
Support Vector Machine*

February 20, 2023

1 Standard SVM

1.1 Separable Classes

In the previous lectures, we explored a class of linear classification models. In this lecture,
an alternative rationale for designing linear classifiers will be adopted. Similarly, We will
only discuss the two-class linearly separable task.
Let xi(i ∈ {1, 2, 3, ..., n}) be the feature vectors of the training set X. These belong to
either of two classes, y1, y2, which are assumed to be linearly separable. The goal, once
more, is to design a decision boundary

g(x) = wTx+ b = 0

that classifies correctly all the training vectors. Such a decision boundary is not unique
(Figure 1).

Figure 1: Multiple decision boundaries can correctly classify the training samples in a
2D feature space.

*References
- Christopher Bishop. Pattern Recognition and Machine Learning. 2006
- Sergios Theodoridis, Konstantinos Koutroumbas. Pattern Recognition. 2009
- Multiclass Classification Using Support Vector Machines. August 25, 2021

1

https://www.baeldung.com/cs/svm-multiclass-classification

Course Notes GEO5017: Machine Learning for the Built Environment

However, which one would any sensible engineer choose as the classifier for operation in
practice, where data outside the training set will be fed to it? No doubt the answer is the
purple one. The reason is that this boundary leaves more “room ”on either side so that
data in both classes can move a bit more freely, with less risk of causing an error. Thus
such a boundary can be trusted more when it is faced with the challenge of operating
with unknown data (Figure 2).
Here we have touched on a very important issue in the classifier design stage. It is known
as the generalization performance of the classifier. This refers to the capability of the
classifier, designed using the training data set, to operate satisfactorily with data outside
this set.

Figure 2: A natural choice of decision boundary would be the one that generates the
maximum margin of both classes.

After the above brief discussion, we are ready to accept that a very sensible choice for
the boundary would be the one that leaves the maximum margin from both classes. Let’s
now quantify the margin that a decision boundary leaves from both classes.
We have two classes, one positive class y1 with the label +1, one negative class y2 with
the label -1. We start from the assumption that the weight vector w and the bias b are
constrained so that the output of the linear model is always larger than 1 or smaller than
-1. {

wTx+ b ≥ +1 if yi = +1

wTx+ b ≤ −1 if yi = −1

First, we consider the direction of w. We have two points x1 and x2 both of which lie on
the boundary. Because g(x1) = g(x2) = 0, we have:

wT (x1 − x2) = 0

and hence the w is orthogonal to every vector lying within the boundary, and so w
determines the orientation of the decision boundary (Figure 3).

2

Course Notes GEO5017: Machine Learning for the Built Environment

Figure 3: The margin from the closest points of both classes to the decision boundary.

For computing the margin ρ, we start by looking at the closest distance from point x3 of
the positive class to the boundary. This can be computed by projecting the line segment
vector x3 − x1 over the orientation vector w:

1

2
ρ =

wT (x3 − x1)

∥w∥
=

(wTx3 + b)− (wTx1 + b)

∥w∥
=

1

∥w∥
where ∥ · ∥ means the norm (i.e., magnitude) of a vector. For the closest point x4 of the
negative class, we derive the distance in the same way. Therefore, we obtain the margin:

ρ =
2

∥w∥
which means that to maximize the margin ρ we need to minimize the norm of the weight
vector w.
Based on the analysis above, our task now becomes: find a decision boundary with the
parameters w and b so as to:

min
w,b

1

2
∥w∥2

s.t. yi(w
Txi + b)− 1 ≥ 0 ∀i = 1, 2, .., n

1.2 SVM Model Optimization (Optional)

Obviously, minimizing the norm ∥w∥ makes the margin maximum ρ. This is a nonlinear
(quadratic) optimization task subject to a set of linear inequality constraints. A common
way to tackle such a problem is the Lagrangian method. In this section, we derive the
steps for optimizing a standard SVM model.
Note: This section is discussed as we would like to present what data points are “support
vectors” and why they are named in this way. We don’t require you to command the
content of this section, thus we will NOT ask any related questions in the final exam.
The SVM optimization problem has 1 objective and n corresponding constraints (n is
the number of input sample vectors). For the ith constraint, we apply a non-negative

