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Today’s Agenda

• Previous Lecture: Supervised Learning

• Bayes Classification
• Probability Basics
• Bayes Classifier

• Linear Classification
• Standard Linear Classifier
• Logistic Classifier
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Learning Objective

• Bayes Classification
• Reproduce the Bayes rule
• Apply Bayes classifier to solve a binary classification problem
• Understand the concept of Bayes error

• Linear Classifiers
• Explain the principles of standard linear classifier and logistic 

regression
• Reproduce the objective function of logistic regression
• Analyze the pros and cons of the two linear classifiers
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Supervised Learning
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Image source: https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications



Supervised Learning

• An example: weather forecasting
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Image source: https://medium.com/@chirag071857/machine-learning-in-weather-forecasting-b47ba8edd694



Supervised Learning

• An example: image analysis
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Supervised Learning: Classification

• Given a set of input data represented as feature vectors:

𝒙 = (𝑥!, 𝑥", 𝑥#…𝑥$)%

• Classification aims to specify which category/class 𝒚 some 
input data 𝒙	belong to
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Supervised Learning: Classification

𝒙 = (𝑥!, 𝑥", 𝑥#…𝑥$)%

• P indicates the feature space dimension:
• 1D feature space:

• 2D feature space:

9

Positive class

Negative class

𝒚:



Supervised Learning: Classification

• An example of point cloud semantic classification
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𝒙 = (𝑥, 𝑦, 𝑧, 𝑟, 𝑔, 𝑏, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦… )!

High vegetation

Low vegetation

Building

Road

Grass land

Image source: https://www.sciencedirect.com/science/article/pii/S0924271620300605

𝒚:



Supervised Learning: Classification

• Two classification approaches:
• Generative approach: model the probability distribution of 

feature 𝒙 and label 𝒚  
• Bayes classifier
• Gaussian mixture model

• Discriminant functions: model a function that directly map from 
feature 𝒙 to label 𝒚  
• Linear classifier (Logistic regression, SVM)
• Non-linear classifier (Decision tree, Neural networks)
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Bayes Classification

• A simple scenario: A tree or a building?
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Bayes Classification

• A simple scenario:
• Buildings have planar surfaces
• Trees have noisy, near round surfaces

• The machine detected that the input 
object has planar surfaces. What the 
object do you guess to be? 
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Bayes Classification

• It’s very likely to be a building

• But how do machines interpretate the word “likely”?
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Probability Basics

• Product rule:
𝑃 𝑋, 𝑌 = 𝑃 𝑋 	𝑃(𝑌|𝑋)

• Bayes rule:
𝑃 𝑌 	𝑃(𝑋|𝑌) = 𝑃 𝑋 	𝑃(𝑌|𝑋)

𝑃(𝑌|𝑋) =
𝑃(𝑌)	𝑃(𝑋|𝑌)

𝑃(𝑋)
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Probability Basics

• Given feature 𝒙 and label 𝑦 
  

𝑃(𝑦|𝒙) =
𝑃(𝑦)	𝑃(𝒙|𝑦)

𝑃(𝒙)

• 𝑃(𝒙|𝑦)	: class conditional probability
• 𝑃(𝑦)	: class prior probability
• 𝑃 𝑦 𝒙  : class posterior probability
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Probability Basics

• Assume equal priors for both 
buildings and trees

𝑃 𝑦 = 𝑏 = 𝑃 𝑦 = 𝑡 = 0.5
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Probability Basics

• Assume we have the class 
conditional probabilities as 
follows

𝑃 𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟|𝑦 = 𝑏 = 0.8
𝑃 𝑥 = 𝑟𝑜𝑢𝑛𝑑|𝑦 = 𝑏 = 0.2
𝑃 𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟|𝑦 = 𝑡 = 0.25
𝑃 𝑥 = 𝑟𝑜𝑢𝑛𝑑|𝑦 = 𝑡 = 0.75
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Probability Basics

• building:
𝑃 𝑦 = 𝑏|𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟 =

• tree:
𝑃 𝑦 = 𝑡|𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟 =
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Probability Basics

• building:
𝑃 𝑦 = 𝑏|𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟 =

𝑃(𝑦 = 𝑏)	𝑃(𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟|𝑦 = 𝑏)
𝑃(𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟)

=
0.5 ∗ 0.8

𝑃(𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟)
• tree:

𝑃 𝑦 = 𝑡|𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟 =
𝑃(𝑦 = 𝑡)	𝑃(𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟|𝑦 = 𝑡)

𝑃(𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟)
=

0.5 ∗ 0.25
𝑃(𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟)
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Probability Basics

• Prior:
𝑃 𝑦 = 𝑏 = 𝑃 𝑦 = 𝑡

• Posterior:

𝑃 𝑦 = 𝑡|𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟 ≪ 𝑃 𝑦 = 𝑏|𝑥 = 𝑝𝑙𝑎𝑛𝑎𝑟

23



Today’s Agenda

• Previous Lecture: Supervised Learning

• Bayes Classification
• Probability Basics
• Bayes Classifier

• Linear Classification
• Standard Linear Classifier
• Logistic Classifier

24



Bayes Classifier

• Step 1: estimate the class conditional 
probabilities

• Step 2: multiply with class priors 

• Step 3: compute the class posterior 
probabilities
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Bayes Classifier

• Step 4: find the classification boundary
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Bayes Classifier

• The Bayes rule provides an approach of describing the 
uncertainty quantitatively, allowing for the optimal 
prediction given the observations present

• Bayes serves as the foundation for the modern machine 
learning

27



Bayes Error

• All models are wrong but some are useful…So where can the 
error happen?
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Bayes Error

•Where is the error?

