### GEO5017 Machine Learning for the Built Environment



Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

# Lecture Support Vector Machine

Shenglan Du

# Today's Agenda



• Previous Lecture: Classification

- Support Vector Machine
  - Standard SVM
  - Soft Margin SVM
  - Multi-Class SVM

• SVM Applications

# Learning Objective



- Explain the principles of SVM
- Explain the concept of generalizabity and overfitting
- Reproduce the objective function and the constraints of a binary SVM classifier
- Identify support vectors in a well-trained SVM classifier
- Be familiar with the refined constraints of SVM with soft margins
- Be able to apply SVM to a geospatial data processing task

# Today's Agenda



• Previous Lecture: Classification

- Support Vector Machine
  - Standard SVM
  - Soft Margin SVM
  - Multi-Class SVM

• SVM Applications



An application of point cloud semantic classification



 $x = (x, y, z, r, g, b, intensity ...)^T$  y: High vegetation Low vegetation Building Road Grass land



• Given a set of input data represented as feature vectors:

$$\boldsymbol{x} = (x_1, x_2, x_3 \dots x_p)^T$$

 Classification aims to specify which category/class y some input data x belong to



• More applications?

# Classification (3 Steps)



- Find a suitable model / hypothesis (assumption)
- Define a loss function (goal)
- Feed the data samples into the model and search for the model parameters that cause the least loss (try to fit the goal)



- Standard linear classifier:
  - hypothesis:
  - *loss*:
- Logistic regression:
  - hypothesis:
  - *loss*:



- Standard linear classifier:
  - *hypothesis*: the decision boundary is a linear model of the input vector *x*:

$$\boldsymbol{w}^T\boldsymbol{x}+\boldsymbol{b}=0$$

- loss: least squares
- Logistic regression:
  - **hypothesis** : the posterior probability is a logistic sigmoid of a linear function of  $\boldsymbol{x}$

$$P(y|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + b)$$

• loss: maximum likelihood

# Today's Agenda



• Previous Lecture: Classification

- Support Vector Machine
  - Standard SVM
  - Soft Margin SVM
  - Multi-Class SVM

SVM Applications

 Consider a two-class (+1, -1) linearly separable task

• We aim to find a decision boundary for the input vector space:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$





• Decision boundary:

 $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$ 

• My prediction tool:

$$\bar{y} = sign(w^T x + b)$$





• Is g unique?









• Which *g* is the best decision boundary?



# Support Vector Machine: Generalizability



- Trained on known samples, how well does the classifier perform / extend to unseen data samples?
- If a classifier performs very well on the known samples, but poorly behaves on unknown samples, we refer this to "overfitting"



• A bad  $g(\mathbf{x})$  leads to severe overfitting



# Support Vector Machine: Generalizability

 Natural solution: feed as much data samples to the classifier as possible. However, we cannot retrieve all possible samples from the real world

• Another solution provided by SVM: given the limited data samples, find the most general g(x)

# Today's Agenda



• Previous Lecture: Classification

- Support Vector Machine
  - Standard SVM
  - Soft Margin SVM
  - Multi-Class SVM

SVM Applications

Trick: constrain the weights so that the output is always larger than ... or smaller than ...

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge \cdots & if \quad y_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b \le \cdots & if \quad y_i = -1 \end{cases}$$





To ease the problem, I use 1.

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge +1 & if \quad y_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1 & if \quad y_i = -1 \end{cases}$$

$$\implies y_i(w^T x_i + b) \ge 1$$





# Standard SVM



Goal: to find a decision boundary that gives the maximum possible margin





• Recap: which g is the best decision boundary?



# Standard SVM: Margin



• What is the margin  $\rho$  ?