3

Course Notes GEO5017: Machine Learning for the Built Environment

Lagrangian multiplier λi. The overall Lagrangian function of the original problem is
given by:

L(w, b, λ) =
1

2
∥w∥2 −

n∑
i=1

λi(yi(w
Txi + b)− 1)

where λ is the vector that contains all the Lagrangian multipliers (λ1, λ2, ..., λn). Applying
KKT 1 conditions, we know that the minimizer of the Lagrangian function must satisfy:

yi(w
Txi + b)− 1 ≥ 0

λi ≥ 0

λi(yi(w
Txi + b)− 1) = 0

∂L(w, b, λ)

∂w
= 0

∂L(w, b, λ)

∂b
= 0

From the KKT conditions above we obtain:

w =
N∑
i=1

λiyixi

N∑
i=1

λiyi = 0

After computation a lot of λi will become 0. Only those vectors lying on the margin
hyperplanes wTxi + b = ±1 will have positive λi. This means the Lagrangian multiplier
vector λ is a sparse vector. Thus, the vector parameter w of the optimal solution is a
linear combination of Ns ≤ N feature vectors that are associated with λi ≥ 0. That is,

w =
Ns∑
i=1

λiyixi.

These input vectors which contribute to w are known as support vectors and the
optimum decision boundary derived is known as a Support Vector Machine (SVM).

1.3 Geometrical Interpretation

Figure 4 gives an illustration of the support vectors in an SVM model. Intuitively, we
can see that only samples located on the margin of each class will determine the decision
boundary. Samples farther away from the margin have little influence on the boundary.
This, again, verifies the conclusions from Section 1.2, that only those vectors lying on the
margin hyperplanes wTxi + b = ±1 will contribute to w.

1Reference
- Stephen Boyd. Convex Optimization. Chapter 5. 2004.

4

Course Notes GEO5017: Machine Learning for the Built Environment

Figure 4: Support vectors on the class margin.

SVM has several interesting properties:

� The optimal decision boundary of an SVM is unique. Intuitively, we can see that
there cannot exist multiple decision boundaries achieving the same maximum mar-
gin. From a mathematical point of view, the loss function in Section 1.2 is a strict
convex one. This guarantees that any local minimum is also global and unique.

� SVM is robust to data outliers, as vectors farther away from the margin of the
classes do not influence the model.

� SVM is also little affected by data distribution and density.

� SVM appears to work well in high dimensional feature spaces. One possible expla-
nation is that SVM is determined by the support data vectors and not directly by
the features.

Nevertheless, SVM has its limitations. It is usually computational expensive due to the
optimization technique it adopts. Moreover, it performs badly when classes are highly
overlapped. If classes are slightly overlapped, the soft-margin SVM can be adopted. We
will introduce this in Section 2.

2 Soft-Margin SVM

When the classes are not separable, the above setup is no longer valid. Figure 5 illustrates
the case in which the two classes are not separable. Any attempt to draw a decision
boundary will never end up with a class separation band with no data points inside it,
as was the case in the linearly separable task. Recall that the margin is defined as the
distance between the pair of parallel hyperplanes described by:

wTx+ b = ±1

5

Course Notes GEO5017: Machine Learning for the Built Environment

Figure 5: Non-separable classes.

The feature vectors now belong to one of the following three categories (Figure 6):

� Vectors that fall outside the band and are correctly classified. These vectors comply
with the constraints:

yi(w
Txi + b) ≥ 1

� Vectors falling inside the band and are correctly classified. They satisfy:

0 ≤ yi(w
Txi + b) < 1

� Vectors that are misclassified. They are enclosed by circles and obey the inequality:

yi(w
Txi + b) < 0

Figure 6: Misclassified data samples.

