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1 Introduction

In machine learning, it is key to be able to correctly evaluate the model being produced
to guarantee that the predictions are accurately describing the intended phenomenon
(disease prediction, future cost estimation, etc.). However, there are so many different
performance metrics (accuracy, precision, recall, etc.) that it is often overwhelming to
choose which one to use. Selecting the right metric for a specific model, however, is key to
be able to measure the performance of the model objectively and in the right setting. In
this notes, we will explore the different metrics, to be able to apply the most appropriate
metrics for different tasks.

While classification and regression tasks form what’s called supervised learning, clus-
tering forms the majority of unsupervised learning tasks. The difference between these
two macro-areas lies in the type of data used. While in supervised learning, samples are
labeled with either a categorical label (for classification) or a numerical value (for regres-
sion), in unsupervised learning samples are not labeled, making it a relatively complex
task to perform and evaluate.

2 Performance metrics for classification

2.1 Concepts

Before delving into the performance metrics themselves, it is important to make sure some
concepts are clearly understood as they are consistently used across most performance
metrics.

2.1.1 True Value vs Predicted Value

When evaluating the performance of a classification model, two concepts are key, the real
outcome (usually called y) and the predicted outcome (usually called ŷ). For instance, a
model can be trained to predict whether a person will develop a particular disease. In this
case, it is trained with samples, e.g. a person’s data, containing predictive information,
such as age, gender, etc., and each person is labelled with a flag stating whether the
disease will develop or not. In this case, the label can be whether the disease will happen
(y = 1) or will not happen (y = 0).

*References
- Eugenio Zuccarelli. Performance Metrics in Machine Learning. 2020
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A machine learning model aims at making sure that every time a sample is presented
to it, the predicted outcome corresponds to the true outcome. The more the model’s
predictions are the same as the true values the higher is the performance of the model.
There are many different ways of evaluating a model’s performance, but in general, models
make mistakes, lowering performance.

2.1.2 True Positive, True Negative, False Positive and False Negative

Each prediction from the model can be one of four types with regards to performance:

� True Positive (TP): A sample is predicted to be positive (ŷ = 1, e.g. the person
is predicted to develop the disease) and its label is actually positive (y = 1, e.g.,
the person will actually develop the disease).

� True Negative (TN): A sample is predicted to be negative (ŷ = 0, e.g. the
person is predicted to not develop the disease) and its label is actually negative
(y = 0, e.g., the person will actually not develop the disease).

� False Positive (FP): A sample is predicted to be positive (ŷ = 1, e.g. the
person is predicted to develop the disease) and its label is actually negative
(y = 0, e.g., the person will actually not develop the disease). In this case, the
sample is “falsely” predicted as positive.

� False Negative (FN): A sample is predicted to be negative (ŷ = 0, e.g. the
person is predicted to not develop the disease) and its label is actually positive
(y = 1, e.g., the person will actually develop the disease). In this case, the sample
is “falsely” predicted as negative.

Even though the classes are usually labelled 1 and 0, these values are arbitrary and
they can often be found labelled as 1 and -1, which is the reason “Positive” and “Neg-
ative” are used. Remembering False Positive and False Negative meanings is usually
relatively tricky and it is common for data scientists to have to stop for a second to
think about the meaning of each to remember which one represents what. An easy trick
to remember the difference is focus first on the second part of the name (“Positive” or
“Negative”). This relates to the prediction, basically saying “The sample is predicted to
be Positive/Negative (belong to class 1/0)...”. Then, we can look at the first part of the
name to understand whether the prediction was correct or not (“True” or “False”). In
this case, we are adding whether the prediction was correct or incorrect, and therefore
if the sample was actually belonging to that class. For example, False Positive means
that the sample is predicted to be Positive, but this is False/incorrect... as the sample is
actually Negative.

2.1.3 Confusion Matrix

True Positive, True Negative, False Positive and False Negative are usually presented in
a tabular format in the so-called confusion matrix, which is simply a table organizing
the four values. Figure 1 shows such how the values are organized in a confusion matrix.
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Figure 1: Confusion matrix

2.2 Performance Metrics

2.2.1 Accuracy

Accuracy is the fraction of predictions our model got right out of all the predictions.
This means that we sum the number of predictions correctly predicted as Positive (TP)
or correctly predicted as Negative (TN) and divide it by all types of predictions, both
correct (TP, TN) and incorrect (FP, FN).

