

GEO1016 Photogrammetry and 3D Computer Vision

Lecture Surface Reconstruction

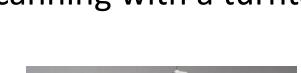
Liangliang Nan

Outline

- Introduction
 - Data sources
 - Challenges
 - General ideas
- Smooth object reconstruction
 - The pioneering work [Hoppe et al. 1992]
 - Poisson reconstruction [Kazhdan et al. 2006]
 - Piecewise smooth reconstruction
- Piecewise planar object reconstruction [Nan and Wonka. 2017]

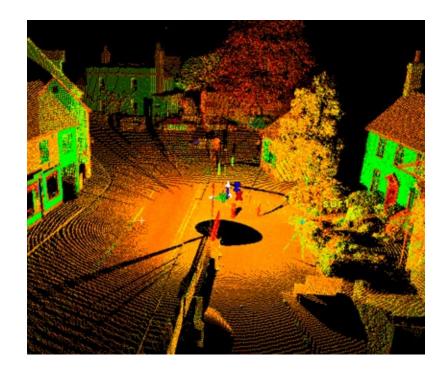
• Data sources

– Laser scanning with a turntable

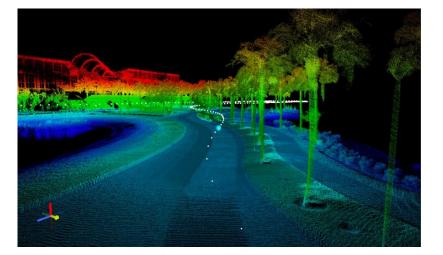


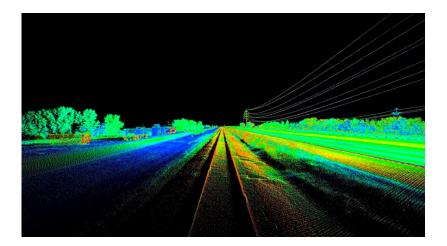
- Data sources
 - Laser scanning with a hand-held scanner

- Data sources
 - Laser scanning with static laser scanner (range of 100, 200... meters)

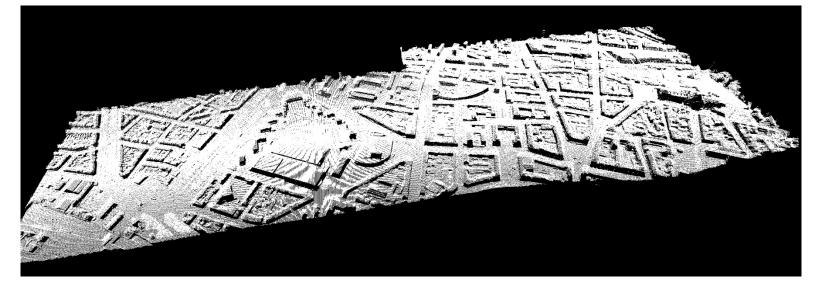


- Data sources
 - Laser scanning mobile scanners



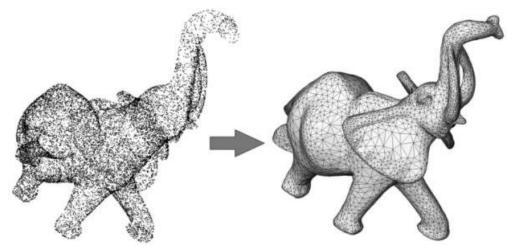


- Data sources
 - Laser scanning airborne LiDAR

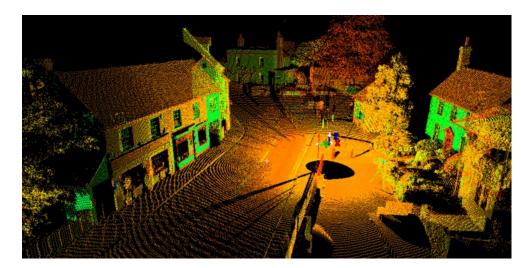


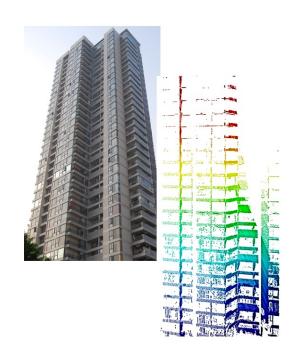
- Data sources
 - Laser scanning
 - Structure from Motion (SfM) and Multi-view stereo (MVS)

- Surface reconstruction
 - Input: point set P sampled over a surface S
 - Non-uniform sampling
 - With holes
 - With uncertainty (noise)
 - Output: a surface approximating *S* in terms of topology and geometry
 - Desired
 - Watertight
 - Intersection free

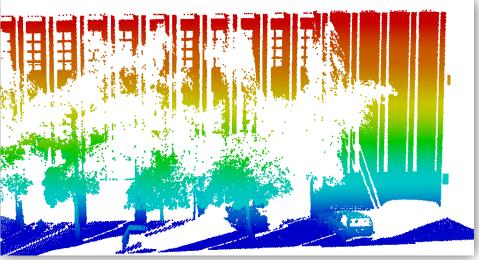


- Challenges
 - The point samples may not be uniformly distributed
 - Oblique scanning angles
 - Laser energy attenuation

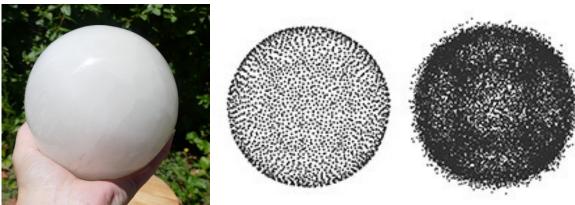


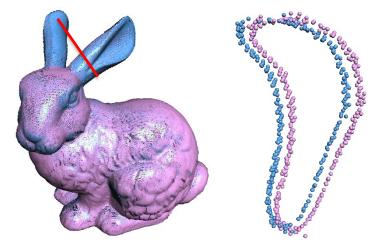


- Challenges
 - The point samples may not be uniformly distributed
 - Missing data
 - Material properties, inaccessibility, occlusion, etc.

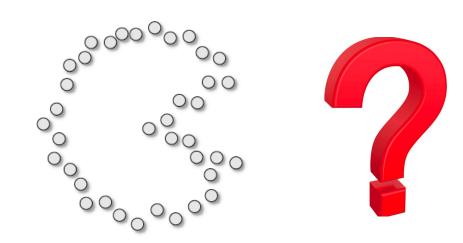


- Challenges
 - The point samples may not be uniformly distributed
 - Missing data
 - The positions and normals are generally noisy
 - Sampling inaccuracy
 - Scan misregistration





- Challenges
 - The point samples may not be uniformly distributed
 - Missing data
 - The positions and normals are generally noisy
 - Ill-posed problem



Many candidate surfaces for the reconstruction problem!

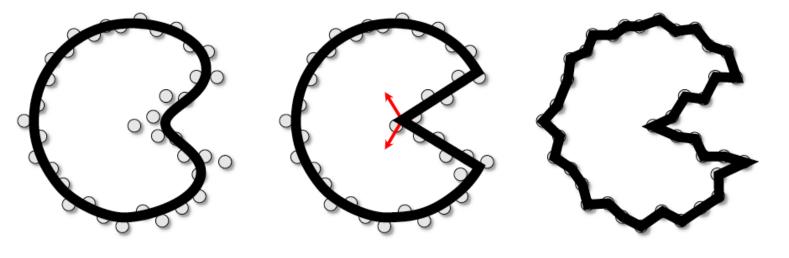
Many candidate surfaces for the reconstruction problem! 14

Introduction

- Challenges
 - The point samples may not be uniformly distributed
 - Missing data
 - The positions and normals are generally noisy

How to pick?

