
Backpropagation∗

March 21, 2024

1 Notations

We’ll use wljk to denote the weight for the connection from the k-th neuron in the (l−1)-th
layer to the j-th neuron in the l-th layer. So, for example, the diagram below shows the
weight on a connection from the fourth neuron in the second layer to the second neuron
in the third layer of a network:

We use a similar notation for the network’s biases and activations. Explicitly, we use blj
for the bias of the j-th neuron in the l-th layer. And we use alj for the activation of the
j-th neuron in the l-th layer. The following diagram shows examples of these notations
in use:

∗References
- Mickael Nielsen. Neural Networks and Deep Learning

1

http://neuralnetworksanddeeplearning.com/

Course Notes GEO5017: Machine Learning for the Built Environment

With these notations, the activation alj of the j-th neuron in the l-th layer is related to
the activations in the (l − 1)-th layer by the equation

alj = σ

(∑
k

wljka
l−1
k + blj

)
, (1)

where the sum is over all neurons k in the (l − 1)-th layer. To rewrite this expression in
a matrix form we define a weight matrix wl for each layer, l. The entries of the weight
matrix wl are just the weights connecting to the l-th layer of neurons, that is, the entry
in the j-th row and k-th column is wljk. Similarly, for each layer l we define a bias vector,

bl. You can probably guess how this works – the components of the bias vector are just
the values blj, one component for each neuron in the l-th layer. With these notations in
mind, Equation (1) can be rewritten in the beautiful and compact vectorized form

al = σ(wlal−1 + bl). (2)

This expression gives us a much more global way of thinking about how the activations
in one layer relate to activations in the previous layer: we just apply the weight matrix
to the activations, then add the bias vector, and finally apply the σ function.

When using Equation (2) to compute al, we compute the intermediate quantity zl ≡
wlal−1+bl along the way. This quantity turns out to be useful enough to be worth naming:
we call zl the weighted input to the neurons in layer l. We’ll make considerable use of
the weighted input zl later in the lecture notes. Equation (2) is sometimes written in
terms of the weighted input, as al = σ(zl). It’s also worth noting that zl has components
zlj =

∑
k w

l
jka

l−1
k + blj, that is, zlj is just the weighted input to the activation function for

neuron j in layer l.

2 Cost function

The goal of backpropagation is to compute the partial derivatives ∂C/∂w and ∂C/∂b
of the cost function C with respect to any weight w or bias b in the network. For
backpropagation to work we need to make two main assumptions about the form of the
cost function. Before stating those assumptions, though, it’s useful to have an example
cost function in mind. We’ll use the quadratic cost function for simplicity.

C =
1

2n

∑
x

∥∥y(x)− aL(x)
∥∥2 , (3)

where: n is the total number of training examples; the sum is over individual training
examples, x; y = y(x) is the corresponding desired output; L denotes the number of layers
in the network; and aL = aL(x) is the vector of activations output from the network when
x is input.

The first assumption we need is that the cost function can be written as an average
C = 1

n

∑
xCx over cost functions Cx for individual training examples, x. This is the

case for the quadratic cost function, where the cost for a single training example is
Cx = 1

2
‖y − aL‖2. This assumption will also hold true for all the other cost functions

we’ll meet in this notes.
The reason we need this assumption is because what backpropagation actually lets us

do is compute the partial derivatives ∂Cx/∂w and ∂Cx/∂b for a single training example.
We then recover ∂C/∂w and ∂C/∂b by averaging over training examples.

2

Course Notes GEO5017: Machine Learning for the Built Environment

The second assumption we make about the cost is that it can be written as a function
of the outputs from the neural network:

For example, the quadratic cost function satisfies this requirement, since the quadratic
cost for a single training example x may be written as

C =
1

2

∥∥y − aL∥∥2 =
1

2

∑
j

(
yj − aLj

)2
, (4)

and thus is a function of the output activations. Of course, this cost function also depends
on the desired output y, and you may wonder why we’re not regarding the cost also as
a function of y. Remember, though, that the input training example x is fixed, and so
the output y is also a fixed parameter. In particular, it’s not something we can modify
by changing the weights and biases in any way, i.e., it’s not something which the neural
network learns. And so it makes sense to regard C as a function of the output activations
aL alone, with y merely a parameter that helps define that function.

