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In this lecture notes, we introduce neural networks, and we use the recognization of
handwritten digits as an example throughout this document.

1 Introduction

The human visual system is amazing, but recognizing handwritten digits is a difficult task
for computers. Neural networks, which learn from training examples, offer a solution.
This lecture notes will teach how to implement a neural network that recognizes hand-
written digits with good accuracy, without human intervention. Handwriting recognition
is an excellent prototype problem for learning about neural networks, and throughout the
course, the lecturer will develop key ideas about neural networks, including two impor-
tant types of artificial neuron (the perceptron and the sigmoid neuron), and the standard
learning algorithm for neural networks, known as stochastic gradient descent. By the end
of the lecture notes, students will be able to understand what deep learning is and why
it matters.

2 Perceptrons

A perceptron is a type of artificial neuron that was developed in the 1950s and 1960s
by the scientist Frank Rosenblatt. It takes several binary inputs and produces a single
binary output based on a simple rule. Rosenblatt introduced weights to the inputs,
which are real numbers expressing the importance of the respective inputs to the output.
The neuron’s output, 0 or 1, is determined by whether the weighted sum is less than or
greater than some threshold value, which is also a parameter of the neuron. So how do
perceptrons work? A perceptron takes several binary inputs, x1, x2, . . ., and produces a
single binary output:

In the example shown the perceptron has three inputs, x1, x2, x3. In general it could
have more or fewer inputs. Rosenblatt proposed a simple rule to compute the output. He
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introduced weights, w1,w2, . . ., real numbers expressing the importance of the respective
inputs to the output. The neuron’s output, 0 or 1, is determined by whether the weighted
sum

∑
j wjxj is less than or greater than some threshold value. Just like the weights, the

threshold is a real number which is a parameter of the neuron. To put it in more precise
algebraic terms:

output =

{
0 if

∑
j wjxj ≤ threshold

1 if
∑

j wjxj > threshold
(1)

That’s the basic mathematical model. A way you can think about the perceptron is
that it’s a device that makes decisions by weighing up evidence. Let me give an example.
Suppose the weekend is coming up, and you’ve heard that there’s going to be a cheese
festival in Gouda. You like cheese, and are trying to decide whether or not to go to the
festival. You might make your decision by weighing up three factors:

1) Is the weather good?

2) Do your friends want to accompany you?

3) Is the place easy to commute?

We can represent these three factors by corresponding binary variables x1, x2 and x3.
For instance, we’d have x1 = 1 if the weather is good, and x1 = 0 if the weather is bad.
Similarly, x2 = 1 if your friends want to go, and x2 = 0 if not. And similarly again for x3
and public transit.

Now, suppose you deep into Dutch culture and adore cheese :), so much so that
you’re happy to go to the festival even if your friends are uninterested and the festival
is hard to get to. But perhaps you really loathe bad weather, and there’s no way you’d
go to the festival if the weather is bad. You can use perceptrons to model this kind of
decision-making. One way to do this is to choose a weight w1 = 6 for the weather, and
w2 = 2 and w3 = 2 for the other conditions. The larger value of w1 indicates that the
weather matters a lot to you, much more than whether your friends, or the commute.
Finally, suppose you choose a threshold of 5 for the perceptron. With these choices, the
perceptron implements the desired decision-making model, outputting 1 whenever the
weather is good, and 0 whenever the weather is bad. It makes no difference to the output
whether your friends want to go, or whether public transit is nearby.

By varying the weights and the threshold, we can get different models of decision-
making. For example, suppose we instead chose a threshold of 3. Then the perceptron
would decide that you should go to the festival whenever the weather was good or when
both the festival venue is easy to commute and your friends were willing to join you. In
other words, it’d be a different model of decision-making. Dropping the threshold means
you’re more willing to go to the festival.

Obviously, the perceptron isn’t a complete model of human decision-making! But
what the example illustrates is how a perceptron can weigh up different kinds of evidence
in order to make decisions. And it should seem plausible that a complex network of
perceptrons could make quite subtle decisions:
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In this network, the first column of perceptrons – what we’ll call the first layer of
perceptrons – is making three very simple decisions, by weighing the input evidence.
What about the perceptrons in the second layer? Each of those perceptrons is making a
decision by weighing up the results from the first layer of decision-making. In this way a
perceptron in the second layer can make a decision at a more complex and more abstract
level than perceptrons in the first layer. And even more complex decisions can be made
by the perceptron in the third layer. In this way, a many-layer network of perceptrons
can engage in sophisticated decision making.

Incidentally, when I defined perceptrons I said that a perceptron has just a single
output. In the network above the perceptrons look like they have multiple outputs. In
fact, they’re still single output. The multiple output arrows are merely a useful way of
indicating that the output from a perceptron is being used as the input to several other
perceptrons. It’s less unwieldy than drawing a single output line which then splits.