Ill-posed problem

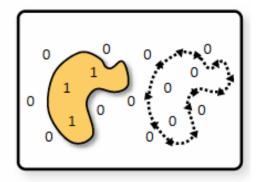


15

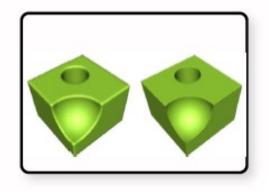
General Ideas

• Surface smoothness priors

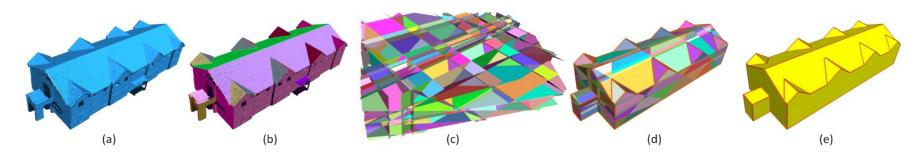
Global Smoothness



Piecewise Smoothness



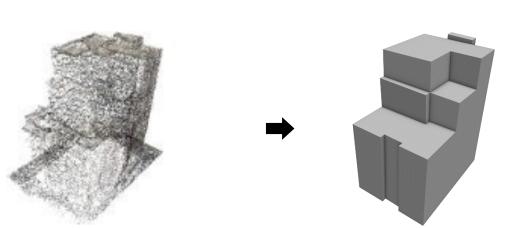
• Domain-specific priors

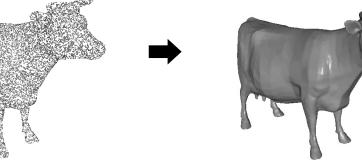


[Nan and Wonka 2017]

Smooth surface reconstruction

• Piecewise-planar object reconstruction

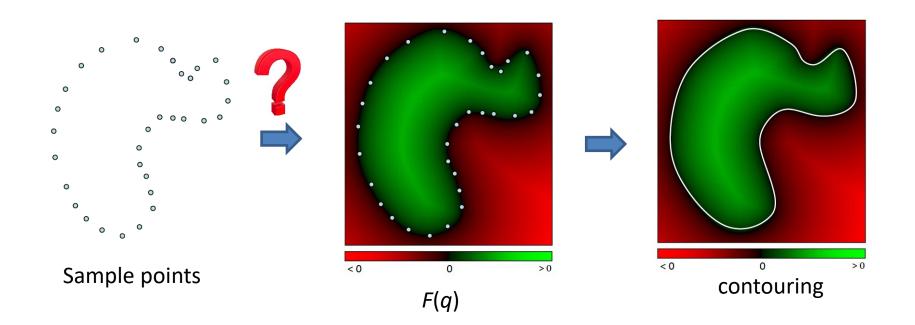




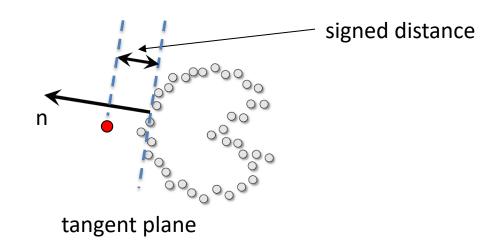
Today's Agenda

- Introduction
- Smooth object reconstruction
 - The pioneering work [Hoppe et al. 1992]
 - Poisson reconstruction [Kazhdan et al. 2006]
 - Piecewise smooth reconstruction
- Piecewise planar object reconstruction [Nan and Wonka. 2017]

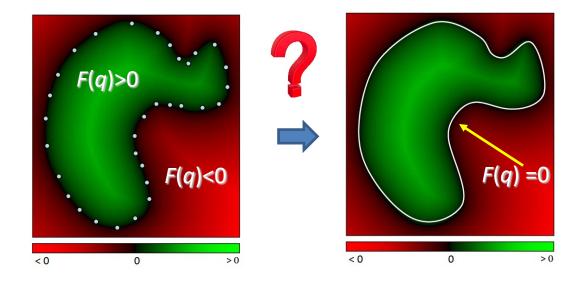
- Two main steps
 - Estimate signed geometric distance to the unknown surface
 - Extract the zero-set of the distance field using a contouring algorithm



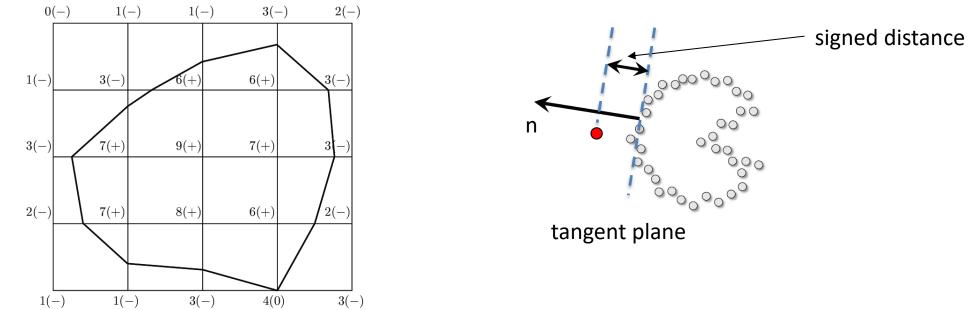
- Define a signed distance function (SDF)
 - Associate an oriented plane (tangent plane) with each of the data points
 - Tangent plane is a local linear approximation to the surface.
 - Used to define signed distance function to surface.



- Contour tracing
 - Extract 0-set iso-surface from the scalar field
 - Marching cubes

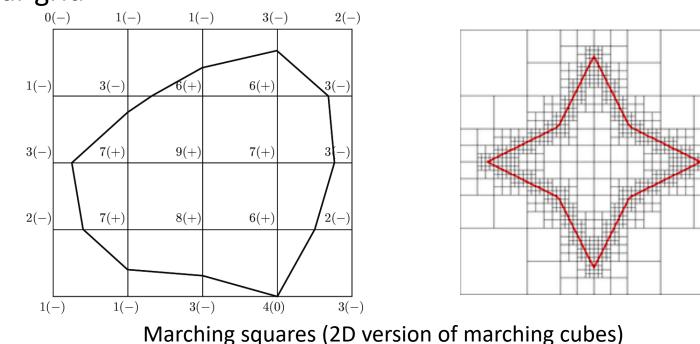


- Contour tracing
 - Extract 0-set iso-surface from the scalar field
 - Marching cubes

