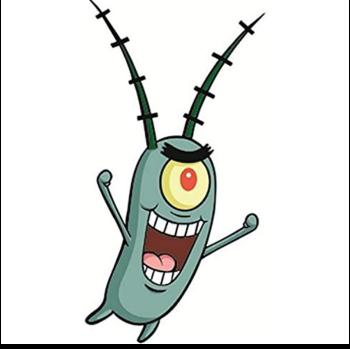
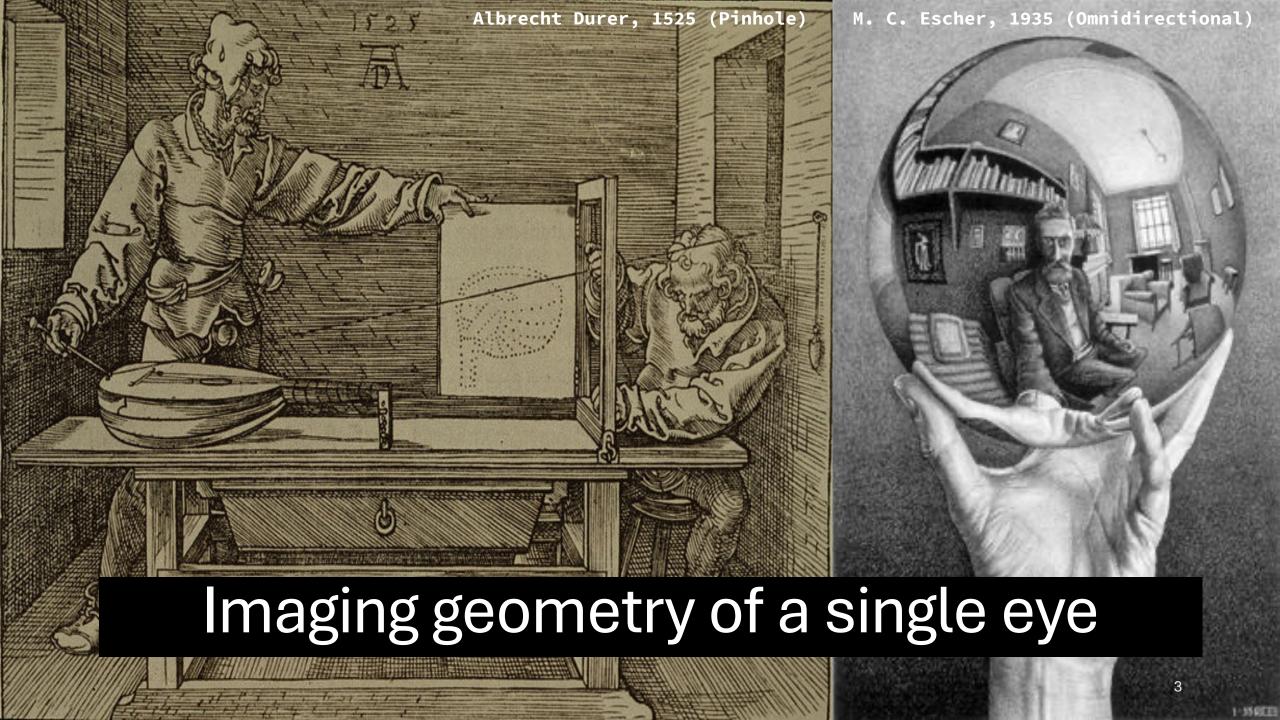


What do these characters have in common?

