GEO5017
Machine Learning for the Built Environment

Lab Session
Random Forest in Scikit Learn, A2

Shenglan Du

&

RF in Scikit Learn

sklearn.ensemble.RandomForestClassifier1

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion="gint', max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto’, max_leaf nodes=None, min_impurity_decrease=0.0,
bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None,
cep_alpha=0.0, max_samples=None) [source]

* Documentation:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

* User guide:

https://scikit-learn.org/stable/modules/ensemble.html#forest

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/ensemble.html

oA

RF: Hyperparameters

* Ensemble: RF is a collection of individual tree classifiers

* n_estimators: number of trees in the forest

* Criterion: gini or entropy

* max_ features: number of features to start splitting

* Bootstrap: whether bagging is used for building the trees

* max_samples: if bootstrap is true, then this is to determine
how many max samples to draw from the original dataset

(with replacement)

A2: Point Cloud Classification

A2: Point Cloud Classification

* 500 urban objects

[
° gl e o
??0%68;?‘ @ ﬁwﬂon‘e wﬁf-ﬂ?‘,‘ap
e ¢ & & %o “% 5
N % e e © - B
on @ . o e !&:
e .
(]
© o, o %°
€ @ §°&u.
coc 8 ¢ '38"? A %
© g o LS
[ee e °° q&aﬁog;n D:. ™
¢ 8 ! ° °°dD Q? gee « "
® @ TLe e s
8% & ¢
L 8@ o Worgﬂ oy
Ao TUE
o® o © O&&?e]
°) eﬂ"om
@ ° Q o ol @ .
4] ¢ @
@ o

A2: Point Cloud Classification

-

* You will use a classical ML model to perform point cloud
classification (on object level)

* Focus on geometrical properties (color not available)

* Any useful property can be used, but need to make sense!

* What we evaluate: performance, analysis, visualization,
reasoning......

-

A2: Point Cloud Classification

* Scikit learn is Only allowed to be used for data splitting,
model training, model testing, and performance evaluation
(e.g., accuracy, confusion matrix, errors)

* All other functions need to be implemented from scratch
(only basic libraries are allowed such as numpy and scipy).
This includes but is not restricted to:

* Feature preprocessing
* Hyperparameter tuning
* Obtaining learning curves

A2: Good features

Class 1
Class 2

A2: Good features

* Reasoning by other statistics
* Histogram bins
e Averaged feature values

A2: Good features

* Reasoning by visualization

SVM-Based Classification of Segmented Airborne LiDAR Point Clouds in Urban Areas. Zhang et al., 2013 10

A2:a Demo

* Defining an urban object

class urban_object: def compute_features(self):

woen

Define an urban object Compute the features, here we provide two example features. You're encouraged
def __init__ (self, filenm):
o height = np.amax(self.points[:, 2])

Initialize the object self.feature.append(height)

o

self.cloud name = filenm.split('/\\"')[-1][-7:-4] root = self.p?ints[[np.argmin(self.p?ints[:, 211
top = self.points[[np.argmax(self.points|[:, 2])]]

self.cloud ID = int(self.cloud name) kd tree 2d

kd tree 3d

KDTree(self.points[:, :2], leaf size=5)
KDTree(self.points, leaf size=5)

self.label = math.floor(1.0*self.cloud ID/188)

radius_root = 9.2

count = kd tree 2d.query radius(root[:, :2], r=radius_root, count only=True)
root _density = 1.8%count[®] / len(self.points)
self.feature.append(root density)

self.points = read xyz(filenm)

self.feature = []

A2:a Demo

* Overall steps

* Prepare features for each urban
object, write each object ID with its

features to a .txt

e Load features from .txt

* Visualize features

e Classification

-

if name_ ==' main_ ":

""""Here you need to specify your own path"""
path = '../Data/pointclouds-560"

print('Start preparing features')
feature preparation(data path=path)

print(’'start loading data from the local file")
ID, X, y = data loading()

print('Visualize the features’)
feature visualization(X=X)

print('Start SVM classification’)
SVM classification(X, y)

print('Sstart RF classification')
RF_classification(X, y)
12

A2:a Demo

* VVisualize 2 features to check if they are good

def feature_visualization(X):

wun

Visualize the features
X: input features. This assumes classes are stored in a sequential manner

nun

fig = plt.figure()
ax = fig.add subplot()
plt.title("feature subset visualization of 5 classes", fontsize="small")

colors = ['firebrick', 'grey', 'darkorange’, "dodgerblue', 'olivedrab’]
labels = ['building', ‘car', 'fence', 'pole’, "tree']

for i in range(5):
ax.scatter(x[1ee*i:100*(i+1), 4], X[1ee*i:1ee%(i+1), 5], marker="0", c=colors[i], edgecolor="k", label=labels[i])

wnn

Replace the axis labels with your own feature names

nun

ax.set xlabel('x1:linearity")
ax.set ylabel('x2:sphericity’)

ax.legend()
plt.show() 13

x2:sphericity

A2:a Demo

* VVisualize 2 features to check if they are good

feature subset visualization of 5 classes

% @ building
0.8 A
@ car
® o fence
® o @ pole
0.6 - ® (5] @ free
%
0.4 4
0.2 4
0.0
0.0 0.2 0.4 0.6 0.8 1.0

x1:linearity

X2:area

feature subset visualization of 5 classes

35007 o @ building
@ car
3000 A @ fence
o @ pole
2500 4 @ tree
2000 -
(5]
150041 ©
8
1000 4 i}
500 -
0 - ‘%ﬁiillll.ll'.ll‘hlllll’ilil'.llt @ (5]
0.00 0.05 0.10 0.15 0.20 0.25 0.30

x1:root density

14

A2:a Demo

 SVM Classification

def SVM_classification(X, y):