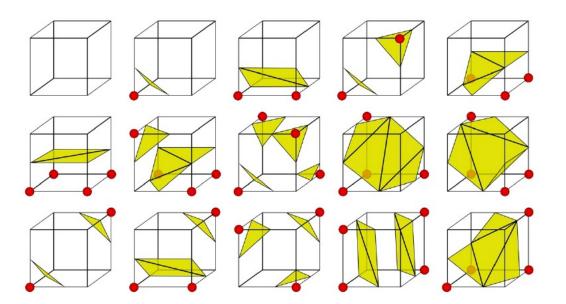


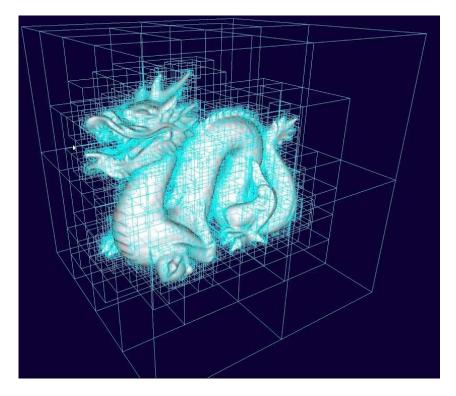
Marching squares (2D version of marching cubes)

- Contour tracing
 - Extract 0-set iso-surface from the scalar field
 - Marching cubes
 - Irregular grid

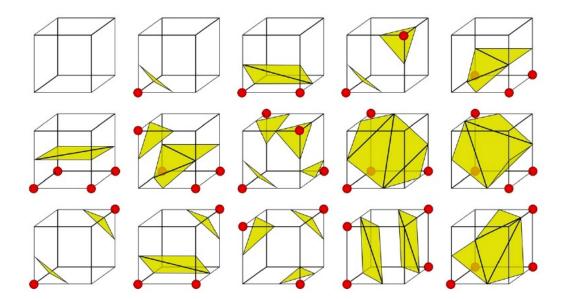


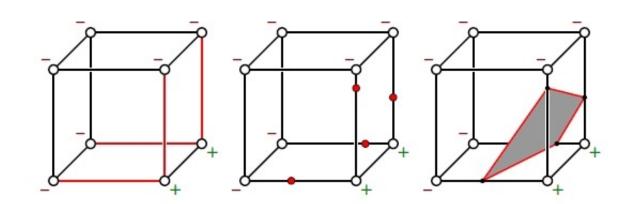
- Contour tracing
 - Extract O-set iso-surface from the scalar field
 - Marching cubes





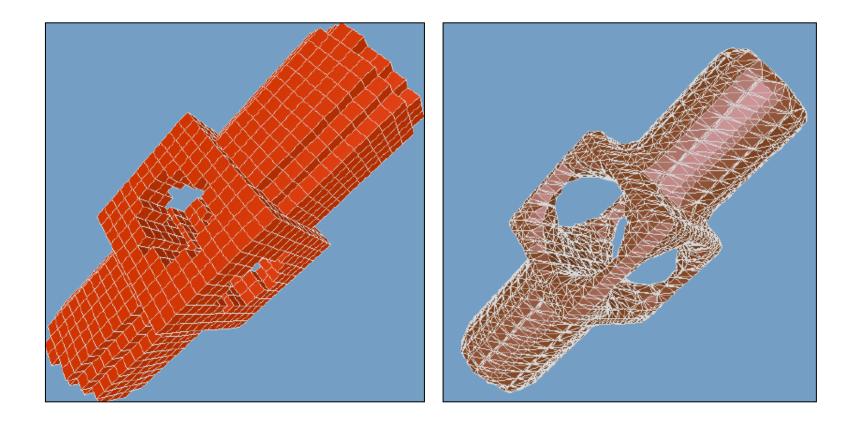
- Contour tracing
 - Extract O-set iso-surface from the scalar field
 - Marching cubes



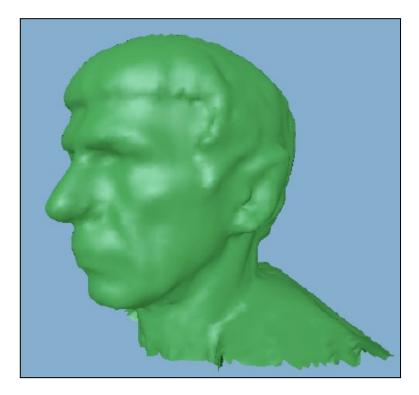


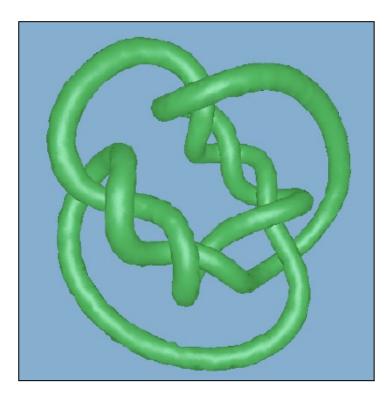
Marching cubes

• Reconstruction results



• Reconstruction results

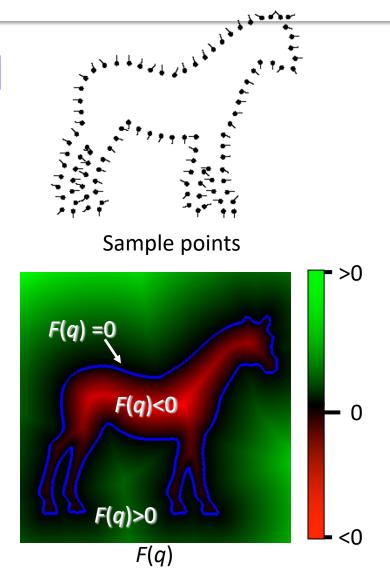




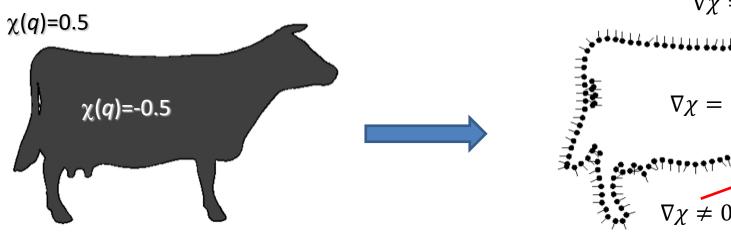
Outline

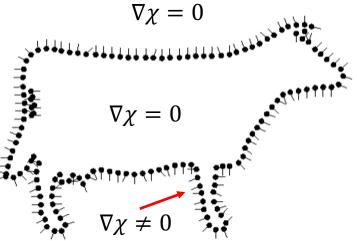
- Introduction
- Smooth object reconstruction
 - The pioneering work [Hoppe et al. 1992]
 - Poisson reconstruction [Kazhdan et al. 2006]
 - Piecewise smooth reconstruction
- Piecewise planar object reconstruction [Nan and Wonka. 2017]

- Inherited idea from [Hoppe et al. 1992]
- Discrete SDF -> Implicit function fitting
 - Define a continuous 3D scalar function
 - Zero values at the points
 - Positive values outside
 - Negative values inside
 - Extract the zero isosurface

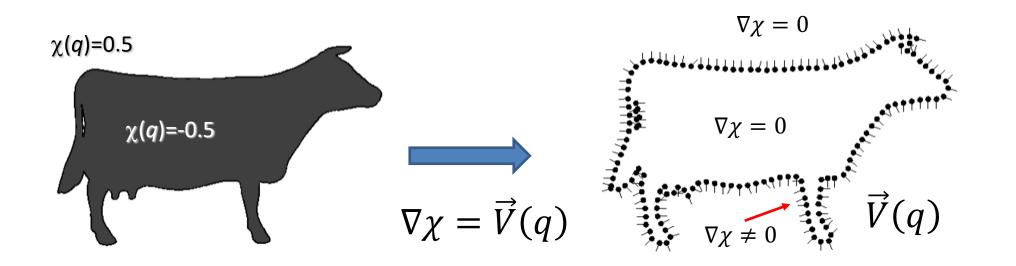


- The idea
 - The indicator function (χ)
 - Interior: a constant negative value
 - Exterior: a constant positive value
 - The gradient of the indicator function $(\nabla \chi)$
 - Zero everywhere except close to the boundary

