
Automatic repair of CityGML buildings in

LOD 1-3 using a voxel-based method

MSc Geomatics Thesis Proposal

D.T. Mulder

January 20, 2015



1 Introduction

3D city models are gaining in importance as more 3D geometry of
urban areas is becoming available. Real world entities such as ter-
rain, buildings, infrastructure, vegetation and city furniture can be
represented, making 3D city models usable for many applications
like urban planning, spatial analysis, disaster management (Kolbe
et al., 2008), augmented reality (Zamyadi et al., 2013) and naviga-
tion systems. To enable the widespread use and reuse of 3D city
models, a common format for storage and exchange is needed. For
this reasons the Open Geospatial Consortium (OGC) has developed
CityGML as an open standard with the goal of creating a common
definition for the objects, attributes and relations of a 3D city model.
Based on a set of criteria such as geometry, texture, semantics and
acceptance among others, CityGML has been adopted in 2011 as
the main format of the Dutch 3D SDI (Stoter et al., 2011). Some
characteristics of CityGML are multi-scale representation, coherent
semantic-geometrical modelling and geometric topological modelling
(Kolbe et al., 2005). The multi-scale representations of CityGML
are developed as five Levels of Detail (LoD) , describing the scale
of the object geometry. For each of these LoD representations, ge-
ometry can be stored. CityGML is based on GML3 which uses the
ISO 19107 geometry model (Kolbe, 2009). Geometric primitives ex-
ist for each dimension. A zero-dimensional primitive is a point, a
one-dimensional primitive is an edge, a two-dimensional primitive is
a surface and a three-dimensional primitive is a solid.

2



Solids in CityGML are described by using a boundary representa-
tion (b-rep), this means the higher dimensional primitives are topo-
logically built up of the lower dimensional primitives. A solid is
built up from multiple surfaces, which are built up of a number of
edges. The requirements for valid three-dimensional primitives are
described by Ledoux (2013). It is stated that solids should be closed
or watertight and each shell should be simple, thus a 2-manifold.
Since shells should be 2-manifold, no dangling pieces, gaps or over-
laps are allowed. Since all surfaces are represented by polygons, their
geometry should be planar.

(a) Hole in building model (b) Overshoot in building model

Figure 1: Examples of visible defects in a CityGML dataset

1.1 Scientific relevance

Although CityGML offers a structured way of storing geometry, in
practice a significant amount of geometry is not considered valid.
This hinders the further analyzing or processing of the model. There-
fore the use of valid geometry is essential to be able to make use of
the benefits of 3D city models. A validation process for CityGML is
available at http://geovalidation.bk.tudelft.nl/val3dity, en-
abling users to check their datasets. In case datasets are not com-
pletely valid, repair methods are needed to restore the geometry.

3

http://geovalidation.bk.tudelft.nl/val3dity


2 Related work

2.1 General CAD Repair

Two approaches for converting defect CAD models into a manifold
triangle mesh are given by Bischoff and Kobbelt (2005), namely sur-
face oriented algorithms and volumetric algorithms. Surface orien-
tated algorithms aim to repair the defects by changing the input
slightly, making it less effective in special cases. The strong point
of volumetric methods is that a manifold mesh is guaranteed in the
output, although the input tessellation has been lost. An overview
of mesh defects for CAD models in general is given by Attene et al.
(2013) along with the repair methods developed over the past.

2.2 CityGML Repair

A classification of the common defects in CityGML is given by Zhao
et al. (2014). Geometric defects that may occur are duplicate points,
self-intersections, folding, invalid holes, wrong orientation or non-2-
manifold solids. It is stated that these defects may arise as a result
of the interactive modelling process, data optimizations, conversion
of CAD models or the adding of semantics. Basic repair routines are
proposed: triangulation, regularization removing dangling pieces and
decomposition based on intersections of the model. An alternative
set of rules for validation is given by Wagner et al. (2013) addressing
the geometric-semantical consistency of CityGML models. Alama
et al. (2013) describe a method which iterates through all polygons
and solids, and checks each for a number of polygon/solid specific
errors. For some of these errors (not for overused edges and points)
surface oriented algorithms are proposed to repair the model. Using
this approach does not guarantee valid output, it is stated that new
defects are encountered for every other dataset.

