Ready to follow GEO5017? Self-assessment of math fundamentals

Calculus

1. What is the derivative of function $f(x)=x^{3}+3 \sin (x)$?
2. What is the derivative of function $\sigma(x)=\frac{1}{1+e^{-x}}$?
3. What are the partial derivatives of $f(x, y)=2 x^{2} \cos \left(y^{3}\right)$?
4. Let $z=f(x, y)$, where $x=g(r, s)$ and $y=h(r, s)$, so that z is a function of r and s. Then what are the partial derivatives of z with respect to r and s ?
5. Is the function $f(x)=|x|$ continue at every point? Is it differentiable at every point?
6. Is the function $f(x)=x^{2}-3 x+2$ continue at every point? Is it differentiable at every point?
7. What is the gradient of function $f(x, y)=2 x^{3}+3 x y^{2}$?
8. Is the function $y=(x-4)(x+1)(x-8)$ monotonic increasing? Strictly increasing?
9. Given a function $f(x)$ differential every point, what are the sufficient conditions for $f(x)$ to have a global minimum value?

Linear Algebra

1. Solve the following system of linear equations for x, y, and z :

$$
\begin{aligned}
2 x+3 y-z & =7 \\
4 x-2 y+3 z & =12 \\
-x+5 y+2 z & =-5
\end{aligned}
$$

2. Find an upper triangular matrix A such that $A^{3}=\left[\begin{array}{cc}8 & -57 \\ 0 & 27\end{array}\right]$
3. Prove that the following matrices are orthogonal: $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right],\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$
4. Are the vectors $\mathbf{x}=(1,2)$ and $\mathbf{y}=(2,3)$ linearly independent? What does it mean (geometrically) that two vectors are linearly dependent?
5. Express $v=(1,-2,5)$ in R^{3} as a linear combination of following vectors:

$$
u_{1}=(1,-3,2), u_{2}=(2,-4,1), u_{3}=(1,-5,7)
$$

6. What does it mean that a matrix is invertible?
7. Suppose a square matrix has a null (0) determinant. What can you conclude?
8. Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$. Find $A^{-1}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right]$ and $\operatorname{det}(A)$
9. What are the eigenvalues and eigenvectors? Calculate eigenvalues and eigenvectors of a 3 by 3 matrix $\left[\begin{array}{ccc}-2 & -4 & 2 \\ -2 & 1 & 2 \\ 4 & 2 & 5\end{array}\right]$

Statistics

1. You roll two dice. What is the probability that the sum is 4 ?
2. A coin is weighted in a way such that the head (H) is twice as likely to appear as the tail (T). Find $P(T)$ and $P(H)$.
3. A die is weighted so that the outcomes produce the following probability distribution:

Outcome	1	2	3	4	5	6
Probability	0.1	0.3	0.2	0.1	0.1	0.2

Consider events $A=\{$ even number $\}, \quad B=\{2,3,4,5\}, C=\{x: x<3\}$, and $D=\{x: x>7\}$, find the following probabilities: $P(A), P(B), P(C)$, and $P(D)$.
4. What does "two random events A and B are independent" mean?
5. What are mutually exclusive (disjoint) events?
6. What does $P(A \mid B)=0.6$ mean?
7. A bag contains 6 black marbles and 4 blue marbles. Another bag contains 3 black marbles and 7 blue marbles. Suppose you randomly pick one of the bags with equal probability; from that bag, you randomly select a marble. What is the probability that you choose a blue marble?
8. In a certain city, 40 percent of the people consider themselves Conservatives (C), 35 percent consider themselves to be Liberals (L), and 25 percent consider themselves to be Independents (I). During a particular election, 45 percent of the Conservatives voted, 40 percent of the Liberals voted, and 60 percent of the Independents voted. If a randomly selected person voted, find the probability that the voter is (a) Conservative, (b) Liberal, (c) Independent.
9. A fair coin is tossed 6 times. This is a binomial experiment with $n=6$ and $p=q=\frac{1}{2}$. Calculate the probability that the head occurs exactly twice (i.e., $k=2$).

