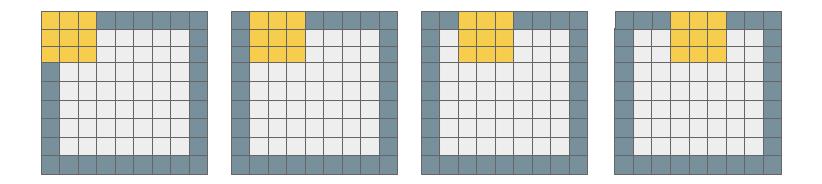


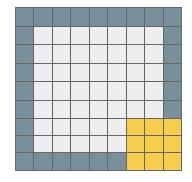
N=7,F=3,S=2



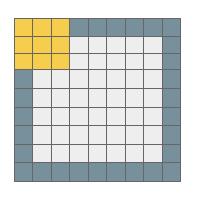


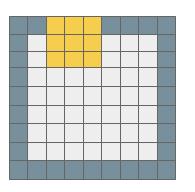
N=7, F=3, S=1, P=1

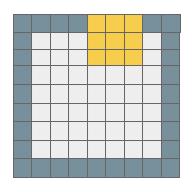


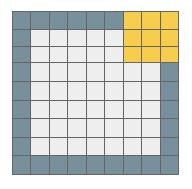


N=7 F=3, S=2, P=1

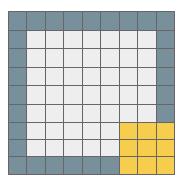




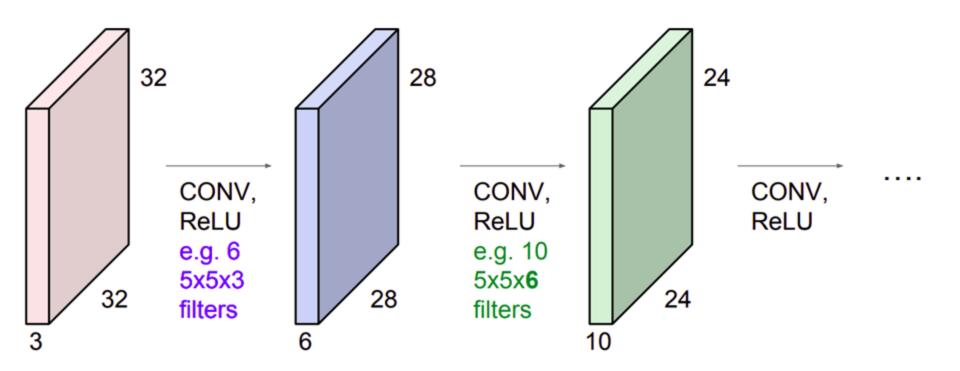




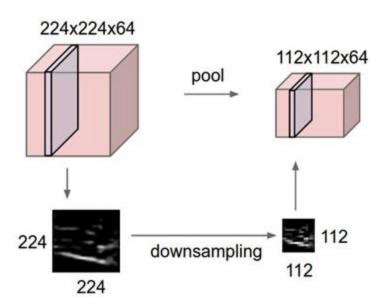
Output = (N-F+2P)/S+1



Number of parameters

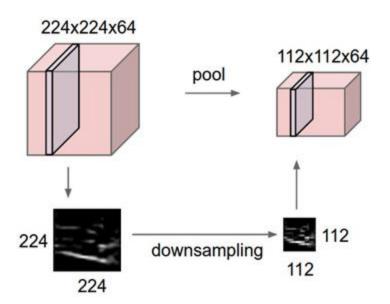


Pooling layer



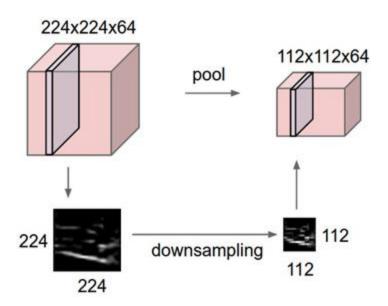
Advantages?