All three cases can be treated under a single type of constraints by introducing a new set
of variables, namely:

yi(w
Txi + b) ≥ 1− ξi

6

Course Notes GEO5017: Machine Learning for the Built Environment

The first category of data corresponds to ξi = 0, the second to 0 < ξi ≤ 1, and the third
to ξi > 1. The variables ξi are known as slack variables.
The goal now is to make the margin as large as possible but at the same time to keep the
number of vectors with ξi as small as possible. In mathematical terms, this is equivalent
to adopting to minimize the cost function:

min
w,b,ξ

1

2
∥w∥2 + C

N∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi ∀i = 1, 2, .., n

ξi ≥ 0 ∀i = 1, 2, ..., n

where C is a constant term and can be tuned by users. The larger the C, the smaller ξ
we allow that the input vectors deviate from the decision boundary. Otherwise, we give
more tolerance to the vectors that could be wrongly classified by the decision boundary.
The soft-margin SVM can be solved using the similar optimization technique described
in Section 1.2.

3 Multi-class Classification using SVM (Optional)

In this section, we’ll introduce the multi-class classification using Support Vector Ma-
chines (SVM). We’ll also look at Python code for multi-class classification using Scikitlean
SVM.

3.1 Binary classification vs multi-class classification

Binary classification. In this type, the machine should classify an instance as only
one of two classes; yes/no, 1/0, or true/false. The classification question in this type is
always in the form of yes/no. For example, does this image contain a human? Does this
text have a positive sentiment? Will the price of a particular stock increase in the next
month?
Multi-class classification. In this type, the machine should classify an instance as only
one of three classes or more. The following are examples of multi-class classification: (1)
classifying a text as positive, negative, or neutral; (2) determining the dog breed in an
image; (3) categorizing a news article to sports, politics, economics, or social.

3.2 Generalization to multi-class classification

In its most simple type, SVM doesn’t support multi-class classification natively. It sup-
ports binary classification and separating data points into two classes. For multi-class
classification, the same principle is utilized after breaking down the multi-classification
problem into multiple binary classification problems.

The idea is to map data points to high dimensional space to gain mutual linear
separation between every two classes. This is called a One-to-One approach, which
breaks down the multi-class problem into multiple binary classification problems. A
binary classifier per each pair of classes. Another approach one can use is One-to-Rest,
where the breakdown is set to a binary classifier per each class.

7

Course Notes GEO5017: Machine Learning for the Built Environment

A single SVM does binary classification and can differentiate between two classes. So
that, according to the two breakdown approaches, to classify data points from m classes
data set:

� In the One-to-Rest approach, the classifier can use m SVMs. Each SVM would
predict membership in one of the m classes.

� In the One-to-One approach, the classifier can use m(m−1)
2

SVMs.

Let’s take an example of 3 classes classification problem; green, red, and blue, as the
following image:

Applying the two approaches to this data set results in the followings:

� In the One-to-One approach, we need a hyperplane to separate between every two
classes, neglecting the points of the third class. This means the separation takes
into account only the points of the two classes in the current split. For example,
the red-blue line tries to maximize the separation only between blue and red points.
It has nothing to do with green points:

8

Course Notes GEO5017: Machine Learning for the Built Environment

� In the One-to-Rest approach, we need a hyperplane to separate between a class and
all others at once. This means the separation takes all points into account, dividing
them into two groups; a group for the class points and a group for all other points.
For example, the green line tries to maximize the separation between green points
and all other points at once:

3.3 SVM Multi-class Classification in Python

In this subsection, the Python code shows an implementation for building (training and
testing) a multiclass classifier (3 classes), using Python 3.7 and Scikitlean library. We
developed two different classifiers to show the usage of two different kernel functions:
polynomial and RBF. The code also calculates the accuracy and F1 scores to show the
performance difference between the two selected kernel functions on the same data set.