3 The four fundamental equations behind backprop-

agation

Backpropagation is about understanding how changing the weights and biases in a net-
work changes the cost function. Ultimately, this means computing the partial derivatives
∂C/∂wljk and ∂C/∂blj. But to compute those, we first introduce an intermediate quantity,

δlj, which we call the error in the j-th neuron in the l-th layer. Backpropagation will give
us a procedure to compute the error δlj, and then will relate δlj to ∂C/∂wljk and ∂C/∂blj.

To understand how the error is defined, imagine there is a demon in our neural
network:

3

Course Notes GEO5017: Machine Learning for the Built Environment

The demon sits at the j-th neuron in layer l. As the input to the neuron comes in, the
demon messes with the neuron’s operation. It adds a little change ∆zlj to the neuron’s
weighted input, so that instead of outputting σ(zlj), the neuron instead outputs σ(zlj +
∆zlj). This change propagates through later layers in the network, finally causing the

overall cost to change by an amount ∂C
∂zlj

∆zlj.

Now, this demon is a good demon, and is trying to help you improve the cost, i.e.,
they’re trying to find a ∆zlj which makes the cost smaller. Suppose ∂C/∂zlj has a large
value (either positive or negative). Then the demon can lower the cost quite a bit by
choosing ∆zlj to have the opposite sign to ∂C/∂zlj. By contrast, if ∂C/∂zlj is close to zero,
then the demon can’t improve the cost much at all by perturbing the weighted input zlj.
So far as the demon can tell, the neuron is already pretty near optimal1. And so there’s
a heuristic sense in which ∂C/∂zlj is a measure of the error in the neuron.

Motivated by this story, we define the error δlj of neuron j in layer l by

δlj ≡
∂C

∂zlj
. (5)

As per our usual conventions, we use δl to denote the vector of errors associated with
layer l. Backpropagation will give us a way of computing δl for every layer, and then
relating those errors to the quantities of real interest, ∂C/∂wljk and ∂C/∂blj.

Here’s a preview of the ways we’ll delve more deeply into the equations later in the
lecture notes: I’ll give a short proof of the equations, which helps explain why they are
true; we’ll restate the equations in algorithmic form as pseudocode, and see how the
pseudocode can be implemented as real, running Python code; and, in the final section of
the lecture notes, we’ll develop an intuitive picture of what the backpropagation equations
mean, and how someone might discover them from scratch. Along the way we’ll return
repeatedly to the four fundamental equations, and as you deepen your understanding
those equations will come to seem comfortable and, perhaps, even beautiful and natural.

An equation for the error in the output layer, δL: The components of δL are
given by

δLj =
∂C

∂aLj
σ′(zLj). (BP1)

This is a very natural expression. The first term on the right, ∂C/∂aLj , just measures
how fast the cost is changing as a function of the j-th output activation. If, for example,
C doesn’t depend much on a particular output neuron, j, then δLj will be small, which is
what we’d expect. The second term on the right, σ′(zLj), measures how fast the activation
function σ is changing at zLj .

Notice that everything in Eq. (BP1) is easily computed. In particular, we compute zLj
while computing the behaviour of the network, and it’s only a small additional overhead
to compute σ′(zLj). The exact form of ∂C/∂aLj will, of course, depend on the form of
the cost function. However, provided the cost function is known there should be little
trouble computing ∂C/∂aLj . For example, if we’re using the quadratic cost function then
C = 1

2

∑
j(yj − aLj)2, and so ∂C/∂aLj = (aLj − yj), which obviously is easily computable.

Equation (BP1) is a componentwise expression for δL. It’s a perfectly good expression,
but not the matrix-based form we want for backpropagation. However, it’s easy to rewrite

1This is only the case for small changes ∆zlj , of course. We’ll assume that the demon is constrained
to make such small changes.

