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Today’s Agenda

• Previous Lecture: Classification

• Support Vector Machine
• Standard SVM
• Soft Margin SVM
• Multi-Class SVM

• SVM Applications
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Learning Objective

• Explain the principles of SVM
• Explain the concept of generalizabity and overfitting
• Reproduce the objective function and the constraints of a 

binary SVM classifier
• Identify support vectors in a well-trained SVM classifier
• Be familiar with the refined constraints of SVM with soft 

margins
• Be able to apply SVM to a geospatial data processing task
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Classification

• An application of point cloud semantic classification
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𝒙 = (𝑥, 𝑦, 𝑧, 𝑟, 𝑔, 𝑏, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦… )!
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Image source: https://www.sciencedirect.com/science/article/pii/S0924271620300605

𝒚:



Classification

• Given a set of input data represented as feature vectors:

𝒙 = (𝑥!, 𝑥", 𝑥#…𝑥$)%

• Classification aims to specify which category/class 𝒚 some 
input data 𝒙	belong to
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Classification

•More applications?
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Classification (3 Steps)

• Find a suitable model / hypothesis (assumption)

• Define a loss function (goal)

• Feed the data samples into the model and search for the 
model parameters that cause the least loss (try to fit the 
goal)

8



Classification

• Standard linear classifier: 
• hypothesis: 

• loss:

• Logistic regression:
• hypothesis: 

• loss:
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Classification

• Standard linear classifier: 
• hypothesis: the decision boundary is a linear model of the input 

vector 𝒙: 
𝒘𝑻𝒙 + 𝑏 = 0

• loss: least squares

• Logistic regression:
• hypothesis : the posterior probability is a logistic sigmoid of a 

linear function of 𝒙
𝑃 𝑦|𝒙 = 𝜎(𝒘𝑻𝒙 + 𝑏)	

• loss: maximum likelihood
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Support Vector Machine

• Consider a two-class (+1, -1) linearly 
separable task

•We aim to find a decision boundary 
for the input vector space:

𝑔 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 0
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Support Vector Machine

• Decision boundary:

𝑔 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 0

•My prediction tool:

/𝑦 = 𝑠𝑖𝑔𝑛(𝒘𝑻𝒙 + 𝑏)
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Support Vector Machine

• Is 𝑔	unique? 
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Support Vector Machine
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Support Vector Machine

•Which 𝑔 is the best decision boundary?
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Support Vector Machine: Generalizability

• Trained on known samples, how well does the classifier 
perform / extend to unseen data samples?

• If a classifier performs very well on the known samples, but 
poorly behaves on unknown samples, we refer this to 
“overfitting”

17



Support Vector Machine: Generalizability

• A bad 𝑔(𝒙) leads to severe overfitting
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Unseen samples



Support Vector Machine: Generalizability

• Natural solution: feed as much data samples to the classifier 
as possible. However, we cannot retrieve all possible samples 
from the real world

• Another solution provided by SVM: given the limited data 
samples, find the most general 𝑔(𝒙) 
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Support Vector Machine

Trick: constrain the weights so that 
the output is always larger than … or 
smaller than …

3𝒘
𝑻𝒙𝒊 + 𝑏 ≥ ⋯ 	 𝑖𝑓	 𝑦# = +1

𝒘𝑻𝒙𝒊 + 𝑏 ≤ ⋯ 	 𝑖𝑓	 𝑦# = −1
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Support Vector Machine

To ease the problem, I use 1.

3𝒘
𝑻𝒙𝒊 + 𝑏 ≥ +1	 𝑖𝑓	 𝑦# = +1

𝒘𝑻𝒙𝒊 + 𝑏 ≤ −1	 𝑖𝑓	 𝑦# = −1
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Standard SVM

• Goal: to find a decision boundary that gives the maximum 
possible margin
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Support Vector Machine

• Recap: which 𝑔 is the best decision boundary?
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Standard SVM: Margin

•What is the margin 𝜌 ?
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Standard SVM: Margin 

Hint: 
• 𝑤 is orthogonal to the decision 

boundary

• make use of x1, x2, x3 / x4

• use projection on vectors
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Standard SVM: Margin 

•𝑤 is orthogonal to the boundary
𝒘$ 𝒙𝟐 − 𝒙𝟏 = 0

• 𝜌/2 is the projection of (x1, x3) 
over 𝒘

𝜌/2 =
𝒘$ 𝒙𝟑 − 𝒙𝟏

𝒘
=

1
𝒘

𝜌 =
2
𝒘
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Standard SVM: Objective

• 𝜌 = "
𝒘

 is very challenging 
to maximize

• Instead, we minimize the L2 
norm of 𝒘

min
1
2
𝒘 𝟐
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Standard SVM: Overall Formulation

• The overall problem formulation:

min
1
2
𝒘 𝟐	

																																																s.t.	 𝑦# 𝒘𝑻𝒙𝒊 + 𝑏 ≥ 1	 𝑖 = 1,2, … , 𝑛

• How to solve it? Can we use gradient descent?