Let’s simplify the way we describe perceptrons. The condition
∑

j wjxj >threshold
is cumbersome, and we can make two notational changes to simplify it. The first change
is to write

∑
j wjxj as a dot product, w · x =

∑
j wjxj, where w and x are vectors whose

components are the weights and inputs, respectively. The second change is to move the
threshold to the other side of the inequality, and to replace it by what’s known as the
perceptron’s bias, b≡ −threshold. Using the bias instead of the threshold, the perceptron
rule can be rewritten:

output =

{
0 if w · x+ b ≤ 0

1 if w · x+ b > 0
(2)

You can think of the bias as a measure of how easy it is to get the perceptron to output
a 1. Or to put it in more biological terms, the bias is a measure of how easy it is to
get the perceptron to fire. For a perceptron with a really big bias, it’s extremely easy
for the perceptron to output a 1. But if the bias is very negative, then it’s difficult for
the perceptron to output a 1. Obviously, introducing the bias is only a small change
in how we describe perceptrons, but we’ll see later that it leads to further notational
simplifications. Because of this, in the remainder of the lecture notes we won’t use the
threshold, we’ll always use the bias.

3 Sigmoid neurons

For example, the inputs to the network might be the raw pixel data from a scanned,
handwritten image of a digit. And we’d like the network to learn weights and biases so
that the output from the network correctly classifies the digit. To see how learning might
work, suppose we make a small change in some weight (or bias) in the network. What
we’d like is for this small change in weight to cause only a small corresponding change in
the output from the network. As we’ll see in a moment, this property will make learning
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possible. Schematically, here’s what we want (obviously this network is too simple to do
handwriting recognition!):

We can modify the weights and biases of a neural network to get it to behave more
like we want if a small change in weight or bias causes only a small change in output.
However, this is not true when the network contains perceptrons. In fact, a slight change
in weight or bias of any single perceptron can cause a complete flip in the output from 0
to 1, resulting in the change of the whole network’s behavior in a hard-to-control manner.
This makes it difficult to gradually modify the weights and biases to get the network closer
to the desired behavior, and hence it’s not immediately clear how to make a network of
perceptrons learn.

A new type of artificial neuron called a sigmoid neuron can overcome this problem.
Sigmoid neurons are similar to perceptrons, but with small changes in their weights and
bias, causing only a small change in their output. The output of a sigmoid neuron is
σ(w · x+ b), where σ is the sigmoid function defined by σ(z) = 1

1+e−z . The output takes
any value between 0 and 1 for inputs x1, x2, ..., with corresponding weights w1, w2, ...,
and a bias b. The output function σ has a smoothed out version of a step function shape,
which can be used to represent a continuous range of outputs.
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Although the algebraic form of the sigmoid function may seem opaque and forbidding,
there are many similarities between perceptrons and sigmoid neurons, and the algebraic
form of the sigmoid function turns out to be more of a technical detail than a true barrier
to understanding. For example, when the input z to the sigmoid function is a large
positive number, the output of the sigmoid neuron is approximately 1, just as it would
have been for a perceptron. Similarly, when z is very negative, the output from a sigmoid
neuron closely approximates a perceptron.
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If σ had in fact been a step function, then the sigmoid neuron would be a perceptron,
since the output would be 1 or 0 depending on whether w · x + b was positive or nega-
tive1. By using the actual σ function we get, as already implied above, a smoothed out
perceptron. Indeed, it’s the smoothness of the σ function that is the crucial fact, not its
detailed form. The smoothness of σ means that small changes ∆wj in the weights and
∆b in the bias will produce a small change ∆output in the output from the neuron. In
fact, calculus tells us that ∆output is well approximated by

∆output ≈
∑
j

∂output

∂wj

∆wj +
∂output

∂b
∆b (3)

4 The architecture of sigmoid neural networks

In the following section, I will introduce a neural network that can classify handwritten
digits effectively. To facilitate understanding, let me first explain some relevant terminol-
ogy used to identify different parts of a network. Consider the network diagram below:

As previously mentioned, the leftmost layer in the diagram is the input layer, consist-
ing of input neurons. The rightmost layer is the output layer, containing a single output
neuron. The middle layers are the hidden layer, where the neurons are neither inputs nor
outputs.