4

Course Notes GEO5017: Machine Learning for the Built Environment

the equation in a matrix-based form, as

δL = ∇aC � σ′(zL). (BP1a)

Here, ∇aC is defined to be a vector whose components are the partial derivatives ∂C/∂aLj .
You can think of ∇aC as expressing the rate of change of C with respect to the output
activations. � is elementwise product (Hadamard product) operation. It’s easy to see
that Equations (BP1a) and (BP1) are equivalent, and for that reason from now on we’ll
use (BP1) interchangeably to refer to both equations. As an example, in the case of the
quadratic cost we have ∇aC = (aL − y), and so the fully matrix-based form of (BP1)
becomes

δL = (aL − y)� σ′(zL). (6)

As you can see, everything in this expression has a nice vector form, and is easily computed
using a library such as Numpy.

An equation for the error δl in terms of the error in the next layer, δl+1: In
particular

δl =
(
(wl+1)T δl+1

)
� σ′(zl), (BP2)

where (wl+1)T is the transpose of the weight matrix wl+1 for the (l+1)-th layer. This
equation appears complicated, but each element has a nice interpretation. Suppose we
know the error δl+1 at the (l+1)-th layer. When we apply the transpose weight matrix,
(wl+1)T , we can think intuitively of this as moving the error backward through the net-
work, giving us some sort of measure of the error at the output of the l-th layer. We
then take the Hadamard product �σ′(zl). This moves the error backward through the
activation function in layer l, giving us the error δl in the weighted input to layer l.

By combining (BP2) with (BP1) we can compute the error δl for any layer in the
network. We start by using (BP1) to compute δL, then apply Equation (BP2) to compute
δL−1, then Equation (BP2) again to compute δL−2, and so on, all the way back through
the network.

An equation for the rate of change of the cost with respect to any bias in
the network: In particular:

∂C

∂blj
= δlj. (BP3)

That is, the error δlj is exactly equal to the rate of change ∂C/∂blj. This is great news,
since (BP1) and (BP2) have already told us how to compute δlj. We can rewrite (BP3)
in shorthand as

∂C

∂b
= δ, (7)

where it is understood that δ is being evaluated at the same neuron as the bias b.
An equation for the rate of change of the cost with respect to any weight

in the network: In particular:
∂C

∂wljk
= al−1k δlj. (BP4)

This tells us how to compute the partial derivatives ∂C/∂wljk in terms of the quantities

δl and al−1, which we already know how to compute.

5

Course Notes GEO5017: Machine Learning for the Built Environment

4 The backpropagation algorithm

The backpropagation equations provide us with a way of computing the gradient of the
cost function. Let’s explicitly write this out in the form of an algorithm:

1) Input x: Set the corresponding activation a1 for the input layer.

2) Feedforward: For each l = 2, 3, . . . , L compute zl = wlal−1 + bl and al = σ(zl).

3) Output error δL: Compute the vector δL = ∇aC � σ′(zL).

4) Backpropagate the error: For each l = L − 1, L − 2, . . . , 2 compute δl =
((wl+1)T δl+1)� σ′(zl).

5) Output: The gradient of the cost function is given by ∂C
∂wl

jk
= al−1k δlj and ∂C

∂blj
= δlj.

As I’ve described it above, the backpropagation algorithm computes the gradient of
the cost function for a single training example, C = Cx. In practice, it’s common to
combine backpropagation with a learning algorithm such as stochastic gradient descent,
in which we compute the gradient for many training examples. In particular, given a
mini-batch of m training examples, the following algorithm applies a gradient descent
learning step based on that mini-batch:

1) Input a set of training examples

2) For each training example x: Set the corresponding input activation ax,1, and per-
form the following steps:

• Feedforward: For each l= 2, 3, . . . , L compute zx,l = wlax,l−1 + bl and ax,l =
σ(zx,l).

• Output error δx,L: Compute the vector δx,L = ∇aCx � σ′(zx,L).

• Backpropagate the error: For each l = L − 1, L − 2, . . . , 2 compute δx,l =
((wl+1)T δx,l+1)� σ′(zx,l).

3) Gradient descent: For each l = L,L − 1, . . . , 2 update the weights according to
the rule wl → wl − η

m

∑
x δ

x,l(ax,l−1)T , and the biases according to the rule bl →
bl − η

m

∑
x δ

x,l.