4



A method which can be considered volumetric but still preserves
the semantics is given by Zhao et al. (2013). This method of repair-
ing LOD2 buildings is called shrink-wrapping. A constrained tetra-
hedralization is performed on all faces of the model, which is used in
a carving process, removing tetrahedra outside of the model. This
method is capable of repairing defects of LOD2 CityGML, although
in cases with overshoots the output is often not valid.

Figure 2: Shrink wrapping method (Zhao et al., 2013)

Another volumetric method of simplification and repair of polygonal
models is described by Nooruddin and Turk (2003). By converting
a 3D polygon model to a voxelized version and back, holes, double
walls and intersecting parts are removed. After this step a surface
reconstruction is needed to convert back to a polygon mesh. Using
a volumetric representation and surface reconstruction seems to be
robust, although semantics will be lost initially. The possibilities of
applying a voxel based reconstruction method on invalid CityGML
geometry will be explored in this project.

5



3 Research objectives

3.1 Objectives

The main research question for this thesis is:
To which extent is it possible to automatically repair CityGML build-
ings LoD 1-3 using a voxel based method?

The goal of this research will be to study the potential and implement
a tool for performing an automatic repair for CityGML Buildings
in LOD 1-3 using voxel based repair method. To achieve this, the
following sub-questions will be relevant:

• What are the most common errors of invalid CityGML models?
Which of these errors can be repaired by using a voxel-based
repair method?

• Which voxelization algorithm is most suitable for an automatic
repair method? How can the semantics be kept during voxeliza-
tion process?

• Which surface reconstruction method is most suitable for re-
building sharp geometry characteristics? Is a MarchingCubes
algorithm sufficient or are other algorithms needed? Is addi-
tional processing such as surface smoothing or edge sharpening
required?

3.2 Scope of research

This thesis will focus on the repair of the CityGML data format, lim-
ited to LOD 1-3 (no interior models). Furthermore this project will
be limited to voxel-based repair methods. Only if necessary, other el-
ementary repair steps will be performed before starting the voxeliza-
tion process. If a satisfying result regarding geometry is achieved,
the possibilities of restoring semantics may be researched.

6



4 Methodology

As a general guideline the method described in (Nooruddin and Turk,
2003) will be used. Considering the possible limitations of this ap-
proach, alternative methods such as ’Pressing’ by Chica et al. (2008)
will be used for comparison. Figure 3 displays a flowchart of the
process of repairing CityGML models with a voxel-based method.
These steps are axis alignment, voxelization, surface reconstruction
and writing back to the CityGML format. After this process the ac-
quired output geometry may be tested by comparing it to the original
data.

Figure 3: Flowchart

7



4.1 Voxelization

The goal of the voxelization component is to create a volumetric
representation of the input model using appropriate voxel orientation
and size, avoiding the creation of unwanted artefacts. There are two
algorithms to determine whether a voxel should be considered inside
or outside a model: Ray Stabbing or Parity Count. Both methods
calculate the number of intersections of the model with a scan line.
In Ray Stabbing a voxel is considered to be inside the model when it
is positioned in between the first and last intersection along the scan
line. Parity Count is more strict, as it only considers the voxel to be
inside the model when there is an un-even amount of intersections
on both sides along the scan line (see figure 4).

(a) Parity Count: all intersections
taken into account

(b) Ray Stabbing: first and last
intersection taken into account

Figure 4: Difference in voxelization algorithms

In general the Parity Count method is expected to more often result
in correct decisions. However, the Ray Stabbing method may solve
cases of self-intersecting models. An option in both of these methods
is to use scan-lines in multiple directions and use a majority voting
system to determine whether a voxel is inside the model.