5 A simple network to classify handwritten digits

Having defined neural networks, let’s return to handwriting recognition. We can split the
problem of recognizing handwritten digits into two sub-problems. First, we’d like a way
of breaking an image containing many digits into a sequence of separate images, each
containing a single digit. For example, we’d like to break the image

1Actually, when w ·x+ b = 0 the perceptron outputs 0, while the step function outputs 1. So, strictly
speaking, we’d need to modify the step function at that one point. But you get the idea.
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into six separate images,

We humans solve this segmentation problem with ease, but it’s challenging for a computer
program to correctly break up the image. Once the image has been segmented, the
program then needs to classify each individual digit. So, for instance, we’d like our
program to recognize that the first digit above,

is a 5. We’ll focus on writing a program to solve the second problem, that is, classifying
individual digits. To recognize individual digits we will use a three-layer neural network:

The input layer of the network contains neurons encoding the values of the input pixels.
As discussed in the next section, our training data for the network will consist of many
28 by 28 pixel images of scanned handwritten digits, and so the input layer contains
784 = 28× 28 neurons.
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The second layer of the network is a hidden layer. We denote the number of neurons
in this hidden layer by n, and we’ll experiment with different values for n. The example
shown illustrates a small hidden layer, containing just n = 15 neurons.

The output layer of the network contains 10 neurons. If the first neuron fires, i.e.,
has an output ≈ 1, then that will indicate that the network thinks the digit is a 0. If
the second neuron fires then that will indicate that the network thinks the digit is a 1.
And so on. A little more precisely, we number the output neurons from 0 through 9, and
figure out which neuron has the highest activation value. If that neuron is, say, neuron
number 6, then our network will guess that the input digit was a 6. And so on for the
other output neurons.

6 Learning with gradient descent

The first thing we’ll need is a data set to learn from – a so-called training data set.
We’ll use the MNIST data set, which contains tens of thousands of scanned images of
handwritten digits.

We’ll use the notation x to denote a training input. It’ll be convenient to regard
each training input x as a 28 × 28 = 784-dimensional vector. Each entry in the vector
represents the grey value for a single pixel in the image. We’ll denote the corresponding
desired output by y = y(x), where y is a 10-dimensional vector. For example, if a
particular training image, x, depicts a 6, then y(x) = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0)T is the
desired output from the network. Note that T here is the transpose operation, turning a
row vector into an ordinary (column) vector.

What we’d like is an algorithm which lets us find weights and biases so that the output
from the network approximates y(x) for all training inputs x. To quantify how well we’re
achieving this goal we define a cost function2:

C(w, b) ≡ 1

2n

∑
x

‖y(x)− a‖2 (4)

Here, w denotes the collection of all weights in the network, b all the biases, n is the total
number of training inputs, a is the vector of outputs from the network when x is input,
and the sum is over all training inputs, x.

Our goal in training a neural network is to find weights and biases which minimize the
quadratic cost function C(w, b). Suppose we’re trying to minimize some function, C(v).
This could be any real-valued function of many variables, v = v1, v2, . . .. To minimize
C(v) it helps to imagine C as a function of just two variables, which we’ll call v1 and v2:

2Sometimes referred to as a loss or objective function. We use the term cost function throughout this
lecture notes, but you should note the other terminology, since it’s often used in research papers and
other discussions of neural networks.
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What we’d like is to find where C achieves its global minimum. We start by thinking
of our function as a kind of a valley. If you squint just a little at the plot above, that
shouldn’t be too hard. And we imagine a ball rolling down the slope of the valley. Our
everyday experience tells us that the ball will eventually roll to the bottom of the valley.
To make this question more precise, let’s think about what happens when we move the
ball a small amount ∆v1 in the v1 direction, and a small amount ∆v2 in the v2 direction.
Calculus tells us that C changes as follows:

∆C ≈ ∂C

∂v1
∆v1 +

∂C

∂v2
∆v2. (5)

We’re going to find a way of choosing ∆v1 and ∆v2 so as to make ∆C negative; i.e.,
we’ll choose them so the ball is rolling down into the valley. To figure out how to make
such a choice it helps to define ∆v to be the vector of changes in v, ∆v ≡ (∆v1,∆v2)

T .

We’ll also define the gradient of C to be the vector of partial derivatives,
(

∂C
∂v1
, ∂C
∂v2

)T
.

We denote the gradient vector by ∇C, i.e.:

∇C ≡
(
∂C

∂v1
,
∂C

∂v2

)T

. (6)

In a moment we’ll rewrite the change ∆C in terms of ∆v and the gradient, ∇C. With
these definitions, the expression (5) for ∆C can be rewritten as

∆C ≈ ∇C ·∆v (7)

What’s really exciting about the equation is that it lets us see how to choose ∆v so as to
make ∆C negative. In particular, suppose we choose