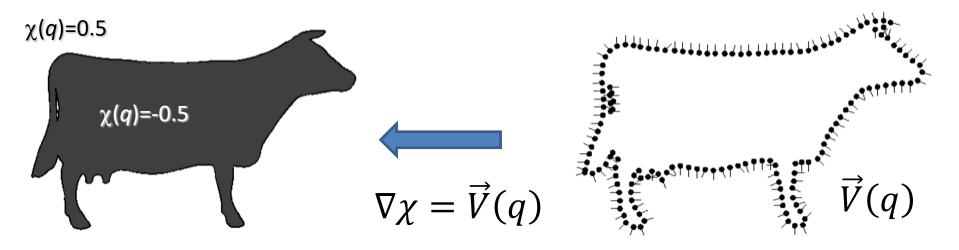




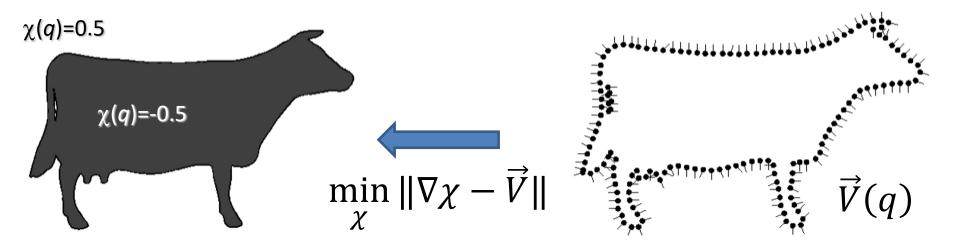
- The idea
 - The indicator function (χ)
 - The gradient of the indicator function $(\nabla \chi)$
 - Oriented points $\vec{V}(q) \approx$ discretization of gradient of indicator function

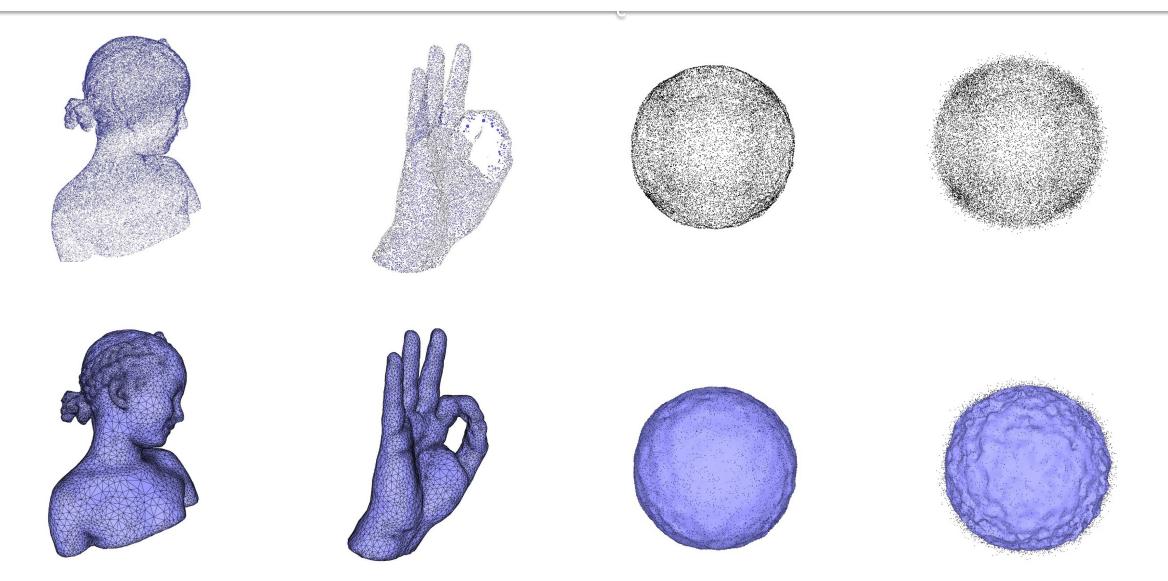


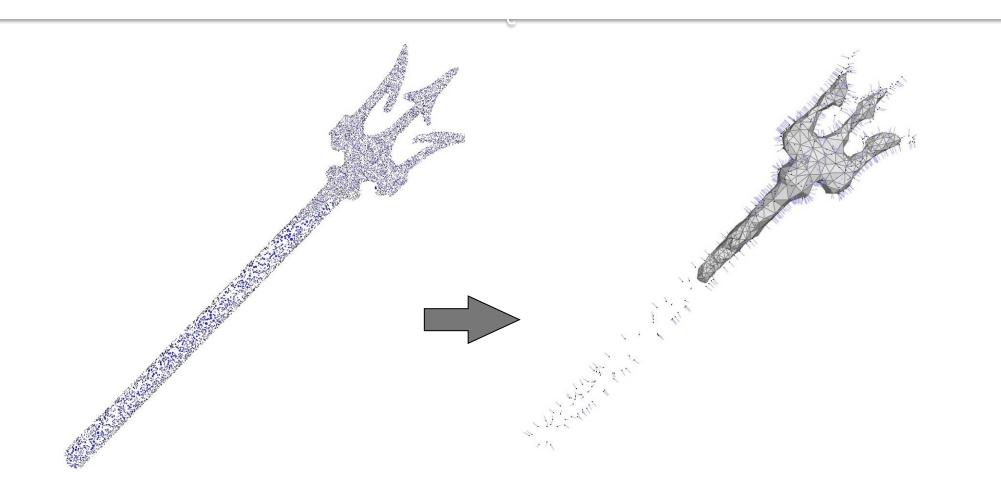
- The idea
 - The indicator function (χ)
 - The gradient of the indicator function $(\nabla \chi)$
 - Oriented points $\vec{V}(q) \approx$ discretization of gradient of indicator function
 - Reconstruction



- The idea
 - The indicator function (χ)
 - The gradient of the indicator function $(\nabla \chi)$
 - Oriented points $\vec{V}(q) \approx$ discretization of gradient of indicator function
 - Reconstruction: finding the indicator function + iso-surface extraction