8



(a) Overshoot (b) Gap (c) Self-intersection

Figure 5: Parity Count voting over two scan directions

Figure 5 shows the potential of a Parity Count voting process for
repairing overshoots and gaps. The voxelization method described by
Nooruddin and Turk (2003) uses a parity count in multiple directions.
A similar method is used in the program Binvox which will be used
during the initial stages of the project.

4.2 Surface rebuilding

The goal of the surface reconstruction component is to rebuild a
polygonal mesh out of the volumetric representation. Figuring out
which algorithm is most suitable is a main part of this research.
Nooruddin and Turk (2003) use a modified version of the March-
ing Cubes algorithm (Lorensen and Cline, 1987) since the original
Marching Cubes algorithm may result in ambiguity in certain cases.
The method of Noorrudin and Turk uses the extended implementa-
tion of Wilhelms and Van Gelder (1990). The entire voxel model is
looped through, looking at blocks of 8 voxels. This results in 16 pos-
sible combinations of empty/filled voxels. Based on the configuration
of the voxel-blocks, triangles are added to a mesh. Two examples of
cases are visible in figure 6.

9



(a) Case 1 (b) Case2

Figure 6: Examples of Marching Cubes cases

The next step according to Nooruddin and Turk (2003) is simplifying
the extracted iso-surfaces using Quadric Error Metrics (Garland and
Heckbert, 1997) until the desired number of triangles is achieved.
Considering the many different triangle orienations resulting from
the Marching Cubes algorithm, the simplification method is likely
to leave a higher number of triangles than desirable. Some basic
alterations to this method have the potential of improving the results.
First of all aligning the input models with the axis will translate into
a less ’bumpy’ mesh, which will be easier to simplify.

(a) Result after Marching Cubes (b) Result after segmentation

Figure 7: Normal vector segmentation after Marching Cubes

After the axis-alligning of the model, triangles may be segmented
based on normal vector orientation. This way neighbouring triangles
with similar orientation can easily be grouped together, after which
sharp edges may be recovered (see figure 8. However, this method
only applies to orthogonal (parts of) buildings.

10



(a) Insert a vertice in triangles
connected to three different faces

(b) Subdivide edges connected to
two different faces

Figure 8: Sharp edge recovery (Chica et al., 2008)

An alternative method is Pressing, partially aimed at finding
’large planar tiles’ (Chica et al., 2008). Its purpose is to rebuild 3D
models from their binary representation. It consists of three steps;
(i) finding large planar tiles, (ii) finding curved surfaces and (iii)
sharpening the edges. Since curved input models are in general not
present, this part can be disregarded. The computing of maximal
tiles is described in detail in Andújar et al. (2004).

Figure 9: Finding large flats in a 3D binary grid (Chica et al., 2008)

An alternative method combining a volumetric algorithm while pre-
serving the input tessellation described in (Bischoff and Kobbelt,
2005) may also provide a possibility of solving the problem. A de-
cision will have to be made on the best method for implementa-
tion. The final implementation will be compared to Shrink Wrapping
method (Zhao et al., 2013) to find out which method is most suitable
for different defects of the input model.

11



4.3 Writing to CityGML

Once a 2-manifold polygon mesh with the desired number of trian-
gles is achieved, the next step is writing the model back to CityGML
format. During this process there are two challenges. First, any
semantics stored with initial surfaces should ideally be preserved.
Apart from the semantics per surface, also any aggregations of ele-
ments should be kept intact.

4.4 Measuring result

The success of a repair process can be measured in several ways.
Three factors for a volumetric repair method for CityGML are pro-
posed here; (i) repair percentage, (ii) number of surfaces and (iii) ge-
ometric difference. The percentage of repairs simply looks at which
percentage of a dataset was considered valid before and after running
the repair process. The number of surfaces of a repaired CityGML
Building should ideally be equal (or close) to the number in original
CityGML input. A low number of surfaces in a valid model indi-
cates a successful surface reconstruction. The geometric difference
between the input and output CityGML model is a measure of accu-
racy of the model repair. This is relevant since building boundaries
may shift during the voxelization process. A method for mesh com-
parison is proposed by Roy et al. (2002, 2004) with the possibility
of measuring both geometric and attribute data. This step requires
writing the CityGML data to a 3D triangular mesh in VRML-format.

