
Backpropagation∗

March 13, 2025

Contents

1 Notations and Preliminaries 2

2 Cost Function 3

3 The Fundamental Equations of Backpropagation 3

4 The Backpropagation Algorithm 5

5 Code Implementation of Backpropagation 6

∗This lecture notes were written by Nail Ibrahimli and were heavily inspired by and adapted from:
- Mickael Nielsen. Neural Networks and Deep Learning

1

http://neuralnetworksanddeeplearning.com/

Course Notes GEO5017: Machine Learning for the Built Environment

1 Notations and Preliminaries

To describe backpropagation we adopt the following notation:

• wl
jk denotes the weight for the connection from the k-th neuron in the (l − 1)-th

layer to the j-th neuron in the l-th layer.

• blj is the bias for the j-th neuron in the l-th layer.

• alj is the activation of the j-th neuron in the l-th layer.

For example, the diagram below shows the weight from the fourth neuron in the second
layer to the second neuron in the third layer:

In vectorized form we define for each layer l:

• A weight matrix wl, where the entry in the j-th row and k-th column is wl
jk.

• A bias vector bl, with components blj.

The activation of the j-th neuron in layer l is given by:

alj = σ

(∑
k

wl
jka

l−1
k + blj

)
, (1)

or, in compact vectorized notation,

al = σ
(
wlal−1 + bl

)
. (2)

Here, σ is the activation function (typically the sigmoid), and we define the weighted
input to layer l as:

zl ≡ wlal−1 + bl,

so that al = σ(zl).

2

Course Notes GEO5017: Machine Learning for the Built Environment

2 Cost Function

Our goal is to compute the partial derivatives ∂C/∂w and ∂C/∂b for a given cost function
C, so that we can update the network parameters during training. For simplicity, we
consider the quadratic cost function:

C =
1

2n

∑
x

∥∥y(x)− aL(x)
∥∥2, (3)

where:

• n is the number of training examples,

• x denotes an individual training example,

• y(x) is the desired output for x,

• L is the total number of layers,

• aL(x) is the network’s output for x.

Again, the aim of backpropagation is to compute the partial derivatives ∂C/∂w and
∂C/∂b of the cost function C with respect to any weight w or bias b in the network. For
backpropagation to work we need to make two main assumptions about the form of the
cost function.

1) It can be written as an average over training examples, i.e., C = 1
n

∑
x Cx, where

Cx is the cost for a single example. (i.e. dependency on input)

2) It is a function of the output activations only (with the desired output y treated as
a fixed parameter). For the quadratic cost,

Cx =
1

2

∑
j

(
yj − aLj

)2
, (4)

which depends solely on aL. (i.e. we need to tune the weights of the model such
that the output layer is steered towards to yjr desired output)

3 The Fundamental Equations of Backpropagation

Backpropagation is designed to efficiently compute the gradients of the cost function with
respect to every weight and bias in the network. To do so, we introduce an error term
for each neuron. For the j-th neuron in layer l, define:

δlj ≡
∂C

∂zlj
. (5)

This quantity measures how a small change in the weighted input zlj affects the overall
cost.

The following four equations form the backbone of the backpropagation algorithm:

3

Course Notes GEO5017: Machine Learning for the Built Environment

1. Error in the Output Layer (BP1)

For the output layer (l = L), the error is given by:

δLj =
∂C

∂aLj
σ′(zLj). (BP1)

In vectorized form, using the Hadamard (elementwise) product ⊙, we write:

δL = ∇aC ⊙ σ′(zL). (BP1a)

For example, when using the quadratic cost function we have ∇aC = (aL − y), so that:

δL = (aL − y)⊙ σ′(zL). (6)

2. Error Backpropagation (BP2)

For any layer l (with 2 ≤ l < L), the error is propagated backward from the layer ahead:

δl =
(
(wl+1)T δl+1

)
⊙ σ′(zl). (BP2)

Here, (wl+1)T is the transpose of the weight matrix for the next layer. This equation
shows how the error “moves backward” through the network.

3. Partial Derivative with Respect to Biases (BP3)

The rate of change of the cost with respect to a bias is given by:

∂C

∂blj
= δlj. (BP3)

In shorthand, one can write:
∂C

∂b
= δ.

4. Partial Derivative with Respect to Weights (BP4)

For a weight connecting the k-th neuron in layer (l− 1) to the j-th neuron in layer l, we
have:

∂C

∂wl
jk

= al−1
k δlj. (BP4)

4

Course Notes GEO5017: Machine Learning for the Built Environment

4 The Backpropagation Algorithm

The backpropagation algorithm computes the gradient of the cost function with respect
to the network parameters for a single training example. The process can be summarized
in the following steps:

1) Input: Set the input activation a1 = x.