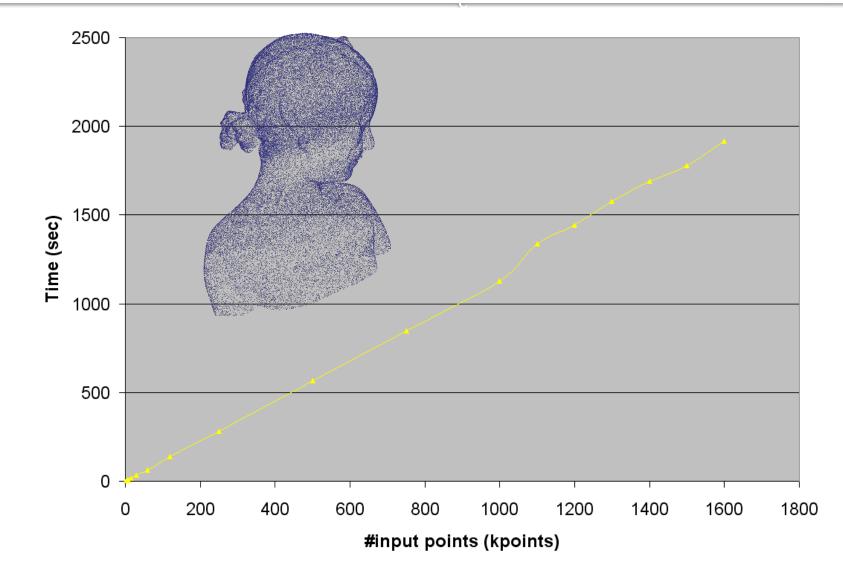




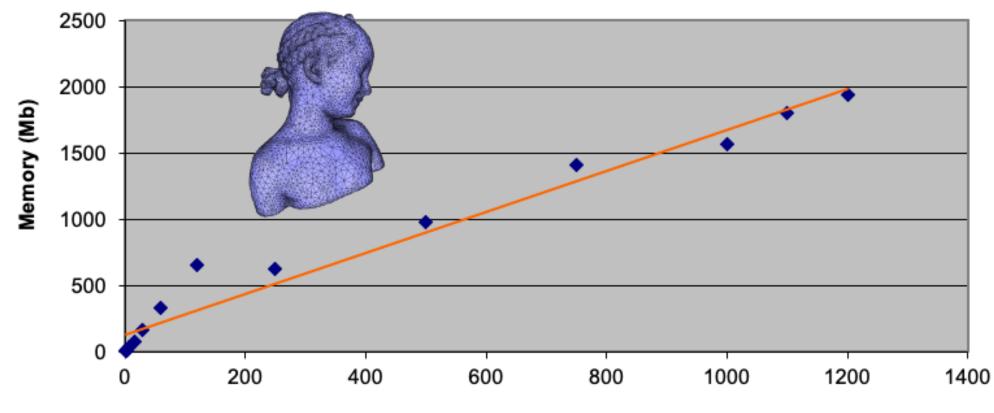
Left: 50K points sampled on Neptune trident

Right: point set simplified to 1K then reconstructed

Poisson duration wrt #input points



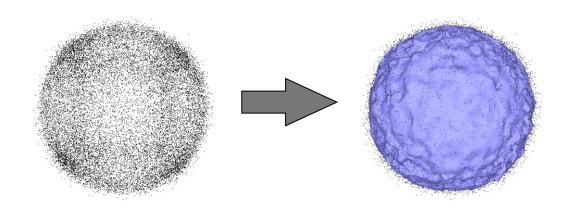
Memory wrt #input points

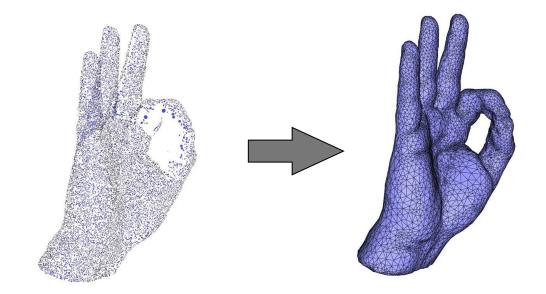


#input points (x1000)

Poisson Reconstruction

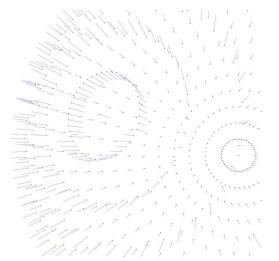
- Properties
 - ✓ Supports noisy, non-uniform data
 - ✓ Can fill reasonably large holes

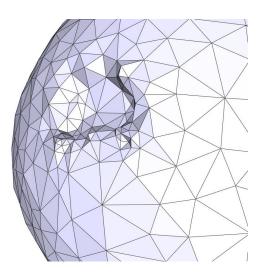




Poisson Reconstruction

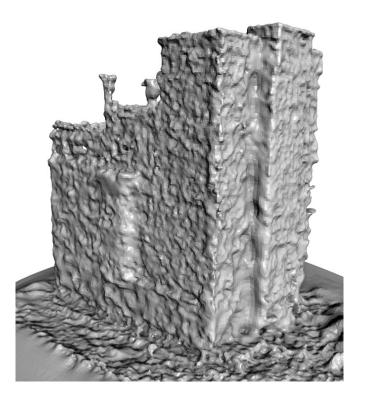
- Properties
 - ✓ Supports noisy, non-uniform data
 - ✓ Can fill reasonably large holes
- Limitations
 - It requires good normal information





Poisson Reconstruction

- Properties
 - ✓ Supports noisy, non-uniform data
 - ✓ Can fill reasonably large holes
- Limitations
 - It requires good normal information
 - Sharp features are oversmoothed
 - Not good for piecewise planar objects



Outline

- Introduction
- Smooth object reconstruction
 - The pioneering work [Hoppe et al. 1992]
 - Poisson reconstruction [Kazhdan et al. 2006]
 - Piecewise smooth reconstruction

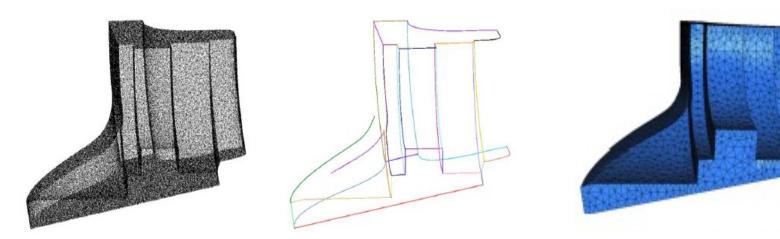
Piecewise Smooth Reconstruction

• Piecewise-smooth



Piecewise Smooth Reconstruction

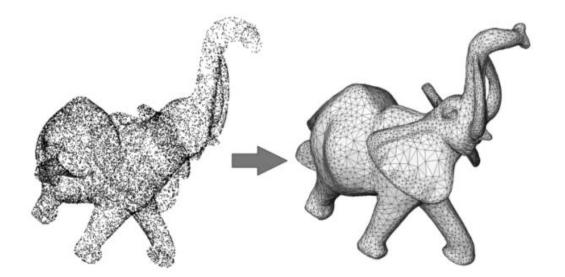
- Feature detection
 - Extract a set of sharp features
 - Decompose the point cloud into smooth patches
- Smooth reconstruction patch by patch
- Stitch the patches



Outline

- Introduction
- Smooth object reconstruction
 - The pioneering work [Hoppe et al. 1992]
 - Poisson reconstruction [Kazhdan et al. 2006]
 - Piecewise smooth reconstruction
- Piecewise planar object reconstruction

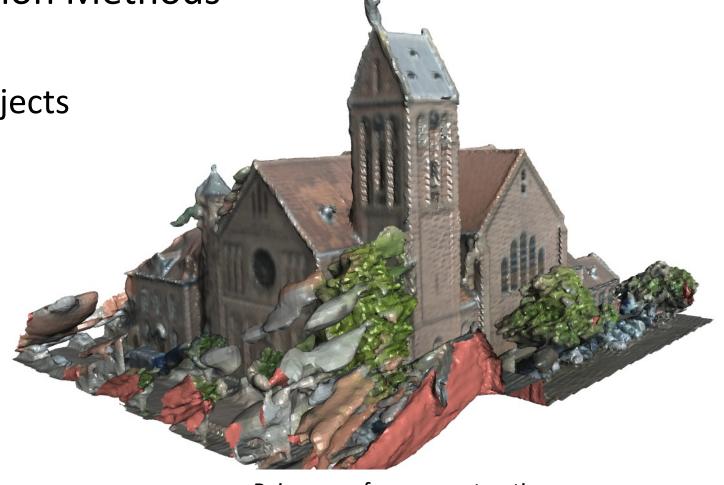
- Surface Reconstruction Methods
 - Smooth surfaces
 - Fit noisy data; robust to non-uniform distribution; fill (small) holes



