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Perceptron - a.k.a. ¢ingle neuron
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A perceptron takes multiple 1inputs 1

(e.g.: x1, x2, x3) and produces a single binary output.

To output



Perceptron - a.k.a. cingle neuron

A perceptron takes multiple 1inputs 1 wl
(e.g.: x1, x2, x3) and produces a single binary output.
Tg —W2 output
output — 0 if > ;wjz; < threshold . w3
if > wjz; > threshold

That's all there is to how a perceptron works!
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Output: Going to Gouda for cheese festival on Saturday. wl
X1: Is the weather good? w2
X2: Am I going with friend? T2 output
X3: Is the venue easy to commute?
w3
X

Let’s say:

You don’t mind that much going alone (X2), and
since it is at the Weekend you don't mind that much to commute for longer(X3).
But you hate bad weather and you would rather stay at home in bad weather(X1).
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Perceptron - a.k.a. cingle neuron

Tl

Output: Going to Gouda for cheese festival on Saturday. wl
X1: Is the weather good? w2
X2: Am I going with friend? T2 output
X3: Is the venue easy to commute?
w3
X

wl =6, w2 = w3 = 2

What would happen if threshold = 5?
0 if ), wjz; < threshold
output = .
if ) ;wjz; > threshold



Perceptron - a.k.a. cingle neuron

£
Output: Going to Gouda for cheese festival on Saturday. 1 wl
X1: Is the weather good? w2
X2: Am I going with friend? T2 output
X3: Is the venue easy to commute?
w3
Iy
wl =6, w2 = w3 = 2
What would happen if threshold = 5?
0 if Y .wj;z; < threshold
What would happen if threshold = 3? output = 1

if ) ;wjz; > threshold



Perceptron - a.k.a. cingle neuron

T
We can rewrite weighted sum as an Z WX, = W-x L wl
inner product of two vectors. J 7

Tg —W2 output
We can assume that b = -threshold. w3

0 if ) ,wjz; < threshold
output = .
if »° w;z; > threshold



Perceptron - a.k.a. cingle neuron

T
We can rewrite weighted sum as an Z WX, = W-x L wl
inner product of two vectors. J 7
Tg —W2 output
We can assume that b = -threshold. w3
X
0 ifw-z+b<0
output = .
1 fw-z+b=>0
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(ayere of Perceptrons

First layer: inputs outpud

Making simple three decisions
by weighing 1inputs

Second layer:
Making four decisions by weighing
up the results from first layer decisions making

Using multiple layers of perceptrons, neural networks
can make more sophisticated decisions
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(ayere of Perceptrons

First layer: inputs
Making simple three decisions
by weighing 1inputs

output

Second layer:
Making four decisions by weighing
up the results from first layer decisions making

Using multiple layers of perceptrons, neural networks
can make more sophisticated decisions.

But how we set the weights (and biases)?
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Neural Networke

1. Suppose that we know how small change
in weights changes the output.

w4 Aw

small change in any weight (or bias)

causes a small change in the output

output+2Ao ut?inﬁ.
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1. Suppose that we know how small change

small change in any weight (or bias)
in weights changes the output.

causes a small change in the output
w 4 Aw

2. Starting with random initialization we
can iteratively update (supervise)
the weights with small changes to
bring the output to expected value.

output+Aoutput



Neural Networke

1. Suppose that we know how small change
in weights changes the output.

small change in any weight (or bias)

causecs a small change in the output

w 4 Aw
2. Starting with random initialization we
can iteratively update (supervise)
the weights with small changes to
bring the output to expected value.

output+Aoutput

3. We control the learning process,
by testing and validating it with
data that were not used while weight
optimization.



Problem with Perceptron:

0 fw-z2+b<0

output = ]
1 fw-z2+b>0

w 4+ Aw

small change in any weight (or bias)

causes a small change in the output

mmmm+&mﬁﬁn
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pko é/em w,otA /Dekce/b tkOh: ot At causes a small change in the output

output = {

1.0+
0.8 -
0.6
0.4 -
0.2

0.0

0
1

ifw-z+b<0
ifw-z4+b>0

step function

small change in any weight (or bias)

out put—l—&out?'put
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pkgé/em W;fA ,Dercelbt[’Oh.‘ @+ A causes a small change in the output

0
output = { )

1.0+

0.8 =

0.6

0.4

0.2+

0.0

fw-z+b<0
fw-z+b>0

step function

_,

1.0

0.8-

0.6

0.4 -

0.2

small change in any weight (or bias)

0.0

out p11t+.ﬂ.0ut?'put

sigmoid function
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Cigmoid MNeuron

£

A pereeptren sigmoid neuron takes multiple inputs 1

(e.g.: x1, x2, x3) and produces a single bira+ry output.
To output
Iy

19



Cigmoid MNeuron

A pereeptren sigmoid neuron takes multiple inputs
(e.g.: x1, x2, x3) and produces a single bira+ry output.