12



5 Schedule

5.1 Activities

The following schedule has been set up for the activities which are
needed to meet the research objectives .

Start End Activity

20 oct 31 oct Exploring graduation topics
P1 - Progress review Graduation Plan

01 nov 31 dec Literature study
6 nov 01 dec Research existing defects in CityGML data
17 nov 15 jan Study voxelization methods
17 nov 15 jan Study surface reconstruction methods

P2 - Formal assessment Graduation Plan
01 feb 16 mar Implement existing voxelization methods
01 feb 16 mar Implement existing surface reconstruction methods

P3 - Colloquium midterm
24 mar 12 may Write final implementation
01 may 12 may Thesis writing

P4 - Formal process assessment
12 may 15 jun Finalize thesis
12 jun 22 jun Prepare final presentation

P5 Public presentation and final assessment

The graduation calender is shown below. The exact dates of the pre-
sentations will be determined during the year.

Date Event

P1 11 November
P2 22 January
P3 March week 12
P4 May weeks 20-21
P5 June weeks 26-27

13



5.2 Meetings

Weekly meetings will be held with the daily supervisor dr. H. Ledoux
when necessary. Additional guidance and feedback will be provided
by the graduation professor Prof. dr. J.E. Stoter. The co-reader is
yet to be decided.

6 Tools and Data

6.1 Tools

In order to read, validate and process CityGML data several tools will
be required. For the viewing and processing of CityGML FME soft-
ware will be used. The validity of CityGML datasets before and after
repair will be tested with the val3dity tool by Hugo Ledoux, avail-
able at https://github.com/tudelft3d/val3dity. Python will be
used to write the code, along with the package Numpy. Binvox is
a fast implementation of the voxelization methods mentioned by
Nooruddin and Turk (2003) created by Patrick Min. It is avail-
able at: http://www.cs.princeton.edu/~min/binvox/. For 3D
data visualization/analysis of meshes and binary volumes, Rhino and
Paraview will be used respectively. MeshDev is a tool for mesh com-
parison as described by Roy et al. (2002, 2004) which may be used
to measure the repair results. It is available at http://meshdev.

sourceforge.net/.

6.2 Data

The dataset on which the data will be tested is Rotterdam3D, The
municipality of Rotterdam has published their 3D city model as open
data. The datasets are in LoD2 and are based on the BAG (Ba-
sic Register for Addresses and Buildings) and the height model of
Rotterdam, it is available at: http://www.rotterdam.nl/links_

rotterdam_3d. Another dataset for testing is from Montreal, also
in LoD2. This dataset is available at: http://donnees.ville.

montreal.qc.ca/dataset/. Additionally, manual models will be
used to check for specific cases.

14

https://github.com/tudelft3d/val3dity
http://www.cs.princeton.edu/~min/binvox/
http://meshdev.sourceforge.net/
http://meshdev.sourceforge.net/
http://www.rotterdam.nl/links_rotterdam_3d
http://www.rotterdam.nl/links_rotterdam_3d
http://donnees.ville.montreal.qc.ca/dataset/
http://donnees.ville.montreal.qc.ca/dataset/


References

Alama, N., Wagner, D., Wewetzer, M., von Falkenhausen, J., Coors,
V., and Pries, M. (2013). Towards automatic validation and heal-
ing of CityGML models for geometric and semantic consistency.
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, 1(1):1–6.

Andújar, C., Brunet, P., Chica, A., Navazo, I., Rossignac, J., and
Vinacua, A. (2004). Computing maximal tiles and application
to impostor-based simplification. In Computer Graphics Forum,
volume 23, pages 401–410. Wiley Online Library.

Attene, M., Campen, M., and Kobbelt, L. (2013). Polygon mesh
repairing: An application perspective. ACM Computing Surveys
(CSUR), 45(2):15.