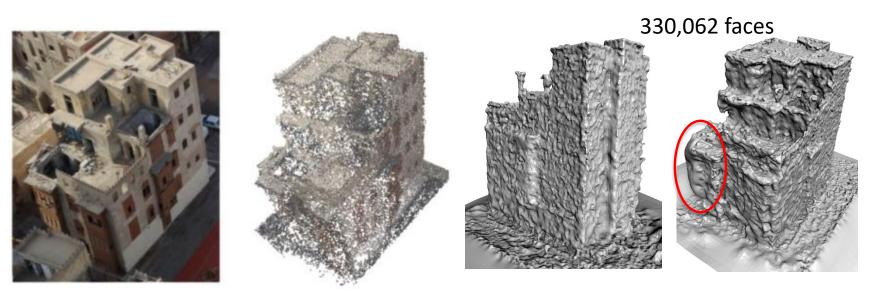
Poisson Surface Reconstruction [Kazhdan et al. 06]

- Surface Reconstruction Methods
 - Smooth surfaces
 - Piecewise planar objects

- Surface Reconstruction Methods
 - Smooth surfaces
 - Piecewise planar objects



- Smooth surfaces
- Piecewise planar objects

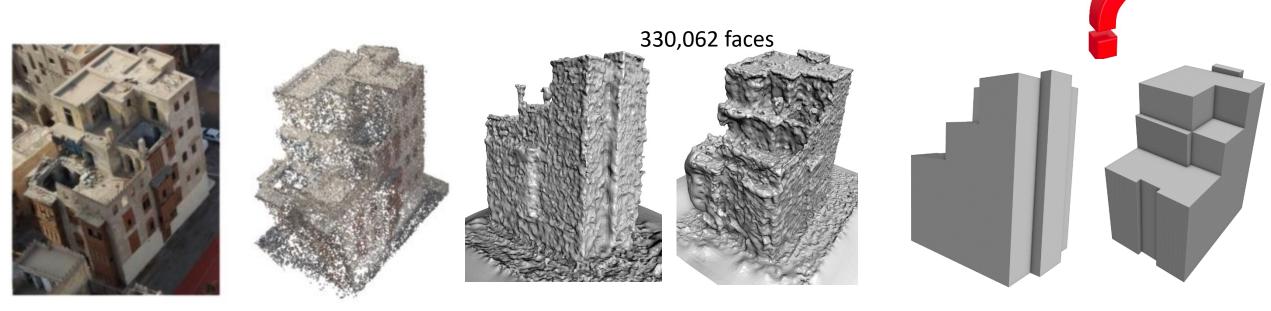


Result of [Kazhdan et al. 06]

- Unsatisfied results
 - Bumpy
 - Large number of faces
 - Unacceptable hole filling
- Rare direct applications
 - Post-processing required
 - Topologically correct
 - Simplified

TUDelft 3Dgeoinfo

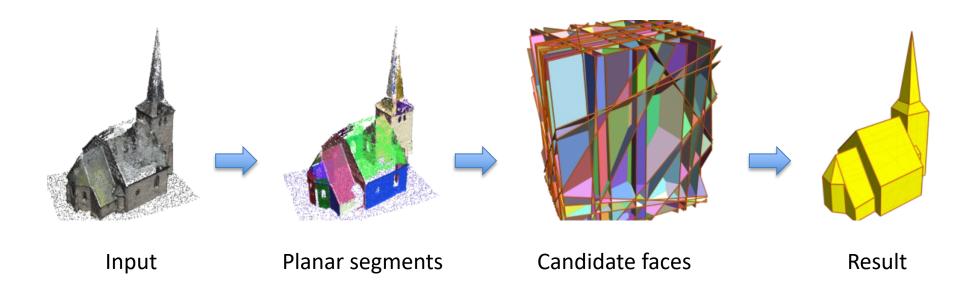
- Surface Reconstruction Methods
 - Smooth surfaces
 - Piecewise planar objects



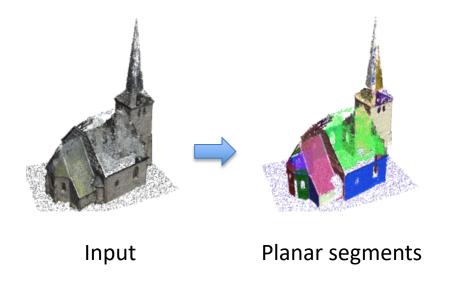
Result of [Kazhdan et al. 06]

[Nan and Wonka 17]

• Overview



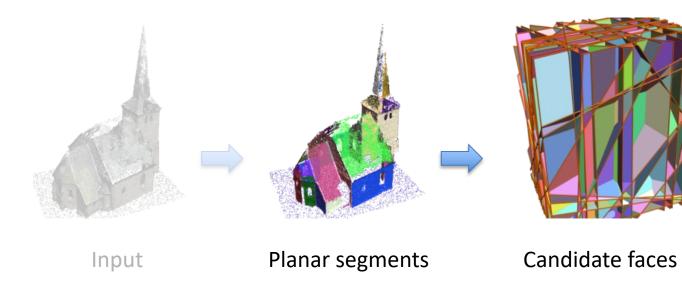
• Plane extraction



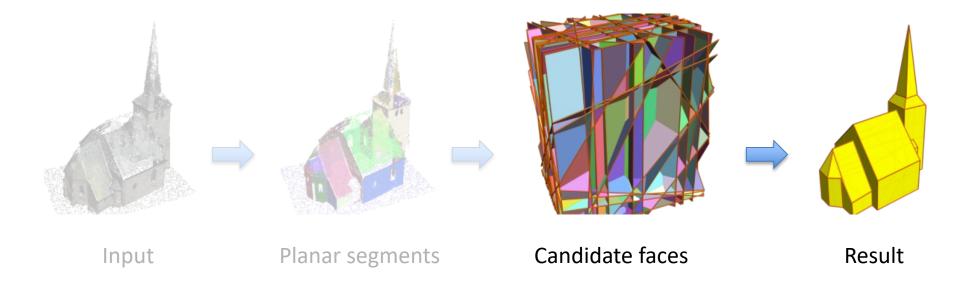
RANSAC algorithm

- Random 3 points -> plane
- Scoring, accept or reject
- Repeat
 - Plane from the remaining points
 - Stop if no plane can be extracted

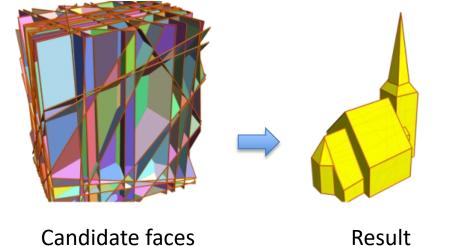
- Candidate generation
 - Supporting plane clipping
 - Pairwise intersection