# Standard SVM: Margin

### Hint:

- *w* is orthogonal to the decision boundary
- make use of x1, x2, x3 / x4
- use projection on vectors



### Standard SVM: Margin

• w is orthogonal to the boundary

$$\boldsymbol{w}^{T}(\boldsymbol{x_{2}}-\boldsymbol{x_{1}})=0$$

ρ/2 is the projection of (x1, x3) over w

$$\rho/2 = \frac{w^T (x_3 - x_1)}{\|w\|} = \frac{1}{\|w\|}$$
$$\rho = \frac{2}{\|w\|}$$



# Standard SVM: Objective

•  $\rho = \frac{2}{\|w\|}$  is very challenging to maximize

• Instead, we minimize the L2 norm of *w* 

$$\min\frac{1}{2}\|\boldsymbol{w}\|^2$$



# Standard SVM: Overall Formulation

• The overall problem formulation:

$$\min \frac{1}{2} \| \boldsymbol{w} \|^{2}$$
  
s.t.  $y_{i} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} + b) \ge 1 \quad i = 1, 2, ..., n$ 

• How to solve it? Can we use gradient descent?

# Standard SVM: Optimization (Optional)



• A constrained optimization problem can be solved by Lagrangian approach. By introducing Lagrangian multipliers  $\lambda_i$  and inserting the constraints with  $\lambda$ s back into the objective, we get:

$$L(w, b, \lambda) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \lambda_i (y_i (w^T x_i + b) - 1)$$

# Standard SVM: Optimization



$$\boldsymbol{w} = \sum_{i=1}^n \lambda_i y_i \boldsymbol{x_i}$$

- After solving the problem, a lot of  $\lambda_i$  become 0
- Only those  $x_i$  with non-zero  $\lambda_i$  contribute to w
- These data samples are called the "support vector"

# Standard SVM: Geometries







# SVM vs. Standard Linear Classifier



## Wrap-up



• *hypothesis*: the decision boundary is a linear model of the input vector *x*:

$$w^T x + b = 0$$

• *loss*:

$$\min \frac{1}{2} \| \boldsymbol{w} \|^{2}$$
  
s.t.  $y_{i} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} + b) \ge 1 \quad i = 1, 2 \dots n$ 

# Wrap-up



• loss can also be interpretated in another way



# **Optimization in ML**

### General optimization problem

#### Example (1)

You have  $6m^2$  land available that you want to use to grow potatoes and carrots.

- By growing potatoes, you can earn 3 euros per m<sup>2</sup> and 2 euros per m<sup>2</sup> for carrots.
- For potatoes, you need 2 liters insecticide per m<sup>2</sup> and 1 liter per m<sup>2</sup> for carrots.
- You have 8 liters insecticide available.

How much of the land do you use for potatoes and how much for carrots?



**Decision variables:**  $x_1 = m^2$  land for potatoes  $x_2 = m^2$  land for carrots

#### LP formulation:

 $\begin{array}{ll} \max & z = 3 \, x_1 + 2 \, x_2 \\ s.t. & x_1 + \, x_2 \, \leq 6 & (1) \\ & 2 \, x_1 + \, x_2 \, \leq 8 & (2) \\ & x_1, x_2 \geq 0 \end{array}$ 

# **Optimization in ML**



- Optimization vs. ML Optimization
  - In optimization, we trust data at hand
  - In ML, we involve data uncertainty. The ML method should work for another similar unseen dataset as well

### • Therefore:

- Stop early since finding an exact optimal is not necessary
- Take into consideration that test data is different from training data, so as to avoid severe overfitting (e.g., regularization, training data augmentation.....)

# Today's Agenda



• Previous Lecture: Classification

- Support Vector Machine
  - Standard SVM
  - Soft Margin SVM
  - Multi-Class SVM

SVM Applications

# Soft Margin SVM



• If the two classes are not linearly separable.....