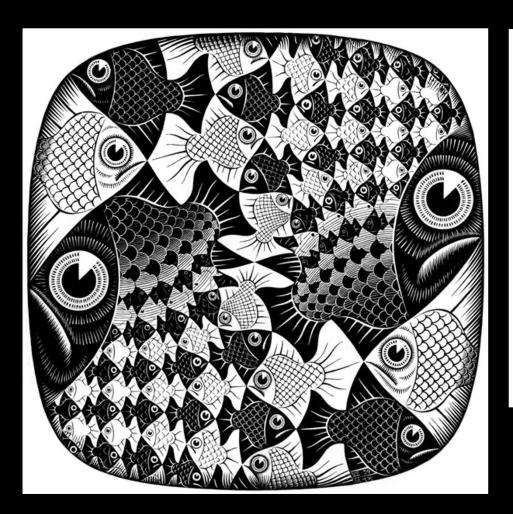


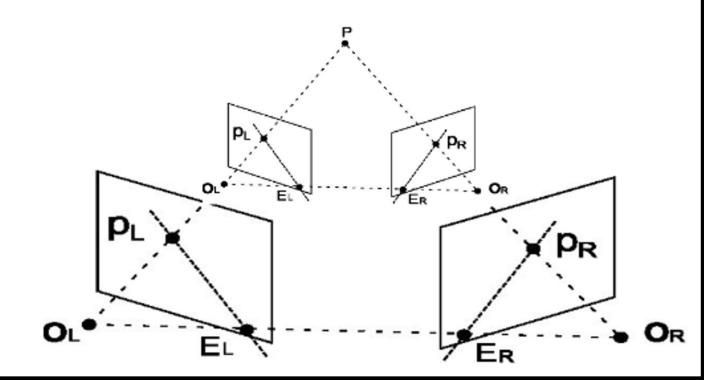


Limitations of single eye

4

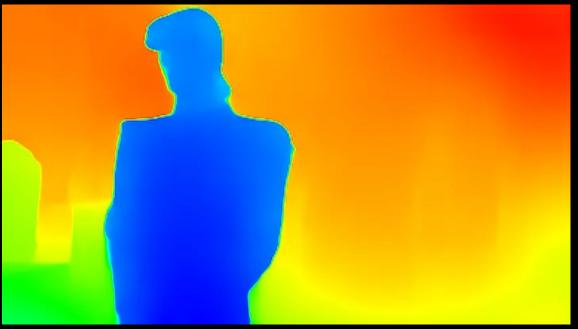
Limitations of single eye





5

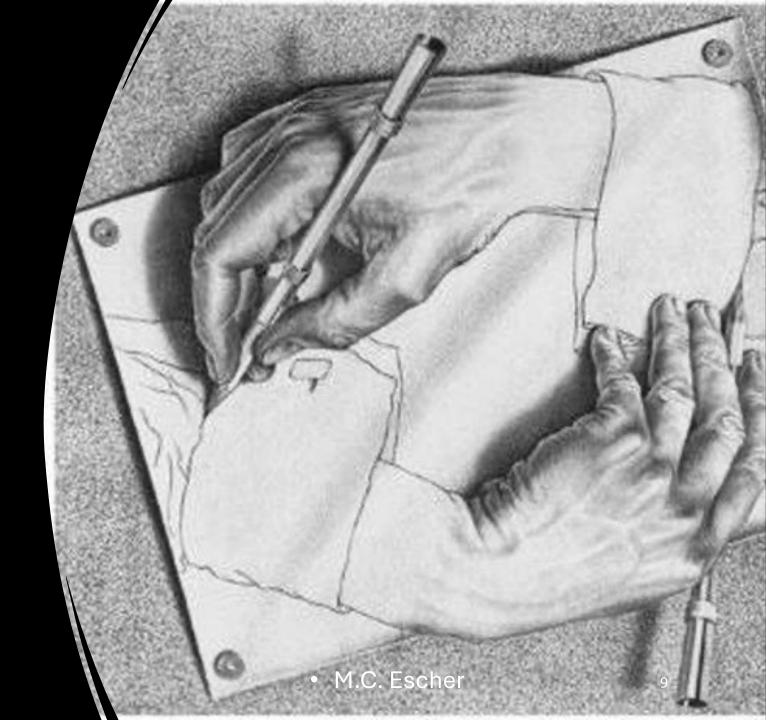
Ask AI to recover geometry from a single image.



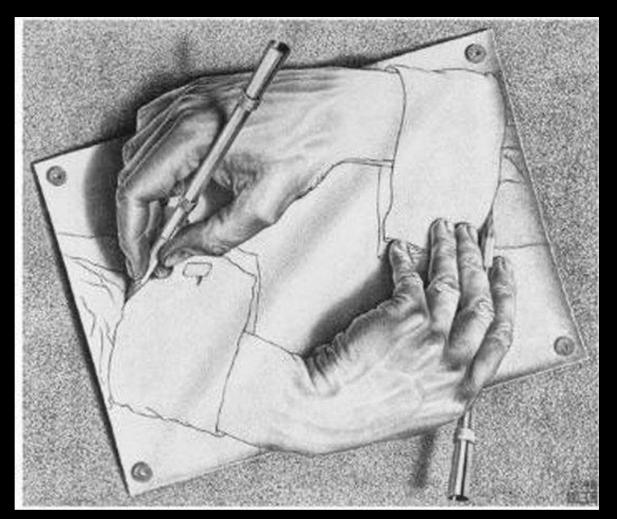
Good looking 2.5D != Good looking 3D

- SOTA 2019-2022 (MiDAS)
- Source (Patricio Gonzalez)