∆v = −η∇C, (8)

where η is a small, positive parameter (known as the learning rate). Then Equation (7)
tells us that ∆C ≈ −η∇C · ∇C = −η‖∇C‖2. Because ‖∇C‖2 ≥ 0, this guarantees that
∆C ≤ 0, i.e., C will always decrease, never increase, if we change v according to the
prescription in (8). (Within, of course, the limits of the approximation in Equation (7)).
This is exactly the property we wanted! And so we’ll take Equation (8) to define the “law
of motion” for the ball in our gradient descent algorithm. That is, we’ll use Equation (8)
to compute a value for ∆v, then move the ball’s position v by that amount:

v → v′ = v − η∇C. (11)
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Summing up, the way the gradient descent algorithm works is to repeatedly compute the
gradient ∇C, and then to move in the opposite direction, “falling down” the slope of the
valley. We can visualize it like this:

To make gradient descent work correctly, we need to choose the learning rate η to be
small enough that Equation (7) is a good approximation. If we don’t, we might end up
with ∆C > 0, which obviously would not be good! At the same time, we don’t want η
to be too small, since that will make the changes ∆v tiny, and thus the gradient descent
algorithm will work very slowly.

Above gradient descent when C is a function of just two variables was explained. But,
in fact, everything works just as well even when C is a function of many more variables.
Suppose in particular that C is a function of m variables, v1, . . . , vm. Then the change
∆C in C produced by a small change ∆v = (∆v1, . . . ,∆vm)T is

∆C ≈ ∇C ·∆v, (9)

where the gradient ∇C is the vector

∇C ≡
(
∂C

∂v1
, . . . ,

∂C

∂vm

)T

. (10)

Just as for the two variable case, we can choose

∆v = −η∇C, (11)

and we’re guaranteed that our (approximate) expression (9) for ∆C will be negative.
This gives us a way of following the gradient to a minimum, even when C is a function
of many variables, by repeatedly applying the update rule

v → v′ = v − η∇C. (12)

How can we apply gradient descent to learn in a neural network? The idea is to use
gradient descent to find the weights wk and biases bl which minimize the cost in Equa-
tion (4). To see how this works, let’s restate the gradient descent update rule, with the
weights and biases replacing the variables vj. In other words, our “position” now has com-
ponents wk and bl, and the gradient vector ∇C has corresponding components ∂C/∂wk
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and ∂C/∂bl. Writing out the gradient descent update rule in terms of components, we
have

wk → w′k = wk − η
∂C

∂wk

(13)

bl → b′l = bl − η
∂C

∂bl
. (14)

By repeatedly applying this update rule we can “roll down the hill”, and hopefully find
a minimum of the cost function. In other words, this is a rule which can be used to learn
in a neural network.

There are a number of challenges in applying the gradient descent rule. We’ll look into
those in depth in later lecture notes. But for now I just want to mention one problem.
To understand what the problem is, let’s look back at the quadratic cost in Equation (4).
Notice that this cost function has the form C = 1

n

∑
xCx, that is, it’s an average over costs

Cx ≡ ‖y(x)−a‖2
2

for individual training examples. In practice, to compute the gradient ∇C
we need to compute the gradients ∇Cx separately for each training input, x, and then
average them, ∇C = 1

n

∑
x∇Cx. Unfortunately, when the number of training inputs is

very large this can take a long time, and learning thus occurs slowly.
An idea called stochastic gradient descent can be used to speed up learning. The idea

is to estimate the gradient ∇C by computing ∇Cx for a small sample of randomly chosen
training inputs. By averaging over this small sample it turns out that we can quickly get
a good estimate of the true gradient ∇C, and this helps speed up gradient descent, and
thus learning.

To make these ideas more precise, stochastic gradient descent works by randomly
picking out a small number m of randomly chosen training inputs. We’ll label those
random training inputs X1, X2, . . . , Xm, and refer to them as a mini-batch. Provided
the sample size m is large enough we expect that the average value of the ∇CXj

will be
roughly equal to the average over all ∇Cx, that is,∑m

j=1∇CXj

m
≈
∑

x∇Cx

n
= ∇C, (15)

where the second sum is over the entire set of training data. Swapping sides we get

∇C ≈ 1

m

m∑
j=1

∇CXj
, (16)

confirming that we can estimate the overall gradient by computing gradients just for the
randomly chosen mini-batch.

To connect this explicitly to learning in neural networks, suppose wk and bl denote
the weights and biases in our neural network. Then stochastic gradient descent works by
picking out a randomly chosen mini-batch of training inputs, and training with those,

wk → w′k = wk −
η

m

∑
j

∂CXj

∂wk

(17)

bl → b′l = bl −
η

m

∑
j

∂CXj

∂bl
, (18)

where the sums are over all the training examples Xj in the current mini-batch. Then
we pick out another randomly chosen mini-batch and train with those. And so on, until
we’ve exhausted the training inputs, which is said to complete an epoch of training. At
that point we start over with a new training epoch.
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