# Soft Margin SVM



Standard SVM leads to misclassification errors



# Soft Margin SVM



- We introduce slack variables  $\xi_i$  i = 1, 2, ... n.
- Soft margin SVM aims to solve:

$$\min \frac{1}{2} \| w \|^{2} + C \sum_{i=1}^{n} \xi_{i}$$
  
s.t.  $y_{i} (w^{T} x_{i} + b) \ge 1 - \xi_{i}$   $i = 1, 2 ... n$   
 $\xi_{i} \ge 0$   $i = 1, 2 ... n$ 

• C is a constant hyperparameter

# Today's Agenda



• Previous Lecture: Classification

- Support Vector Machine
  - Standard SVM
  - Soft Margin SVM
  - Multi-Class SVM

SVM Applications

# Multi-Class SVM (Optional)



• Two-class problem can be easily extended to multi-class scenario by building multiple classifiers



# Multi-Class SVM (Optional)



• One-to-One: find the boundary between every two classes



# Multi-Class SVM (Optional)



• One-to-Rest: find the boundary between a class and rest



# **SVM Overview**



- Advantages:
  - Generalizes well in high-dimensional space with relatively low sample sizes
  - Little affected by data distribution and densities

- Limitations:
  - Computational expensive
  - Performs bad when classes are highly overlapped

# Today's Agenda



• Previous Lecture: Classification

- Support Vector Machine
  - Standard SVM
  - Soft Margin SVM
  - Multi-Class SVM

SVM Applications

# SVM for Point Cloud Analysis



• Applying SVM to classify point clouds by assigning each point a semantic label



# SVM for Point Cloud Analysis



• Pipeline Overview



# SVM for Point Cloud Analysis



• Feature engineering: geometry, echo, radiometry, topology



Average height difference between first and last echoes

Average curve-ness

Average height difference between boundary points and lowest points



# SVM for Point Cloud Analysis: Evaluation

| Class                  |        | Ground    | Vegetation | Building | Vehicle  | Powerline | Total     | User Accuracy |
|------------------------|--------|-----------|------------|----------|----------|-----------|-----------|---------------|
|                        |        | (Points)  | (Points)   | (Points) | (Points) | (Points)  | (Points)  | (%)           |
| Ground<br>(points)     | Scene1 | 315,256   | 1,549      | 5,042    | -        | -         | 321,847   | 97.95         |
|                        | Scene2 | 684,904   | 15,495     | 8,985    | -        | -         | 709,384   | 96.55         |
|                        | Scene3 | 1,152,469 | 752        | 463      | 1        | 0         | 1,153,685 | 99.89         |
| Vegetation<br>(points) | Scene1 | 2,871     | 65,211     | 8,770    | -        | -         | 76,852    | 84.85         |
|                        | Scene2 | 1,934     | 62,423     | 3,050    | -        | -         | 67,407    | 92.61         |
|                        | Scene3 | 1,642     | 343,751    | 2,596    | 1,474    | 2057      | 351,520   | 97.79         |
| Building(<br>points)   | Scene1 | 807       | 22,583     | 120,993  | -        | -         | 144,383   | 83.80         |
|                        | Scene2 | 4,841     | 16,250     | 236,435  | -        | -         | 257,526   | 91.81         |
|                        | Scene3 | 37        | 1,569      | 172,088  | 522      | 0         | 174,216   | 98.78         |
| Vehicle<br>(points)    | Scene3 | 319       | 507        | 317      | 13,225   | 0         | 14,368    | 92.04         |
| Powerline<br>(points)  | Scene3 | 0         | 1,268      | 0        | 0        | 6874      | 8,142     | 84.24         |
| Total<br>(points)      | Scene1 | 318,934   | 89,343     | 134,805  | -        | -         | 543,082   |               |
|                        | Scene2 | 691,679   | 94,168     | 248,470  | -        | -         | 1,034,317 | -             |
|                        | Scene3 | 1,154,467 | 347,865    | 175,464  | 15,222   | 8931      | 1,701,949 |               |
| Producer               | Scene1 | 98.85     | 72.99      | 89.75    | -        | -         |           |               |
| accuracy               | Scene2 | 99.02     | 66.28      | 95.15    | -        | -         |           | -             |
| (%)                    | Scene3 | 99.83     | 98.82      | 98.08    | 86.88    | 76.97     |           |               |



# Questions?