Visual cues for 3D: Shading



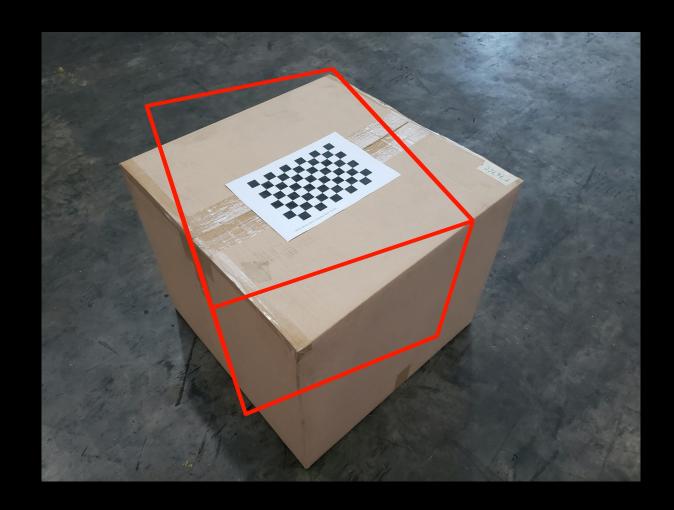
Visual cues for 3D: Shading



Merle Norman Cosmetics

M.C. Escher

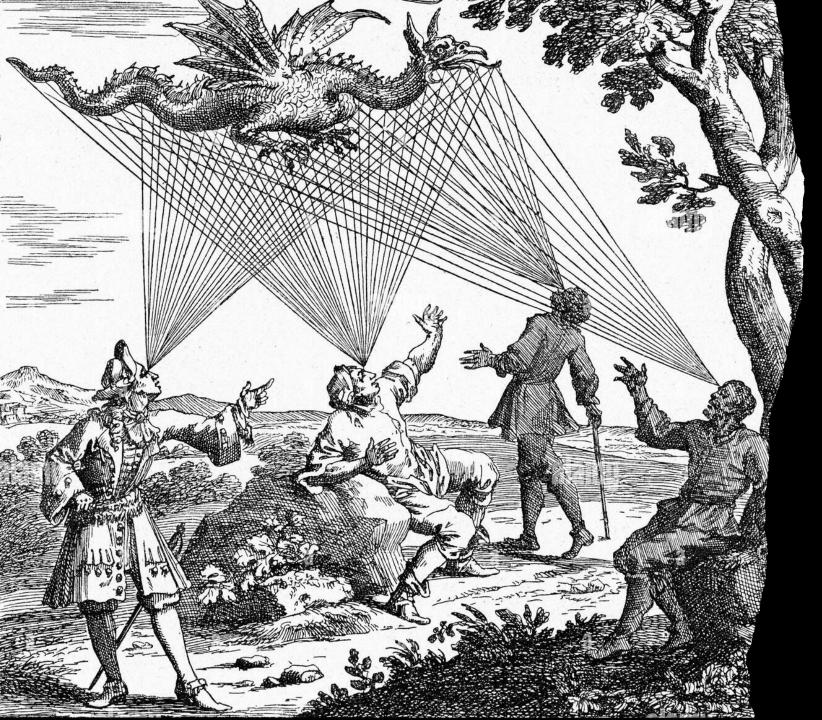
Visual cues for 3D: Texture



The Visual Cliff by William Vandivert

Visual cues for 3D: Focus, Motion

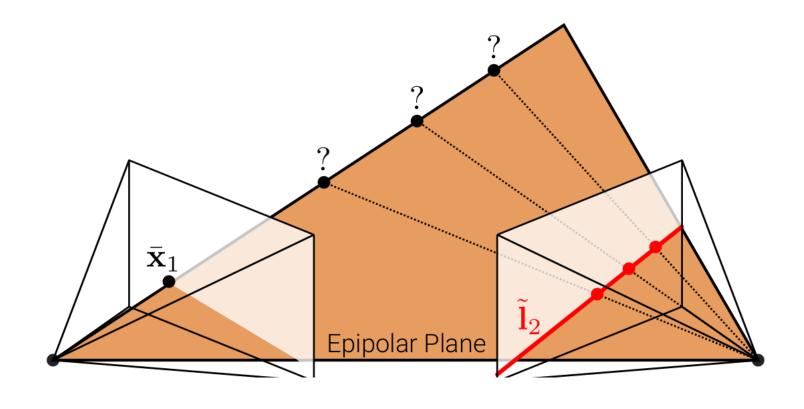
Two-view stereo



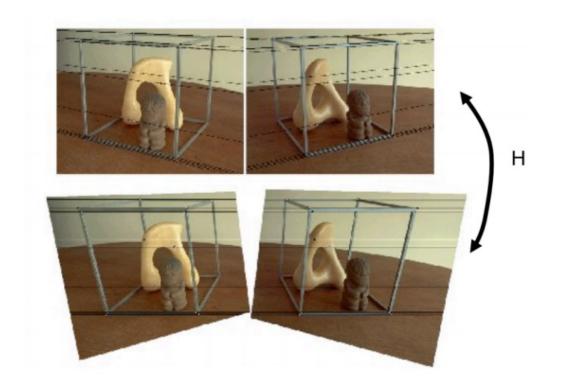
We need at least two observations to estimate the geometry.