Bischoff, S. and Kobbelt, L. (2005). Structure preserving CAD model
repair. In Computer Graphics Forum, volume 24, pages 527–536.
Wiley Online Library.

Chica, A., Williams, J., Andujar, C., Brunet, P., Navazo, I.,
Rossignac, J., and Vinacua, A. (2008). Pressing: Smooth isosur-
faces with flats from binary grids. In Computer Graphics Forum,
volume 27, pages 36–46. Wiley Online Library.

Garland, M. and Heckbert, P. S. (1997). Surface simplification using
quadric error metrics. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, pages 209–216.
ACM Press/Addison-Wesley Publishing Co.

Kolbe, T., Gröger, G., and Plümer, L. (2008). CityGML–3D city
models and their potential for emergency response. Geospatial
information technology for emergency response, 257.

Kolbe, T. H. (2009). Representing and exchanging 3D city mod-
els with CityGML. In 3D geo-information sciences, pages 15–31.
Springer.

15



Kolbe, T. H., Gröger, G., and Plümer, L. (2005). CityGML: Interop-
erable access to 3D city models. In Geo-information for disaster
management, pages 883–899. Springer.

Ledoux, H. (2013). On the validation of solids represented with
the international standards for geographic information. Computer-
Aided Civil and Infrastructure Engineering, 28(9):693–706.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high
resolution 3D surface construction algorithm. In ACM Siggraph
Computer Graphics, volume 21, pages 163–169. ACM.

Nooruddin, F. S. and Turk, G. (2003). Simplification and repair of
polygonal models using volumetric techniques. Visualization and
Computer Graphics, IEEE Transactions on, 9(2):191–205.

Roy, M., Foufou, S., and Truchetet, F. (2002). Generic attribute
deviation metric for assessing mesh simplification algorithm qual-
ity. In Image Processing. 2002. Proceedings. 2002 International
Conference on, volume 3, pages 817–820. IEEE.

Roy, M., Foufou, S., and Truchetet, F. (2004). Mesh comparison
using attribute deviation metric. International Journal of Image
and Graphics, 4(01):127–140.

Stoter, J., van den Brink, L., Vosselman, G., Goos, J., Zlatanova, S.,
Verbree, E., Klooster, R., van Berlo, L., Vestjens, G., Reuvers, M.,
et al. (2011). A generic approach for 3D SDI in the netherlands.
In Proceedings of the Joint ISPRS Workshop on 3D City Mod-
elling&Applications and the 6th 3D GeoInfo Conference Wuhan,
China, pages 26–28.

Wagner, D., Wewetzer, M., Bogdahn, J., Alam, N., Pries, M., and
Coors, V. (2013). Geometric-semantical consistency validation of
citygml models. In Progress and New Trends in 3D Geoinformation
Sciences, pages 171–192. Springer.

Wilhelms, J. and Van Gelder, A. (1990). Topological considerations
in isosurface generation extended abstract, volume 24. ACM.

16



Zamyadi, A., Pouliot, J., and Bédard, Y. (2013). A three step proce-
dure to enrich augmented reality games with CityGML 3D seman-
tic modeling. In Progress and New Trends in 3D Geoinformation
Sciences, pages 261–275. Springer.

Zhao, J., Ledoux, H., and Stoter, J. (2013). Automatic repair of
CityGML LOD2 buildings using shrink-wrapping. ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, II-2 W, 1:309–317.

Zhao, J., Stoter, J., and Ledoux, H. (2014). A framework for the
Automatic Geometric Repair of CityGML Models. In Cartography
from Pole to Pole, pages 187–202. Springer.

17


	Introduction
	Scientific relevance

	Related work
	General CAD Repair
	CityGML Repair

	Research objectives
	Objectives
	Scope of research

	Methodology
	Voxelization
	Surface rebuilding
	Writing to CityGML
	Measuring result

	Schedule
	Activities
	Meetings

	Tools and Data
	Tools
	Data


