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1 Introduction

In these lecture notes we introduce neural networks by focusing on the problem of rec-
ognizing handwritten digits. Although the human visual system is remarkably adept at
recognizing digits, this task poses significant challenges for computers. Neural networks,
which learn from training examples, provide an effective solution. Throughout these
notes, you will learn how to implement a neural network that recognizes handwritten
digits with high accuracy, without any human intervention. This lecture notes serve for
understanding key neural network components: perceptrons, sigmoid neurons and the
learning algorithm known as stochastic gradient descent. By the end, you will have a
foundational grasp of multi-layered perceptron and its relevance in modern applications.

2 Perceptrons

A perceptron is an early model of an artificial neuron developed by Frank Rosenblatt in
the 1950s and 1960s. It takes several binary inputs and produces a single binary output
based on a weighted sum. Each input xj is multiplied by a corresponding weight wj, and
the result is compared against a threshold. In precise terms, a perceptron computes:

output =

{
0, if

∑
j wjxj ≤ threshold,

1, if
∑

j wjxj > threshold.
(1)

A Decision-Making Example

Imagine deciding whether to attend a cheese festival in Gouda based on three factors:

1) Is the weather good?

2) Do your friends want to accompany you?

3) Is the venue easy to reach?

We encode these factors as binary variables x1, x2, and x3. If you love cheese so much
that you would attend regardless of your friends’ interest or the commute, but would
never go if the weather is bad, you might assign weights w1 = 6, w2 = 2, w3 = 2 and
choose a threshold of 5. In this case, the output is 1 (go to the festival) if the weighted
sum exceeds the threshold, and 0 otherwise.

Multi-Layer Perceptrons

Perceptrons can be combined into layers. In a multi-layer network, the output of one
layer serves as the input to the next. For example, the first (input) layer might make
simple decisions based on raw data, while subsequent layers combine these decisions into
more abstract and complex conclusions:
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Note that even if the diagram shows multiple arrows emerging from a perceptron, each
perceptron still produces a single output that is distributed as input to several subsequent
neurons.

Notational Simplifications

The condition
∑

j wjxj > threshold can be written more compactly by:

1) Expressing the weighted sum as a dot product: w · x =
∑

j wjxj.

2) Moving the threshold to the left side of the inequality by introducing the bias
b ≡ −threshold.

Thus, the perceptron rule becomes:

output =

{
0, if w · x+ b ≤ 0,

1, if w · x+ b > 0.
(2)

The bias can be interpreted as a measure of how easily the perceptron “fires” (i.e., outputs
a 1). In the remainder of these notes, we will use the bias formulation exclusively.

3 Sigmoid Neurons

While perceptrons are useful for basic decision-making, their binary nature makes them
unsuitable for gradual learning. A slight change in a weight or bias in a perceptron can
flip the output abruptly from 0 to 1. In contrast, a sigmoid neuron uses a smooth
activation function to produce outputs that vary continuously between 0 and 1. Its
output is given by

σ(w · x+ b),

where σ(z) is the sigmoid function defined as

σ(z) =
1

1 + e−z
.

This function approximates the behavior of a perceptron: for large positive z, σ(z) ≈ 1,
and for large negative z, σ(z) ≈ 0. However, because the transition is smooth, small
changes in weights and biases yield small changes in the output. It is an essential property
and requirement for gradient-based learning.
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4 The Architecture of Sigmoid Neural Networks

A typical neural network is organized into layers:

• The input layer receives the raw data (e.g., pixel values from an image).

• One or more hidden layers process the input into higher-level features.

• The output layer produces the final prediction (e.g., the digit class).

The following diagram illustrates a network with these three layers:

5 A Simple Network for Classifying Digits

⇒

We now apply these ideas to the task of handwritten digit classification. The problem
can be divided into two parts:

1) Segmentation: Breaking an image containing several digits into individual digit
images. As shown in paper figure.

2) Classification: Determining which digit (0–9) is depicted in each segmented image.
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Here, we focus on classification. We will use a three-layer neural network:

• The input layer has 784 neurons, corresponding to the 28 by 28 pixels of a digit
image.

• The hidden layer contains n neurons (e.g., n = 15 in our example), which can be
adjusted to experiment with network complexity.

• The output layer consists of 10 neurons, each representing a digit from 0 to 9.
The network’s prediction is given by the neuron with the highest activation.

6 Learning with Gradient Descent

To train the network, we use a training set. Here, we utilize the MNIST dataset containing
tens of thousands of handwritten digit images. Each training input is represented as a
784-dimensional vector x, where each component corresponds to a pixel’s gray value. The
desired output for an input image depicting the digit 6, for example, is a 10-dimensional
vector

y(x) = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0)T .
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Cost Function

To measure how well the network performs, we define the quadratic cost function:

C(w, b) ≡ 1

2n

∑
x

∥y(x)− a∥2, (4)

where:

• w denotes all the weights in the network,

• b denotes all the biases,

• n is the number of training examples,

• a is the output vector produced by the network when input x is given.

Gradient Descent Overview

The goal is to adjust w and b to minimize C(w, b). Consider a function C(v) of variables
v = (v1, v2, . . . , vm)

T . A small change ∆v causes a change in C given approximately by

∆C ≈ ∇C ·∆v, (5)

where the gradient is

∇C ≡
(
∂C

∂v1
, . . . ,

∂C

∂vm

)T

. (6)

To ensure ∆C is negative (i.e., to move downhill in the cost landscape), choose

∆v = −η∇C, (7)

with a small positive parameter η called the learning rate. Then, the update rule is

v → v′ = v − η∇C. (8)
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Application to Neural Networks

For the weights wk and biases bl, the update rules become:

wk → w′
k = wk − η

∂C

∂wk

, (9)

bl → b′l = bl − η
∂C

∂bl
. (10)

By iteratively applying these updates, the network gradually “rolls down” the cost func-
tion landscape toward a minimum.

Stochastic Gradient Descent

Computing the gradient over the entire training set can be computationally expensive.
Stochastic gradient descent (SGD) approximates the true gradient by using a small,
randomly selected subset (mini-batch) of the training data. If X1, X2, . . . , Xm denote the
mini-batch, then we approximate:

∇C ≈ 1

m

m∑
j=1

∇CXj
, (11)

and update the weights and biases accordingly:

wk → wk −
η

m

m∑
j=1

∂CXj

∂wk

, (12)

bl → bl −
η

m

m∑
j=1

∂CXj

∂bl
. (13)

One complete pass through the training set is called an epoch. After each epoch, the
process is repeated with a new randomly selected mini-batch, allowing the network to
gradually learn the appropriate weights and biases.
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