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

Accuracy ranges between 0 and 1. These extreme cases correspond to completely
missing the predictions or having always correct predictions. For instance, if our model is
able to perfectly predict, the model will have no False Positives or False Negatives, making
the numerator be equal to the denominator, bringing the accuracy to 1. Conversely, if our
system is always off, incorrectly predicting each time, the number of True Positives and
True Negatives will be zero, making the equation be zero divided by something positive,
leading to an accuracy equal to 0.

Accuracy, however, is not a great metric, especially when the data is imbalanced.
When there is a significant disparity between the number of positive and negative labels,
Accuracy does not tell the full story. For instance, let’s consider an example where we
have 100 samples, 95 of which labelled as belonging to class 0, and 5 labelled as class
1. In this case, a poorly built “dummy” model which always predicts class 0, achieves
a 95% accuracy, which indicates a very strong model. However, this model is not really
predictive and accuracy is not the right performance metric to evaluate the power of
this model. If we used only accuracy to evaluate this model, we would end up providing
stakeholders, and clients eventually, with a model that is not performant or predictive.

2.2.2 Precision

To overcome the limitations of Accuracy, we usually use Precision, Recall and Speci-
ficity. Precision tells what proportion of positive predictions was actually correct.
It achieves this by counting the samples correctly predicted as positive (TP) and dividing
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it by the total positive predictions, correct or incorrect (TP, FP).

Precision =
TP

(TP + FP )
(2)

2.2.3 Recall (Sensitivity, True Positive Rate, Hit Rate)

Similarly to Precision, Recall aims at measuring what proportion of actual positives
was identified correctly. It does so by dividing the correctly predicted positive samples
(TP) by the total number of positives, either correctly predicted as positive or incorrectly
predicted as negative (TP, FN).

Recall =
TP

(TP + FN)
(3)

2.2.4 Specificity (True Negative Rate, Selectivity)

Symmetrically to Recall, Specificity aims at measuring what proportion of actual neg-
atives was identified correctly. It does so by dividing the correctly predicted negative
samples by the total number of negatives, either correctly predicted as negative or incor-
rectly predicted as positive (TN, FP).

Specificity =
TN

(FP + TN)
(4)

Considering the example to show the shortcomings of Accuracy, if we use Precision,
Recall and Specificity, we get: Accuracy = 0.95 and Recall = 0. By using additional per-
formance metrics instead of Accuracy, we can better understand that a model predicting
the majority class all the time is actually a low-performance model (Recall = 0) even
though Accuracy is high (Accuracy = 0.95).

2.2.5 Area Under the ROC Curve (AUC)

As we’ve seen, one of the issues of Accuracy is that it can lead to overly inflated perfor-
mance if the distribution of the classes is not very well balanced. AUC, which stands for
“Area Under the ROC Curve” (see Section 2.3.1), measures the entire two-dimensional
area underneath the entire ROC curve. It is an aggregate measure of performance across
all possible classification thresholds. Another way of interpreting AUC is as the prob-
ability that the model ranks a random positive sample higher than a random negative
sample. AUC is a great metric, especially when dealing with imbalanced classes, and is
one of the most frequently used performance measures in classification, even though it
can be used only in binary classification settings (i.e. not with more than 2 classes as
target). Some of the properties that make it a preferred metric are:

� Scale-Invariance. AUC measures how well predictions are ranked, instead of their
absolute values.

� Classification-Threshold-Invariance. AUC measures the quality of the model’s
predictions regardless of what classification threshold is chosen.
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2.2.6 F1 Score

The F1 score is a less known performance metric, indicating the harmonic mean of Pre-
cision and Recall. The highest value of an F1 Score is 1, indicating perfect Precision and
Recall, and the lowest possible value is 0 if either the Precision or the Recall is zero.

F1 Score =
2TP

(2TP + FP + FN)
(5)

2.3 Performance Charts

Additionally, performance measures can be not only communicated as single numbers but
also as charts. Some common charts showing a machine learning model’s performance
are the ROC Curve and the Precision/Recall Curve.

2.3.1 ROC Curve (Receiver Operating Characteristic Curve)

A ROC curve is a graph showing the performance of a classification model at all clas-
sification thresholds (see Figure 2). The chart’s y-axis is the True Positive Rate, while
the x-axis is the False Positive Rate and the plot consists of the TPR and FPR values
varying the threshold. The worst-case scenario (random chance) consists of a 45 degrees
diagonal line. The best-case scenario consists of an angled line, going vertically first and
horizontally after. Lowering the classification threshold, the model classifies more items
as positive, increasing both False Positives and True Positives.