2) Feedforward: For each layer l = 2, 3, . . . , L, compute

zl = wl al−1 + bl and al = σ(zl).

3) Output Error: Compute the error in the output layer:

δL = ∇aC ⊙ σ′(zL).

4) Backpropagate the Error: For each layer l = L− 1, L− 2, . . . , 2, compute

δl =
(
(wl+1)T δl+1

)
⊙ σ′(zl).

5) Gradient Computation: The gradients for the cost function are given by

∂C

∂wl
jk

= al−1
k δlj and

∂C

∂blj
= δlj.

When training with a mini-batch of m training examples, the above procedure is
applied to each example, and the gradients are averaged before updating the weights and
biases.

Mini-Batch Gradient Descent Algorithm

1) Input: A mini-batch of m training examples.

2) For each training example x:

• Set input activation ax,1 = x.

• Feedforward: Compute zx,l = wl ax,l−1 + bl and ax,l = σ(zx,l) for l = 2, . . . , L.

• Compute output error: δx,L = ∇aCx ⊙ σ′(zx,L).

• Backpropagate the error for l = L− 1, L− 2, . . . , 2:

δx,l =
(
(wl+1)T δx,l+1

)
⊙ σ′(zx,l).

3) Update: For each layer l, update the parameters by averaging over the mini-batch:

wl → wl − η

m

∑
x

δx,l (ax,l−1)T , bl → bl − η

m

∑
x

δx,l.

5

Course Notes GEO5017: Machine Learning for the Built Environment

5 Code Implementation of Backpropagation

The following Python code is a direct translation of the algorithm described above. It
shows how to update the network’s weights and biases for a mini-batch using backprop-
agation.

Updating with a Mini-Batch

class Network(object):

...

def update_mini_batch(self , mini_batch , eta):

""" Update the network ’s weights and biases by applying

gradient descent using backpropagation to a single mini batch

.

The "mini_batch" is a list of tuples "(x, y)", and "eta"

is the learning rate."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

for x, y in mini_batch:

delta_nabla_b , delta_nabla_w = self.backprop(x, y)

nabla_b = [nb+dnb for nb , dnb in zip(nabla_b , delta_nabla_b

)]

nabla_w = [nw+dnw for nw , dnw in zip(nabla_w , delta_nabla_w

)]

self.weights = [w-(eta/len(mini_batch))*nw

for w, nw in zip(self.weights , nabla_w)]

self.biases = [b-(eta/len(mini_batch))*nb

for b, nb in zip(self.biases , nabla_b)]

Backpropagation Method

class Network(object):

...

def backprop(self , x, y):

""" Return a tuple "(nabla_b , nabla_w)" representing the

gradient for the cost function C_x. "nabla_b" and

"nabla_w" are layer -by -layer lists of numpy arrays , similar

to "self.biases" and "self.weights "."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

feedforward

activation = x

activations = [x] # list to store all the activations , layer

by layer

zs = [] # list to store all the z vectors , layer by layer

for b, w in zip(self.biases , self.weights):

z = np.dot(w, activation)+b

zs.append(z)

activation = sigmoid(z)

activations.append(activation)

6

Course Notes GEO5017: Machine Learning for the Built Environment

backward pass

delta = self.cost_derivative(activations [-1], y) *

sigmoid_prime(zs[-1])

nabla_b [-1] = delta

nabla_w [-1] = np.dot(delta , activations [-2]. transpose ())

Note that the variable l in the loop below is used a little

differently to the notation in the notes. Here ,

l = 1 means the last layer of neurons , l = 2 is the

second -last layer , and so on. It’s a renumbering of the

scheme in the notes , used here to take advantage of the

fact

that Python can use negative indices in lists.

for l in xrange(2, self.num_layers):

z = zs[-l]

sp = sigmoid_prime(z)

delta = np.dot(self.weights[-l+1]. transpose (), delta) * sp

nabla_b[-l] = delta

nabla_w[-l] = np.dot(delta , activations[-l-1]. transpose ())

return (nabla_b , nabla_w)

...

def cost_derivative(self , output_activations , y):

""" Return the vector of partial derivatives \partial {} C_x /

\partial {} a for the output activations."""

return (output_activations -y)

def sigmoid(z):

"""The sigmoid function."""

return 1.0/(1.0+ np.exp(-z))

def sigmoid_prime(z):

""" Derivative of the sigmoid function."""

return sigmoid(z)*(1- sigmoid(z))

7

	Notations and Preliminaries
	Cost Function
	The Fundamental Equations of Backpropagation
	The Backpropagation Algorithm
	Code Implementation of Backpropagation