In this code, we use the Iris flower data set. That data set contains three classes of
50 instances each, where each class refers to a type of Iris plant.

We’ll start our script by importing the needed classes:

from sk l ea rn import svm , da ta s e t s
import sk l e a rn . mode l s e l e c t i on as mode l s e l e c t i on
from sk l ea rn . met r i c s import a c cu racy s co r e
from sk l ea rn . met r i c s import f 1 s c o r e

Load Iris data set from Scikitlearn, no need to download it separately:

i r i s = data s e t s . l o a d i r i s ()

Now we need to separate features set X from the target column (class label) y, and
divide the data set to 60% for training, and 40% for testing:

X = i r i s . data [: , : 2]
y = i r i s . t a r g e t
X train , X test , y t ra in , y t e s t = mode l s e l e c t i on . t r a i n t e s t s p l i t (X, y ,

t r a i n s i z e =0.60 , t e s t s i z e =0.40 , random state=101)

9

Course Notes GEO5017: Machine Learning for the Built Environment

We’ll create two objects from SVM, to create two different classifiers; one with a
polynomial kernel, and another one with an RBF kernel:

rb f = svm .SVC(ke rne l=’ rb f ’ , gamma=0.5 , C=0.1) . f i t (X train , y t r a i n)
poly = svm .SVC(ke rne l=’ poly ’ , degree=3, C=1) . f i t (X train , y t r a i n)

To calculate the efficiency of the two models, we’ll test the two classifiers using the
test dataset:

po ly pred = poly . p r ed i c t (X tes t)
rb f p r ed = rb f . p r ed i c t (X tes t)

Finally, we’ll calculate the accuracy and F1 scores for SVM with the polynomial
kernel:

po ly accuracy = accu racy s co r e (y t e s t , po ly pred)
po l y f 1 = f 1 s c o r e (y t e s t , poly pred , average=’ weighted ’)
p r i n t (’ Accuracy (Polynomial Kernel) : ’ , ”%.2 f ” % (po ly accuracy *100))
p r i n t (’F1 (Polynomial Kernel) : ’ , ”%.2 f ” % (po l y f 1 *100))

In the same way, the accuracy and F1 scores for SVM with the RBF kernel:

rb f a c cu racy = accu racy s co r e (y t e s t , rb f p r ed)
r b f f 1 = f 1 s c o r e (y t e s t , rb f pred , average=’ weighted ’)
p r i n t (’ Accuracy (RBF Kernel) : ’ , ”%.2 f ” % (rb f a c cu racy *100))
p r i n t (’F1 (RBF Kernel) : ’ , ”%.2 f ” % (r b f f 1 *100))

That code will print the following results:

Accuracy (polynomial k e rne l) : 70 .00
F1 (polynomial k e rne l) : 69 .67
Accuracy (RBF Kernel) : 76 .67
F1 (RBF Kernel) : 76 .36

Out of the known metrics for validating machine learning models, we choose Accuracy
and F1 as they are the most used in supervised machine learning. For the accuracy score,
it shows the percentage of the true positive and true negative to all data points. So, it’s
useful when the data set is balanced. For the F1 score, it calculates the harmonic mean
between precision and recall, and both depend on the false positive and false negative.
So, it’s useful to calculate the F1 score when the data set isn’t balanced.

Playing around with SVM hyperparameters, like C, gamma, and degree in the previous
code snippet will produce different results. As we can see, in this problem, SVM with
RBF kernel function outperforms SVM with the polynomial kernel function.

10

	Standard SVM
	Separable Classes
	SVM Model Optimization (Optional)
	Geometrical Interpretation

	Soft-Margin SVM
	Multi-class Classification using SVM (Optional)
	Binary classification vs multi-class classification
	Generalization to multi-class classification
	SVM Multi-class Classification in Python