Figure 2: ROC curve

2.3.2 Precision/Recall Curve

Similarly to the ROC curve, a Precision/Recall curve plots performance over a y-axis
showing Precision and an x-axis which is Recall (see Figure 3). Each point is evaluated
at different threshold values. The best-case scenario is a flipped version of the ROC
curve’s best-case scenario, basically consisting of a horizontal line then becoming verti-
cal. Differently, the worst-case scenario, random chance, is seen as a horizontal line at
Precision = 0.5.
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Figure 3: Precision/Recall curve

2.4 Impact of Choosing the Right Performance Metric

Choosing the right metric is key, especially in cases where False Positives and False Neg-
atives do not have the same impact. Ideally, we would want to have a perfect prediction
both in terms of False Positive and False Negative (both zero), but with machine learning
models there is usually a tradeoff between detecting False Positives or False Negatives
well. For instance, if our model predicts whether a person has got a deadly disease, like
cancer, it could be said that False Positives are more important. We want to make sure
that if that person has the disease, we correctly flag them. We are less concerned if we
accidentally misclassify a person as having the disease even though they didn’t have it.
Conversely, if our model predicts whether a person is innocent or not, it might be argued
that False Negatives are more important. We want to make sure that no innocent person
is incorrectly jailed.

3 Performance metrics for linear regression

3.1 Mean Squared Error / Mean Squared Deviation

The Mean Squared Error (MSE) measures the average of the errors squared. It basically
calculates the difference between the estimated and the actual value, squares these results
and then computes their average. Because the errors are squared, MSE can only assume
non-negative values. Due to the intrinsic randomness and noise associated with most
processes, MSE is usually positive and not zero.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 , (6)

where yi denotes the actual value, and ŷ denotes predicted value. Like the variance,
MSE has the same units of measurement as the square of the quantity being estimated.
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Similarly to the Variance, one major disadvantage of Mean Squared Error is that it is not
robust to outliers. In case a sample has a “y” and associated error which is way larger
than the other samples, the square of the error will be even larger. This, paired to the
fact that MSE calculates the average of errors, makes MSE prone to outliers.

3.2 Root Mean Squared Error / Root Mean Squared Deviation

Similarly to the Mean Squared Error (RMSE), RMSE calculates the average of the
squared errors across all samples but, in addition, takes the square root of the result,
effectively taking the square root of MSE. By doing so, RMSE provides an error measure
in the same unit as the target variable. For instance, if our target y is next year’s sales
in dollars, RMSE will give the error in dollars, while MSE would be in dollars squared,
which is much less interpretable.

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
(7)

3.3 Mean Absolute Error

The Mean Absolute Error (MAE) does not take the square of the errors. Instead, it
simply calculates the absolute value of the errors and then takes the average of these
values. The MAE takes the absolute value as we are not interested in the direction in
which the estimated and actual target values differ (estimated > actual or vice-versa)
but on the absolute distance. This also avoids errors to cancel each other out when
calculating the MAE.

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

Differently from MSE, MAE does not penalize larger errors more than smaller ones,
because the formula for MAE does not apply the square to errors. Another advantage
is that MAE does not square the units, similarly to RMSE, making the results more
interpretable.

3.4 Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) measures the error between actual and
forecasted values as a percentage. It achieves so by calculating it similarly to MAE, but
also dividing it by the actual value, expressing the result as a percentage, i.e.,

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

, (9)

where yi denotes the actual value, and ŷ denotes predicted value.
By expressing the error as a percentage, we can have a better understanding of how

off our predictions are in relative terms. For instance, if we were to predict next year’s
spending, an MAE error of $50 could be both a relatively good or bad approximation.
For instance, if the $50 error was made with respect to an actual spending of $1 million,
we could safely say that the prediction is pretty good. Instead, if the error was on a
$60 cost prediction, it would be pretty far off from the actual value. In relative terms,
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an error of $50 against a $1 million prediction is a 0.005% error. If this error was made
on a $60 prediction it would mean that the error is 83% of the predicted value (leading
to basically a range of $10 to $110, almost reaching double the actual value). Using
MAPE, in this case, shows a more accurate representation of the error with respect to
the absolute values.

3.5 R Squared / Coefficient of Determination

R Squared (R2) represents the proportion of the variance for the dependent variable y
that’s explained by the independent variables X. R2 explains to what extent the variance
of one variable explains the variance of the second variable. So, if the R2 of a model is
0.75, then approximately 75% of the observed variation can be explained by the model’s
features.