• All trees have spherical surfaces
• All buildings have cube-shapes
• All rabbits have long ears
• All sheeps are black
• ……
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Bayes Error

• So where can the error happen?
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Image source: Wikipedia



Bayes Error
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𝑃 𝑒 = ∫#$
%! 𝑝 𝑥 𝑦& 𝑃(𝑦&) + ∫%!

$ 𝑝 𝑥 𝑦' 𝑃(𝑦')

Misclassifying 𝑦" to 𝑦# 
Misclassifying 𝑦# to 𝑦" 



Bayes Error

• It’s the minimum attainable error using any kinds of existing 
models (SVM, RF, Neural networks)

• It doesn’t depend on the ML model that you apply, but only 
on the data distribution

•We cannot obtain it as we don’t have true distributions of 
real world
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Minimizing the Risk

• Healthy or ill?

• Assigning “ill” to a healthy person will 
cause panic to the patient

• Assigning “healthy” to an ill person has 
more severe outcome 
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Image source: Charles Choi. Medical Imaging AI Software Is Vulnerableto Covert Attacks. IEEE Spectrum. 04 Jun 2018



Minimizing the Risk

• Assume: 𝑦' = ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑦& = 𝑖𝑙𝑙, 	 𝜆()  is 
the cost of assign “j” label to class i

• Classifying with risk we have:
• Assign x to 𝑦' if

𝜆&'𝑝 𝒙 𝑦& 𝑃 𝑦& < 𝜆'&𝑝 𝒙 𝑦' 𝑃 𝑦'

• Assign x to 𝑦& otherwise
34

Image source: Charles Choi. Medical Imaging AI Software Is Vulnerableto Covert Attacks. IEEE Spectrum. 04 Jun 2018
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Linear Classification

• Review Linear Regression:
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Linear Classification

• Review Linear Regression:
• Model?

• Solution?

• How do you find the solution?

37



Linear Classification

• Review Linear Regression:

𝑦( = 𝒘𝑻𝒙𝒊 + 𝑏

• Solution can be found by gradient descent searching
• A close form solution:

(𝑋%𝑋) &!𝑋%𝑌
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Linear Classification

• Link the output y to some classification codes

𝑦 = 𝒘𝑻𝒙 + 𝑏

• 𝑦 = 𝑐𝑜𝑛𝑠𝑡 determines a decision boundary
• A decision boundary is a (D-1) dimension hyperplane of D 

dimension input feature space
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Standard Linear Classifier
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Standard Linear Classifier

• By fitting a linear line of 𝑥', 𝑦' , 𝑥&, 𝑦& , …, 𝑥, , 𝑦,  s.t.

𝑦( = J+1, 𝑖𝑓	𝑡ℎ𝑒	𝑐𝑙𝑎𝑠𝑠	𝑖𝑠	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒−1, 𝑖𝑓	𝑡ℎ𝑒	𝑐𝑙𝑎𝑠𝑠	𝑖𝑠	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 
• We obtain the linear decision boundary of the input space
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Standard Linear Classifier

• Solution can also be given by least squares
 

43



Standard Linear Classifier

•Minimizing square errors can be sensitive to data distribution 
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Logistic Classifier

• Also known as logistic regression, although it is a model for 
classification rather than regression……

• Trick: link the probabilities to something linear

log
𝑃 𝑦|𝒙

1 − 𝑃 𝑦|𝒙
= 𝒘𝑻𝒙 + 𝑏

46



Logistic Classifier

log
𝑃 𝑦|𝒙

1 − 𝑃 𝑦|𝒙
= 𝒘𝑻𝒙 + 𝑏

 
•What is 𝑃 𝑦|𝒙  ?
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Logistic Classifier

𝑃 𝑦|𝒙 =
1

𝑒#(𝒘𝑻𝒙01) + 1

• Can be rewritten as:
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𝑃 𝑦|𝒙 = 𝜎(𝒘𝑻𝒙 + 𝑏)

𝜎 𝑓 =
1

𝑒#3 + 1

Logistic sigmoid function



Logistic Classifier

• Overall objective function: to maximize

𝑃 𝒚|𝒙 = 𝑃 𝑦'|𝒙𝟏 𝑃 𝑦&|𝒙𝟐 …𝑃 𝑦,|𝒙𝒏

•Which equals to maximizing:

𝑙𝑜𝑔𝑃 𝒚|𝒙 =U
(7'

,

𝑙𝑜𝑔𝑃 𝑦(|𝒙𝒊
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Logistic Classifier

• If 𝑦'=+1, 
𝑃 𝑦(|𝒙𝒊 =

1
𝑒#3(𝒙𝒊) + 1

• If 𝑦'=-1, 
𝑃 𝑦(|𝒙𝒊 = 1 −

1
𝑒#3 𝒙𝒊 + 1

=
1

𝑒3(𝒙𝒊) + 1
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Logistic Classifier

𝑙𝑜𝑔𝑃 𝒚|𝒙 =U
(7'

,

𝑙𝑜𝑔
1

𝑒#8$3(%$) + 1
= −U

(7'

,

𝑙𝑜𝑔(𝑒#8$3(%$)+1)

• Therefore, the problem transfers to minimizing 

U
(7'

,

𝑙𝑜𝑔(𝑒#8$3(%$)+1)
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Logistic Classifier

U
(7'

,

𝑙𝑜𝑔(𝑒#8$3(%$)+1)

• Robust to outliers
• Can be solved by gradient descent
• No close form solution
• Solution depends on the initialization
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Conclusions

•Many classification or regression problems can be specified 
as:
• Find a suitable model / hypothesis

• Define a loss function (i.e., least squares, maximum likelihood …)

• Feed the data samples into the model and find the model 
parameters that lead to the least loss
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