6

Course Notes GEO5017: Machine Learning for the Built Environment

Of course, to implement stochastic gradient descent in practice you also need an outer
loop generating mini-batches of training examples, and an outer loop stepping through
multiple epochs of training. I’ve omitted those for simplicity.

5 The code for backpropagation

The code for these methods is a direct translation of the algorithm described above. In
particular, the update mini batch method updates the Network’s weights and biases
by computing the gradient for the current mini batch of training examples:

class Network(object):

...

def update_mini_batch(self , mini_batch , eta):

""" Update the network ’s weights and biases by applying

gradient descent using backpropagation to a single mini batch

.

The "mini_batch" is a list of tuples "(x, y)", and "eta"

is the learning rate."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

for x, y in mini_batch:

delta_nabla_b , delta_nabla_w = self.backprop(x, y)

nabla_b = [nb+dnb for nb , dnb in zip(nabla_b , delta_nabla_b

)]

nabla_w = [nw+dnw for nw , dnw in zip(nabla_w , delta_nabla_w

)]

self.weights = [w-(eta/len(mini_batch))*nw

for w, nw in zip(self.weights , nabla_w)]

self.biases = [b-(eta/len(mini_batch))*nb

for b, nb in zip(self.biases , nabla_b)]

Most of the work is done by the line delta nabla b, delta nabla w = self.backprop(x,
y) which uses the backprop method to figure out the partial derivatives ∂Cx/∂b

l
j and

∂Cx/∂w
l
jk. The backprop method follows the algorithm in the last section closely. There

is one small change – we use a slightly different approach to indexing the layers. This
change is made to take advantage of a feature of Python, namely the use of negative list
indices to count backward from the end of a list, so, e.g., l[-3] is the third last entry in a
list l. The code for backprop is below, together with a few helper functions, which are
used to compute the σ function, the derivative σ′, and the derivative of the cost function.
With these inclusions you should be able to understand the code in a self-contained way.
If something’s tripping you up, you may find it helpful to consult the original description
(and complete listing) of the code.

class Network(object):

...

def backprop(self , x, y):

""" Return a tuple "(nabla_b , nabla_w)" representing the

gradient for the cost function C_x. "nabla_b" and

"nabla_w" are layer -by -layer lists of numpy arrays , similar

to "self.biases" and "self.weights "."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

7

Course Notes GEO5017: Machine Learning for the Built Environment

nabla_w = [np.zeros(w.shape) for w in self.weights]

feedforward

activation = x

activations = [x] # list to store all the activations , layer

by layer

zs = [] # list to store all the z vectors , layer by layer

for b, w in zip(self.biases , self.weights):

z = np.dot(w, activation)+b

zs.append(z)

activation = sigmoid(z)

activations.append(activation)

backward pass

delta = self.cost_derivative(activations [-1], y) *

sigmoid_prime(zs[-1])

nabla_b [-1] = delta

nabla_w [-1] = np.dot(delta , activations [-2]. transpose ())

Note that the variable l in the loop below is used a little

differently to the notation in the notes. Here ,

l = 1 means the last layer of neurons , l = 2 is the

second -last layer , and so on. It’s a renumbering of the

scheme in the notes , used here to take advantage of the

fact

that Python can use negative indices in lists.

for l in xrange(2, self.num_layers):

z = zs[-l]

sp = sigmoid_prime(z)

delta = np.dot(self.weights[-l+1]. transpose (), delta) * sp

nabla_b[-l] = delta

nabla_w[-l] = np.dot(delta , activations[-l-1]. transpose ())

return (nabla_b , nabla_w)

...

def cost_derivative(self , output_activations , y):

""" Return the vector of partial derivatives \partial {} C_x /

\partial {} a for the output activations."""

return (output_activations -y)

def sigmoid(z):

"""The sigmoid function."""

return 1.0/(1.0+ np.exp(-z))

def sigmoid_prime(z):

""" Derivative of the sigmoid function."""

return sigmoid(z)*(1- sigmoid(z))

8

	Notations
	Cost function
	The four fundamental equations behind backpropagation
	The backpropagation algorithm
	The code for backpropagation