R2 is calculated by taking one minus the sum of squares of residuals divided by the
total sum of squares,

R2 = 1− SSres

SStot

= 1−
∑

i (yi − ŷi)
2∑

i (yi − ȳ)2
, (10)

where SSres denotes the sum of squares of residuals (or residual sum of squares), SStot

denotes the total sum of squares, and ȳ is the mean of the actual values.
R2 compares the fit of the chosen model with that of a horizontal line, which acts

as a baseline. If the chosen model fits worse than a horizontal line, the R2 is negative.
Because of the formula of R2, even though the “square” is involved, it can have a negative
value without violating any rules of math. R2 is negative only when the model does not
follow the trend of the data and fits worse than a horizontal line.

One of the drawbacks of R2 is that the more features are added to a model, the more
the R2 increases. This happens even though the features added to the model are not
intrinsically predictive.

3.6 Adjusted R Squared

For this reason, the Adjusted R2 was introduced. It takes into account the features used
in the predictive model. Doing so, the more predictive features are added to the model,
the higher the Adjusted R2. However, the more “useless” features are added to the model,
the lower the Adjusted R2 value, differently from what would happen with R2. For this
reason, the Adjusted R2 is always less or equal the R2 value.

Adjusted R2 = 1− (1−R2)(n− 1)

n− k − 1
(11)

where n is the number of data points and k is the number of features in the model.

3.7 Which metrics to yse?

Overall, it is usually important to report both an error measure, e.g. RMSE and an R2

measure. This is because R2 expresses the relation between the features X in the model
and the target variable y. Error measures, instead, express how much spread out the data
points are with respect to the regression fit. Reporting both Adjusted R2 and RMSE, for
instance, allows for a better comparison of the model against other benchmarks.
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4 Performance metrics for clustering

For clustering, it often happens that clusters are manually and qualitatively inspected
to determine whether the results are meaningful. In this section, we will go through the
main metrics used to evaluate the performance of clustering algorithms, to rigorously
have a set of measures.

4.1 Silhouette Score

The Silhouette Score and Silhouette Plot are used to measure the separation distance
between clusters. It displays a measure of how close each point in a cluster is to points
in the neighbouring clusters. This measure has a range of [−1, 1] and is a great tool to
visually inspect the similarities within clusters and differences across clusters.

The Silhouette Score is calculated using the mean intra-cluster distance (i) and the
mean nearest-cluster distance (n) for each sample. The Silhouette Coefficient for a sample
is

(n− i)/max(i, n), (12)

where n is the distance between each sample and the nearest cluster that the sample is
not a part of while i is the mean distance within each cluster. The typical Silhouette
Plots represent the cluster label on the y-axis, while the actual Silhouette Score on the
x-axis. The size/thickness of the silhouettes is also proportional to the number of samples
inside that cluster.

Figure 4: An example Silhouette Plot. On the y-axis, each value represents a cluster
while the x-axis represents the Silhouette Coefficient/Score.
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The higher the Silhouette Coefficients (the closer to +1), the further away the cluster’s
samples are from the neighboring clusters samples. A value of 0 indicates that the sample
is on or very close to the decision boundary between two neighboring clusters. Negative
values, instead, indicate that those samples might have been assigned to the wrong cluster.
Averaging the Silhouette Coefficients, we can get to a global Silhouette Score which can
be used to describe the entire population’s performance with a single value.

Let’s try to understand how the Silhouette Plot can help us find the best number of
clusters by looking at the performance of each configuration:

Using “k=2”, meaning two clusters to separate the population, we achieve an average
Silhouette Score of 0.70 (see Figure 5).

Figure 5: Silhouette analysis for k-means clustering on sample data with k = 2.

Increasing the number of clusters to three, the average Silhouette Score drops a bit.

Figure 6: Silhouette analysis for k-means clustering on sample data with k = 3.

The same happens as the number of clusters increases (see Figures 7, 8, and 9). It
can also be noticed that the thickness of the silhouettes keeps decreasing as the number
of clusters increases, because there are less samples in each cluster.

10



Course Notes GEO5017: Machine Learning for the Built Environment

Figure 7: Silhouette analysis for k-means clustering on sample data with k = 4.

Figure 8: Silhouette analysis for k-means clustering on sample data with k = 5.

Figure 9: Silhouette analysis for k-means clustering on sample data with k = 6.