1.0+

Z=w-x +b

0.6

0.4 -

1+€_Z 02

0.0

o(2)

Tl

My

Iy

sigmoid function

output
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Firct order Taylor approximation (Quick (ookup)

Let’s say we have function f, and value c,
for which function output value of f(c) is known.

For x 1in neighborhood of c, output value f(x) can be approximated as:

f(x) = f’(c)(x-c)+f(c)
f(x) - f(c) = £’ (c)(x-c)
Af = f’(c) AX
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Neural Metworke:

Aoutput ~ Z
J

d output

aﬂﬁ

.&Hﬁ

0 output

small change in any weight (or bias)

causes a small change in the output

w 4+ Aw

mmmm+&mﬁﬂn

5 Ab
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Feedforward Network architecture

3 layers:
Input

Hidden

Output

input layer |
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/Qecagm‘z/n i Digitc with /Veura/ /Ve?‘g'.
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28x28 images
Greyscale (single channel)
classifying/recognizing images.

MNIST Data:

Goal:
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Recognizing Digite with Meural Nete.
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Recognizing Digite with Meural Nete.

hidden layer

i =10 neurons)

npul layer )
{TEd newrons)

L
ok

o

A
L
g
]
e

For x representing digit 6:
y(z) = (0,0,0,0,0,0,1,0,0,0)T

C(w.b) = iz ly(x) - a2
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Learning with gradient descent
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(earning with gradient deccent
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(earning with gradient deccent

AC ~ a—cﬂ'vl -+
(91)1

oC

61)2

ﬁ’Uz
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Learning with gradient descent

AC ~ a—cﬁvl -+ 8—031}2
(91)1 61;2

AC =~ VC - Av
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Learning with gradient descent

AC ~ a—cﬁvl -+ 8—031}2
(91)1 61;2

AC =~ VC - Av

Av=—nVC
v—v =v—nVC
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(earning with gradient deccent

T
vo= (2. 29)

—‘ - = = !
dv, ov,,

AC =~ VC - Av

Av=—nVC
v—v =v—nVC
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(earning with gradient deccent

T
vo= (2. 29)

—‘ - = = !
dv, ov,,

AC =~ VC - Av

Av=—nVC
v—v =v—nVC
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NN with gradient deccent
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Ctochactic Gradient Dercent
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Ctochactic Gradient Deccent

__ lly(z)—a]
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BackPropagation

You KNow, T
DONT THINK
MATH © A
SCENCE, I
THINK TS
A RELIGION.

YEAH, ALL THESE EQUATIONS
ARE LIKE MIRACIES. YOU
TAKE THO NUMBERS AND WHEN
Yo ADD THEM, THEY MAGICALY
BECOME ONE NEW NUMBER /
NO ONE CAN SaY HOW (T
HAPPENS. YOU EATHER BELIRVE
T OR “ou DONT.

THIS WHOLE Book (S FulL
OF THINGS THAT HANE TO
BE ACCEPTED ON FAITH!
s A
RELIGION !
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Back/)ra,bagaﬁom /Votat/’ou

layer 1 layer 2 layer 3

u.-'jk is the weight from the & neuron

in the (I = 1)*" layer to the j*" neuron
in the I'® layer
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Back/)ra,bagaﬁom Notation

layer 1 layer 2 layer 3

u.-'j-k is the weight from the & neuron
in the (I = 1)*" layer to the j*" neuron
in the I'® layer
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BackPropagation: Cost function




BackPropagation
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BackPropagation




BackPropagation
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BackPropagation

a1 bl w” J L T (;; z(y B aL]z
L —
a —G"(ZL) &I_L_z(aL_y)
gL Q——O—O
ﬂ-L—l ﬂ,L
aC
o (ID Bak 2(a” —y)
a
aC BEIL' ac )
azL o 8L Hak OJ(ZL')z(a _y)

44



BackPropagation
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BackPropagation
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BackPropagation

aL—E bL_l
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1
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BackPropagation
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