29



Standard SVM: Optimization (Optional)

• A constrained optimization problem can be solved by 
Lagrangian approach. By introducing Lagrangian multipliers 
𝜆'  and inserting the constraints with 𝜆s back into the 
objective, we get:

𝐿 𝒘, 𝑏, 𝜆 =
1
2
𝒘 𝟐 −E

#()

*

𝜆#(𝑦# 𝒘𝑻𝒙𝒊 + 𝑏 − 1)
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Standard SVM: Optimization

𝒘 =E
#()

*

𝜆#𝑦#𝒙𝒊

• After solving the problem, a lot of 𝜆'  become 0
• Only those 𝒙𝒊	with non-zero 𝜆'  contribute to 𝒘
• These data samples are called the “support vector”
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Standard SVM: Geometries

32

𝒘 =E
#()

*

𝜆#𝑦#𝒙𝒊



SVM vs. Standard Linear Classifier
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SVM Standard linear classifier 



Wrap-up

• hypothesis: the decision boundary is a linear model of the 
input vector 𝒙: 

𝒘𝑻𝒙 + 𝑏 = 0

• loss:
min

1
2
𝒘 𝟐	

																																																																s.t.	 𝑦# 𝒘𝑻𝒙𝒊 + 𝑏 ≥ 1	 𝑖 = 1,2…𝑛	
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Wrap-up

• loss can also be interpretated in another way

minE
#()

*

𝑚𝑎𝑥{0, 1 − 𝑦# 𝒘𝑻𝒙𝒊 + 𝑏 } + 𝑐 𝒘 𝟐
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regularizationhinge loss

Image source: https://towardsdatascience.com/a-definitive-explanation-to-
hinge-loss-for-support-vector-machines-ab6d8d3178f1

𝑦! 𝒘𝑻𝒙𝒊 + 𝑏



Optimization in ML

• General optimization problem

36Adapted from AM2020, TUDelft



Optimization in ML

• Optimization vs. ML Optimization
• In optimization, we trust data at hand
• In ML, we involve data uncertainty. The ML method should work for 

another similar unseen dataset as well

• Therefore:
• Stop early since finding an exact optimal is not necessary
• Take into consideration that test data is different from training data, 

so as to avoid severe overfitting (e.g., regularization, training data 
augmentation……)
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Soft Margin SVM

• If the two classes are not linearly separable……
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Soft Margin SVM

• Standard SVM leads to misclassification errors
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Soft Margin SVM

•We introduce slack variables 𝜉' 	𝑖 = 1,2, … 𝑛. 
• Soft margin SVM aims to solve:

min
1
2
𝒘 𝟐 + 𝐶E

#()

*

𝜉#

																																													s.t.	 𝑦# 𝒘𝑻𝒙𝒊 + 𝑏 ≥ 1 − 𝜉# 	 𝑖 = 1,2…𝑛
                                                   𝜉# ≥ 0	 𝑖 = 1,2…𝑛

• C is a constant hyperparameter
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Multi-Class SVM (Optional)

• Two-class problem can be easily extended to multi-class 
scenario by building multiple classifiers
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Multi-Class SVM (Optional)

• One-to-One: find the boundary between every two classes 
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Multi-Class SVM (Optional)

• One-to-Rest: find the boundary between a class and rest 

45

𝑚	classifiers



SVM Overview

• Advantages: 
• Generalizes well in high-dimensional space with relatively low 

sample sizes
• Little affected by data distribution and densities

• Limitations:
• Computational expensive
• Performs bad when classes are highly overlapped
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SVM for Point Cloud Analysis
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• Applying SVM to classify point clouds by assigning each point 
a semantic label

SVM-Based Classification of Segmented Airborne LiDAR Point Clouds in Urban Areas. Zhang et al., 2013 



SVM for Point Cloud Analysis

49

• Pipeline Overview



SVM for Point Cloud Analysis
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• Feature engineering: geometry, echo, radiometry, topology

Average height difference 
between first and last echoes

Average curve-ness Average height difference 
between boundary points 
and lowest points



SVM for Point Cloud Analysis: Evaluation
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Questions?
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