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Perceptron - a.k.a. single neuron
A perceptron takes multiple inputs 

(e.g.: x1, x2, x3) and produces a single binary output.
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Perceptron - a.k.a. single neuron
A perceptron takes multiple inputs 
(e.g.: x1, x2, x3) and produces a single binary output.

That's all there is to how a perceptron works!
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Perceptron - a.k.a. single neuron
Output: Going to Gouda for cheese festival on Saturday.

X1: Is the weather good?

X2: Am I going with friend?

X3: Is the venue easy to commute?
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Perceptron - a.k.a. single neuron
Output: Going to Gouda for cheese festival on Saturday.

X1: Is the weather good?

X2: Am I going with friend?

X3: Is the venue easy to commute?

Let’s say:

You don’t mind that much going alone (X2), and 

since it is at the Weekend you don't mind that much to commute for longer(X3). 

But you hate bad weather and you would rather stay at home in bad weather(X1).
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Perceptron - a.k.a. single neuron
Output: Going to Gouda for cheese festival on Saturday.

X1: Is the weather good?

X2: Am I going with friend?

X3: Is the venue easy to commute?

Let’s say:

You don’t mind that much going alone (X2), and 

since it is at the Weekend you don't mind that much to commute for longer(X3). 

But you hate bad weather and you would rather stay at home in bad weather(X1).

w1 = 6, w2 = w3 = 2
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Perceptron - a.k.a. single neuron
Output: Going to Gouda for cheese festival on Saturday.

X1: Is the weather good?

X2: Am I going with friend?

X3: Is the venue easy to commute?

w1 = 6, w2 = w3 = 2

What would happen if threshold = 5?
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Perceptron - a.k.a. single neuron
Output: Going to Gouda for cheese festival on Saturday.

X1: Is the weather good?

X2: Am I going with friend?

X3: Is the venue easy to commute?

w1 = 6, w2 = w3 = 2

What would happen if threshold = 5?

What would happen if threshold = 3?
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Perceptron - a.k.a. single neuron
We can rewrite weighted sum as an 

inner product of two vectors.

We can assume that b = -threshold.
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Perceptron - a.k.a. single neuron
We can rewrite weighted sum as an 

inner product of two vectors.

We can assume that b = -threshold.
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Layers of Perceptrons
First layer:

Making simple three decisions 

by weighing inputs

Second layer:

Making four decisions by weighing 

up the results from first layer decisions making 

Using multiple layers of perceptrons, neural networks  

can make more sophisticated decisions
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Layers of Perceptrons
First layer:

Making simple three decisions 

by weighing inputs

Second layer:

Making four decisions by weighing 

up the results from first layer decisions making 

Using multiple layers of perceptrons, neural networks  

can make more sophisticated decisions.

But how we set the weights (and biases)?
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Neural Networks
1. Suppose that we know how small change

in weights changes the output.
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Neural Networks
1. Suppose that we know how small change

in weights changes the output.

2. Starting with random initialization we 

can iteratively update (supervise) 

the weights with small changes to 

bring the output to expected value.
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Neural Networks
1. Suppose that we know how small change

in weights changes the output.

2. Starting with random initialization we 

can iteratively update (supervise) 

the weights with small changes to 

bring the output to expected value.

3. We control the learning process,

by testing and validating it with 

data that were not used while weight

optimization.
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Problem with Perceptron:
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Problem with Perceptron:
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Problem with Perceptron:
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Sigmoid Neuron
A perceptron sigmoid neuron takes multiple inputs 

(e.g.: x1, x2, x3) and produces a single binary output.
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Sigmoid Neuron
A perceptron sigmoid neuron takes multiple inputs 

(e.g.: x1, x2, x3) and produces a single binary output.
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First order Taylor approximation (Quick Lookup)
Let’s say we have function f, and value c, 
for which function output value of f(c) is known. 

For x in neighborhood of c, output value f(x) can be approximated as:

ƒ(x) ≈︎ ƒ’(c)(x-c)+ƒ(c)

ƒ(x) - ƒ(c) ≈︎ ƒ’(c)(x-c)

Δf ≈︎ ƒ’(c) Δx
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Neural Networks:
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Feedforward Network architecture
3 layers:

Input

Hidden

Output
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Recognizing Digits with Neural Nets.
MNIST Data:

28x28 images

Greyscale (single channel)

Goal: classifying/recognizing images. 
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Recognizing Digits with Neural Nets.
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Recognizing Digits with Neural Nets.
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For x representing digit 6:



Learning with gradient descent
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Learning with gradient descent
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Learning with gradient descent
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Learning with gradient descent
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Learning with gradient descent
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Learning with gradient descent
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Learning with gradient descent
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NN with gradient descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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BackPropagation 
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BackPropagation: Notation
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BackPropagation: Notation
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BackPropagation: Cost function
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BackPropagation
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BackPropagation
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BackPropagation
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BackPropagation
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BackPropagation
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BackPropagation
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BackPropagation
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BackPropagation
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