Conduct SVM classification Start SVM classification
X: features SVM accuracy: ©.49
y: labels confusion matrix
[[29 @ 2 @ 8]
, . i i , @39 @ @ 0
X _train, X test, y train, y test = train test split(X, y, test size=0.4) E 119 12 @ 8%
clf = svm.SVC() [@42 @8 0 1]

clf.fit(X train, y train) [116 @ @ 19]]
y preds = clf.predict(X test)

acc = accuracy score(y test, y preds)

print("SVM accuracy: #¥5.2f" % acc)

print(“confusion matrix™)

conf = confusion matrix(y test, y preds)

print(conf)

(
(
(

A2: Hyperparameter Tuning

* Pseudo code of grid searching:

a=|[al, a2, a3, ...]
b=[bl, b2, b3,]
foraiin a:
for bjin b:
construct the model M(a, b)
obtain and record M’s performance

Return the best ai and bj

A2: Learning Curve Plotting

* Pseudo code:

check_interval = 0.1 (can also be smaller or larger)
foriin range(1/ check interval -1):
train test split ratio = (i+1)* check_interval
split the data accordingly

train and test model on the corresponding sets (multiple times) and record the
(averaged) error rates

Plot the performances as curves

A2: Learning Curve Plotting

* Requirements:
e X axis: training set size (0-500)
e Y axis: classification error

* Two curves need to be present:

e Apparent error rate (on training
set)

* True error rate (approximated on
testing set)

* For each experiment, run
multiple times so that the output
curves are smooth

Classification error

True error

Ap parent error

Size of training set

Learning Curve in Scikit-Learn

sklearn.model selection.learning_curver

sklearn.model_selection.learning_curve(estimator, X, y, *, groups=None, train_sizes=array([0.1, 0.33, 0.55, 0.78, 1.]),

cv=None]}scoring=None, exploit_incremental_learning=False, n_jobs=None, pre_dispatch="all’', verbose=0, shuffle=False,

[source]

random_state=None, error_score=nan, return_times=False, fit params=None)

https://scikit-learn.org/stable/modules/generated/sklearn.model selection.learning curve.html

19

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html

Learning Curve in Scikit-Learn

>»> from sklearn.datasets import make classification
»»> from sklearn.tree import DecisionTreeClassifier
»>>> from sklearn.model_selection import learning curve

2> X, y = make_classificationkn_samples=1@@, n_features=10, random state=42)
>>>» tree = DecisionTreeClassifier(max_depth=4, random state=42)

>»> train size abs, train scores, test scores = learning curve(

N0 tree, X, y,| train sizes=[0.3, 0.6, 0.9]

S|

>»> for train size, cv_train scores, cv_test scores in zip(

- - train size abs, train scores, test scores

cen)1

. print(f"{train size}] samples were used to train the model™)

. print(f"The average train accuracy is {cv_train _scores.mean():.2f}")
N print(f"The average test accuracy is {cv_test scores.mean():.2f}")

24 samples were used to train the model

The average train accuracy is 1.0@
The average test accuracy is .85
48 samples were used to train the model

The average train accuracy is 1.0@
The average test accuracy is 0.90
72 samples were used to train the model

The average train accuracy is 1.0@
The average test accuracy is ©.93 20

Learning Curve in Scikit-Learn

Classification error

Size of training set

21

Learning Curve in Scikit-Learn

Leave-one-out CV error
A \. \

Classification error

" Apparent error

Size of training set

22

-

A2 Overview

* You must implement your own functions for grid search and
learning curve plotting.

* Scikit learn is Not allowed for hyperparameter tuning, and
learning curve plotting.

* Visualization of learning curves can be done in Matplotlib or
other plotting libraries.

A2 Visualization of Results

* Using any Google images for your submission is not allowed

Learning Curves (Naive Bayes)

1.00 + —&— Training score
—&— Cross-validation score
0.95 4
0.90 - \
g 0.85 1
! e -®
0.80 - //
0.75 -
0-70 T T T T] T T
200 400 600 800 1000 1200 1400

Training examples

https://en.wikipedia.org/wiki/Learning_curve_(machine_learning) 24

Questions?

	Slide 1: Lab Session Random Forest in Scikit Learn, A2
	Slide 2: RF in Scikit Learn
	Slide 3: RF: Hyperparameters
	Slide 4: A2: Point Cloud Classification
	Slide 5: A2: Point Cloud Classification
	Slide 6: A2: Point Cloud Classification
	Slide 7: A2: Point Cloud Classification
	Slide 8: A2: Good features
	Slide 9: A2: Good features
	Slide 10: A2: Good features
	Slide 11: A2: a Demo
	Slide 12: A2: a Demo
	Slide 13: A2: a Demo
	Slide 14: A2: a Demo
	Slide 15: A2: a Demo
	Slide 16: A2: Hyperparameter Tuning
	Slide 17: A2: Learning Curve Plotting
	Slide 18: A2: Learning Curve Plotting
	Slide 19: Learning Curve in Scikit-Learn
	Slide 20: Learning Curve in Scikit-Learn
	Slide 21: Learning Curve in Scikit-Learn
	Slide 22: Learning Curve in Scikit-Learn
	Slide 23: A2 Overview
	Slide 24: A2 Visualization of Results
	Slide 25