• Face selection



- Face selection
 - Labeling problem
 - Linear integer program



N candidate faces $F = \{f_i | 1 \le i \le N\}$ Variables: $x_i = \begin{cases} 1, & \text{face } f_i \text{ will be chosen} \\ 0, & \text{face } f_i \text{ will$ **not** $be chosen} \end{cases}$

- Objective function
 - Data fitting
 - Favors selecting faces passing through points
 - Percentage of unused points

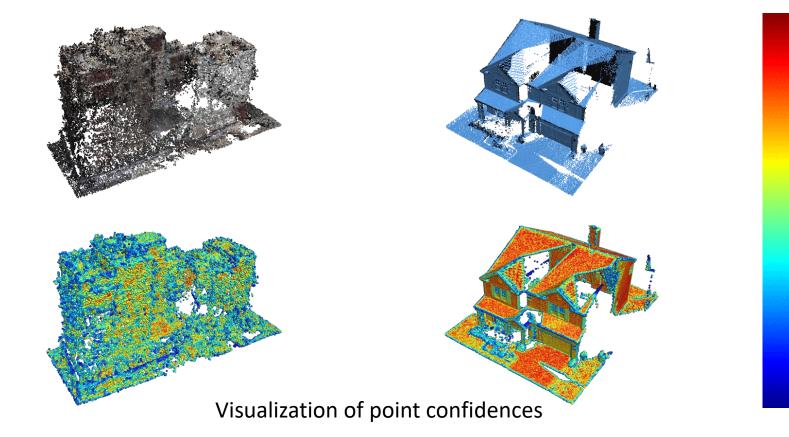
$$E_f = 1 - \frac{1}{|P|} \sum_{i=1}^{N} x_i \cdot support(f_i)$$

- Objective function
 - Data fitting
 - Favors selecting faces passing through points
 - Percentage of unused points

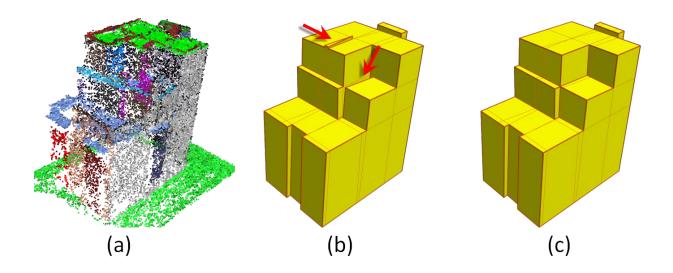
$$E_f = 1 - \frac{1}{|P|} \sum_{i=1}^{N} x_i \cdot support(f_i)$$

 $\begin{array}{ll} \text{Confidence weighted} & support(f) = \sum_{p,f \mid dist(p,f) < \varepsilon} (1 - \frac{dist(p,f)}{\varepsilon}) \cdot conf(p) \end{array}$

- Objective function
 - Data fitting



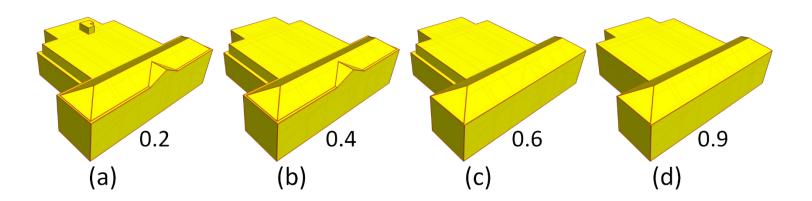
- Objective function
 - Data fitting
 - Model complexity
 - Encourages large planar regions (by penalizing sharp corners)



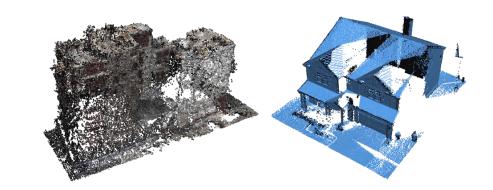
- Objective function
 - Data fitting
 - Model complexity
 - Encourages large planar regions (by penalizing sharp corners)

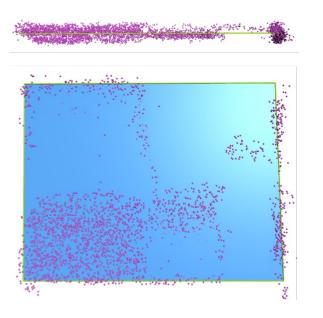
$$E_m = \frac{1}{|E|} \sum_{i=1}^{|E|} corner(e_i)$$

- Objective function
 - Data fitting
 - Model complexity
 - Encourages large planar regions (by penalizing sharp corners)



- Objective function
 - Data fitting
 - Model complexity
 - Point coverage



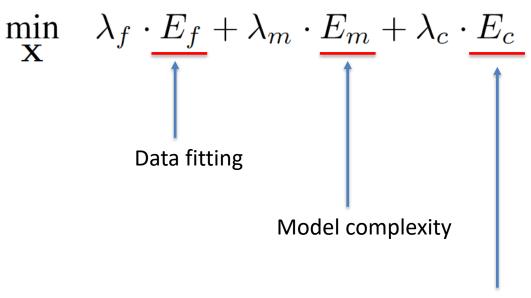


- Objective function
 - Data fitting
 - Model complexity
 - Point coverage

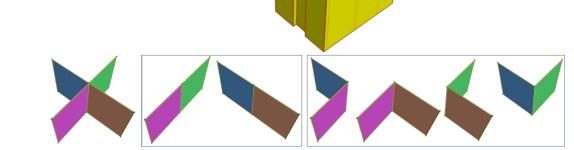
$$E_{c} = \frac{1}{area(M)} \sum_{i=1}^{N} x_{i} \cdot (area(f_{i}) - area(M_{i}^{\alpha})),$$

$$\bigcup_{0.93} \bigcup_{0.65} \bigcup_{0.$$

- Face selection
 - Linear integer program



- Face selection
 - Linear integer program
 - Constraints
 - Watertight
 - Manifold



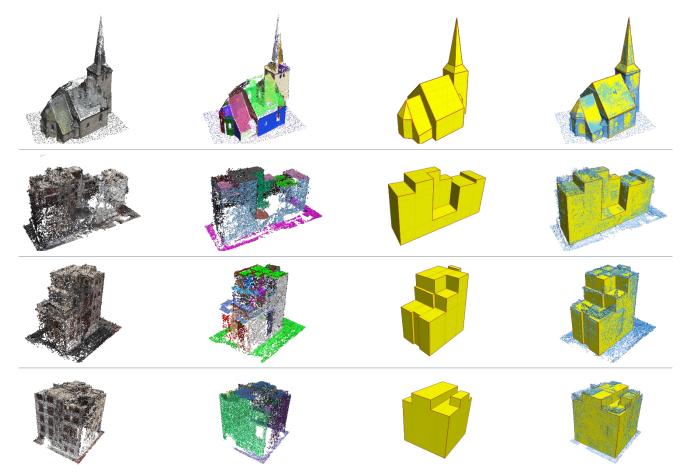
 $\min_{\mathbf{X}} \quad \lambda_f \cdot E_f + \lambda_m \cdot E_m + \lambda_c \cdot E_c$

s.t.
$$\begin{cases} \sum_{j \in \mathcal{N}(e_i)} x_j = 2 \text{ or } 0, & 1 \le i \le |E| \\ x_i \in \{0, 1\}, & 1 \le i \le N \end{cases}$$