11



Course Notes GEO5017: Machine Learning for the Built Environment

Overall, the average Silhouette Scores are:

For n c l u s t e r s = 2 , the average s i l h o u e t t e s c o r e i s : 0 .70
For n c l u s t e r s = 3 , the average s i l h o u e t t e s c o r e i s : 0 .59
For n c l u s t e r s = 4 , the average s i l h o u e t t e s c o r e i s : 0 .65
For n c l u s t e r s = 5 , the average s i l h o u e t t e s c o r e i s : 0 .56
For n c l u s t e r s = 6 , the average s i l h o u e t t e s c o r e i s : 0 .45

Having calculated the Silhouette Score for each possible configuration up to k = 6,
we can see that the best number of clusters is 2, according to this metric and the higher
the number of clusters the worse the performance becomes. To calculate the Silhouette
Score in Python, you can simply use scikit-learn and do:

s k l e a rn . met r i c s . s i l h o u e t t e s c o r e (X, l ab e l s , * , metr ic=’ euc l i d ean ’ ,
s amp l e s i z e=None , random state=None , **kwds )

The function takes as input:

� X: An array of pairwise distances between samples, or a feature array, if the pa-
rameter “precomputed” is set to False.

� labels: A set of labels representing the label that each sample is assigned to.

4.2 Rand Index (RI)

Another commonly used metric is the Rand Index. It computes a similarity measure
between two clusters by considering all pairs of samples and counting pairs that are
assigned in the same or different clusters in the predicted and true clusterings. The
formula of the Rand Index is:

RI =
Number of Agreeing Pairs

Number of Pairs
(13)

The RI can range from 0 (the worst case) to 1 (a perfect match). The only drawback
of Rand Index is that it assumes that we can find the ground-truth clusters labels and
use them to compare the performance of our model, so it is much less useful than the
Silhouette Score for pure unsupervised learning tasks.
To calculate the Rand Index, you canuse scikit-learn and do:

s k l e a rn . met r i c s . r and sco r e ( l a b e l s t r u e , l a b e l s p r e d )

4.3 Adjusted Rand Index (ARI)

The Rand Index computes a similarity measure between two clusters by considering all
pairs of samples and counting pairs that are assigned in the same or different clusters in
the predicted and true clusterings. The raw RI score is then “adjusted for chance” into
the ARI score using the following scheme:

ARI =
RI - Expected RI

Max(RI)− Expected RI
(14)

The Adjusted Rand Index, similarly to RI, ranges from 0 to 1, with 0 equating to random
labelling and 1 when the clusters are identical. Similarly to RI, to calculate the ARI:
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sk l e a rn . met r i c s . ad j u s t ed mutua l i n f o s c o r e ( l a b e l s t r u e , l ab e l s p r ed , * ,
average method=’ a r i thmet i c ’ )

4.4 Mutual Information

The Mutual Information is another metric often used in evaluating the performance of
clustering algorithms. It is a measure of the similarity between two labels of the same
data. Where |Ui| is the number of the samples in cluster Ui and |Vj| is the number of the
samples in cluster Vj, the Mutual Information between clusters U and V is given as:

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj|
N

log
N |Ui ∩ Vj|
|Ui| |Vj|

(15)

Similarly to Rand Index, one of the major drawbacks of this metric is requiring to know
the ground truth labels a priori for the distribution. Something which is almost never
true in real-life scenarios with clustering.
Using scikit-learn:

s k l e a rn . met r i c s . mutua l i n f o s c o r e ( l a b e l s t r u e , l ab e l s p r ed , * ,
cont ingency=None )

4.5 Calinski-Harabasz Index

Calinski-Harabasz Index is also known as the Variance Ratio Criterion. The score is
defined as the ratio between the within-cluster dispersion and the between-cluster disper-
sion. The C-H Index is a great way to evaluate the performance of a clustering algorithm
as it does not require information on the ground truth labels. The higher the Index, the
better the performance. The formula is:

s =
tr (Bk)

tr (Wk)
× nE − k

k − 1
, (16)

where tr(Bk) is trace of the between group dispersion matrix and tr(Wk) is the trace of
the within-cluster dispersion matrix defined by:

Wk =
k∑

q=1

∑
x∈Cq

(x− cq) (x− cq)
T

Bk =
k∑

q=1

nq (cq − cE) (cq − cE)
T

To calculate it with scikit-learn:

s k l e a rn . met r i c s . c a l i n s k i h a r a b a s z s c o r e (X, l a b e l s )
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4.6 Davies-Bouldin Index

The Davies-Bouldin Index is defined as the average similarity measure of each cluster
with its most similar cluster. Similarity is the ratio of within-cluster distances to between-
cluster distances. In this way, clusters which are farther apart and less dispersed will lead
to a better score. The minimum score is zero, and differently from most performance
metrics, the lower values the better clustering performance. Similarly to the Silhouette
Score, the D-B Index does not require the a-priori knowledge of the ground-truth labels,
but has a simpler implementation in terms of fomulation than Silhouette Score.

s k l e a rn . met r i c s . d av i e s b ou l d i n s c o r e (X, l a b e l s )
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