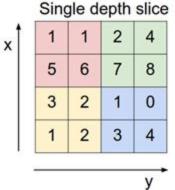
Pooling layer

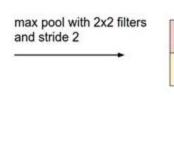


- reduce the spatial size of the representation
- control overfitting.

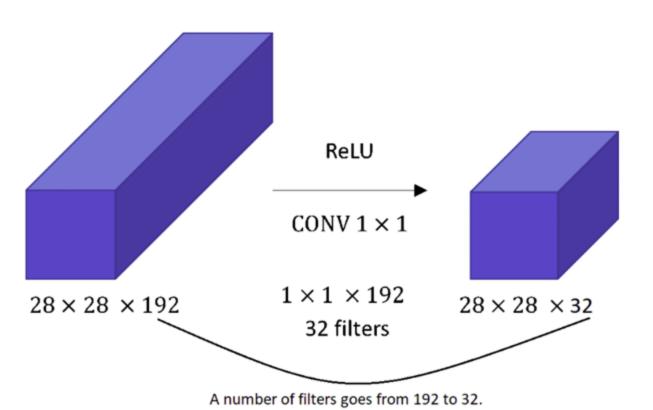
Pooling layer (Maxpool)



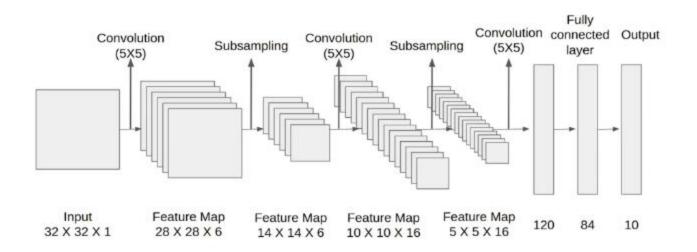




1x1 Convolutions



LeNet5



- - - -

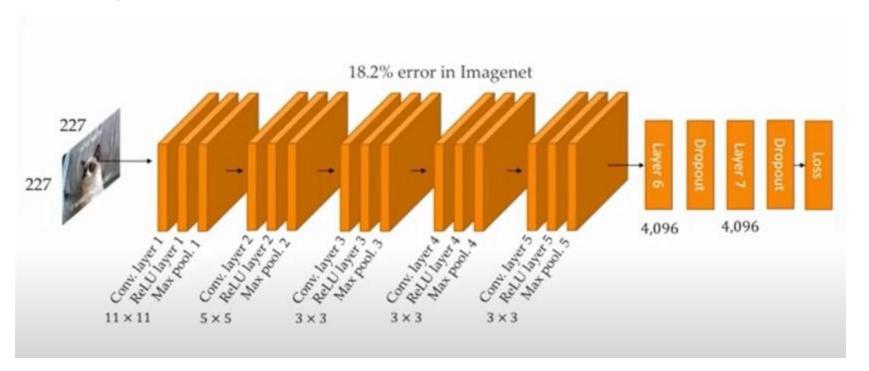
LeNet5

Credit: Yann Lecun

Lenet5


```
class LeNet5(nn.Module):
def init (self):
    super(). init ()
    self.conv1 = nn.Conv2d(1, 20, 5, 1)
    self.conv2 = nn.Conv2d(20, 20, 5, 1)
    self.fc1 = nn.Linear(4*4*20, 500)
    self.fc2 = nn.Linear(500, 10)
def forward(self, x):
    x = F.relu(self.conv1(x))
    x = F.max pool2d(x, 2, 2)
    x = F.relu(self.conv2(x))
    x = F.max pool2d(x, 2, 2)
    x = x.view(-1, 4*4*20)
    x = F.relu(self.fc1)
    x = self.fc2(x)
    return F.logsoftmax(x, dim=1)
```

AlexNet



ImageNet 2012