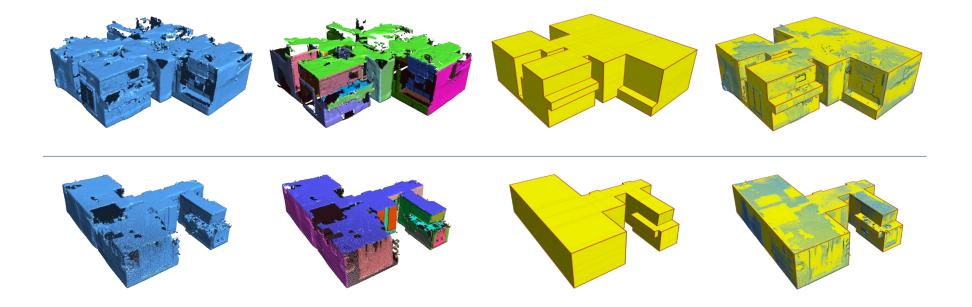
- Face selection
 - Linear integer program
 - Constraints
 - Solvers (SCIP, CBC, GLPK, Gurobi...)

$$\begin{split} \min_{\mathbf{X}} \quad \lambda_f \cdot E_f + \lambda_m \cdot E_m + \lambda_c \cdot E_c \\ \text{s.t.} \quad \begin{cases} \sum_{j \in \mathcal{N}(e_i)} x_j = 2 \quad \text{or} \quad 0, \quad 1 \leq i \leq |E| \\ x_i \in \{0, 1\}, \quad 1 \leq i \leq N \end{cases} \end{split}$$

• Reconstruction results



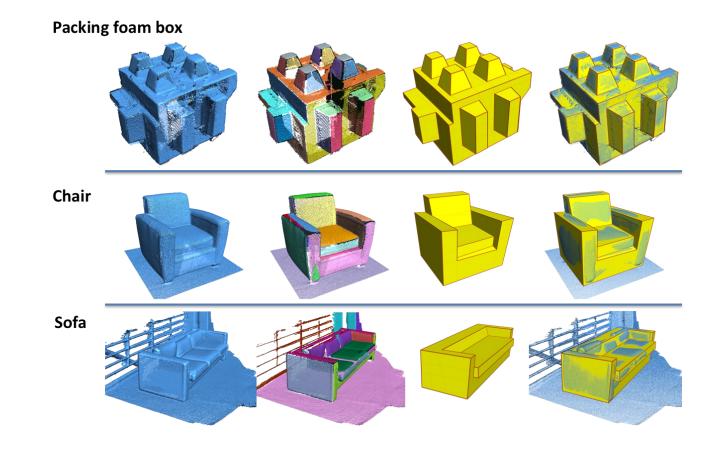
• Reconstruction results



struction Struction

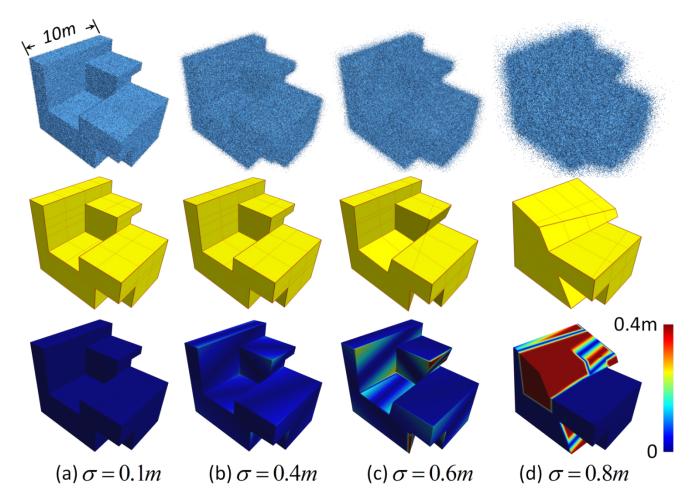
Piecewise Planar Reconstruction

• Reconstruction results



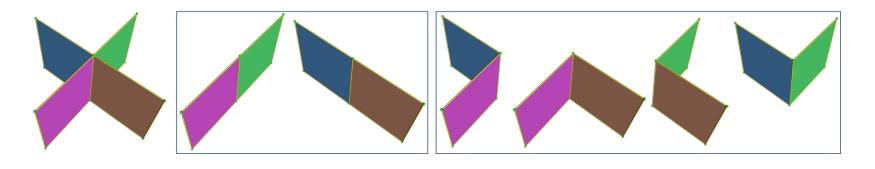
Piecewise Planar Reconstruction

• Robustness to noise



Limitations

• Open surfaces

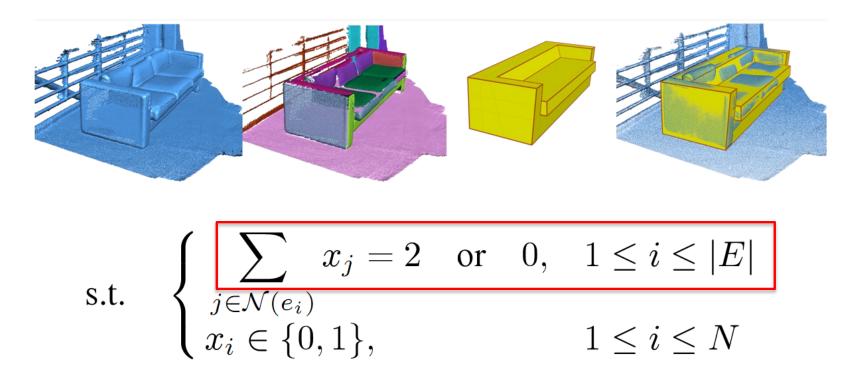


s.t.
$$\begin{cases} \sum_{j \in \mathcal{N}(e_i)} x_j = 2 \text{ or } 0, & 1 \le i \le |E| \\ x_i \in \{0, 1\}, & 1 \le i \le N \end{cases}$$

TUDelft 3Dgeoinfo

Limitations

• Open surfaces



Limitations

- Open surfaces
- Finer surface details
 - Fence

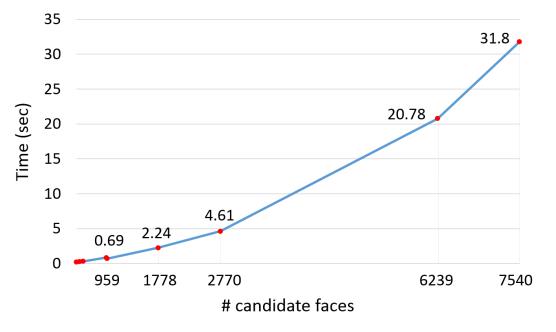
...

- Façade decorations
- Door handle

$$\begin{split} \min_{\mathbf{X}} \quad \lambda_f \cdot E_f + \lambda_m \cdot E_m + \lambda_c \cdot E_c \\ \text{s.t.} \quad \begin{cases} \sum_{j \in \mathcal{N}(e_i)} x_j = 2 \quad \text{or} \quad 0, \quad 1 \leq i \leq |E| \\ x_i \in \{0, 1\}, \quad 1 \leq i \leq N \end{cases} \end{split}$$

Limitations

- Open surfaces
- Finer surface details
- Complexity of the algorithm



• Demo



Source Code (in C++) https://github.com/LiangliangNan/PolyFit

Next

- Discussions
 - The assignments
 - Metric reconstruction
 - Evaluation
- Final exam
 - Example questions
 - Q&A