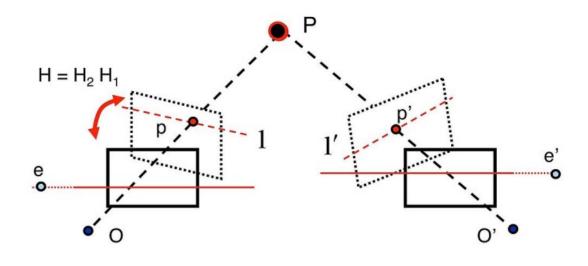
Johann Zahn, 1685

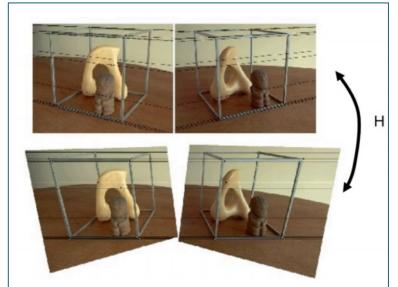
Two-view stereo

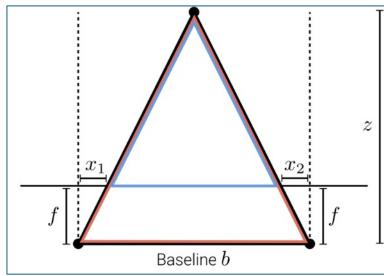


Stereo Rectification



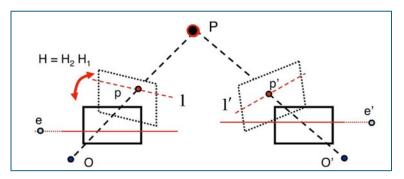






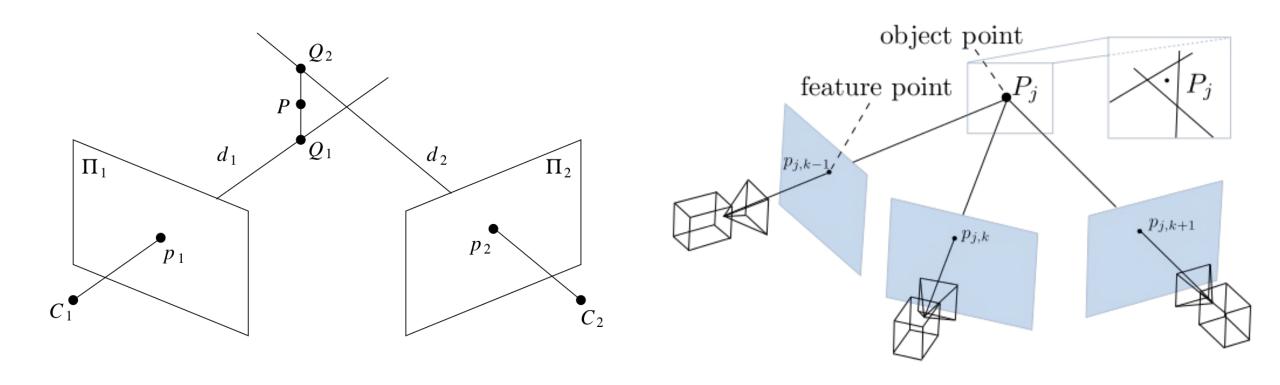
Two-view stereo

Slide credit: Fei-fei Li, Andreas Geiger



$$z = \frac{b \cdot f}{d}$$

$$depth = \frac{baseline \cdot focal \ length}{disparity}$$



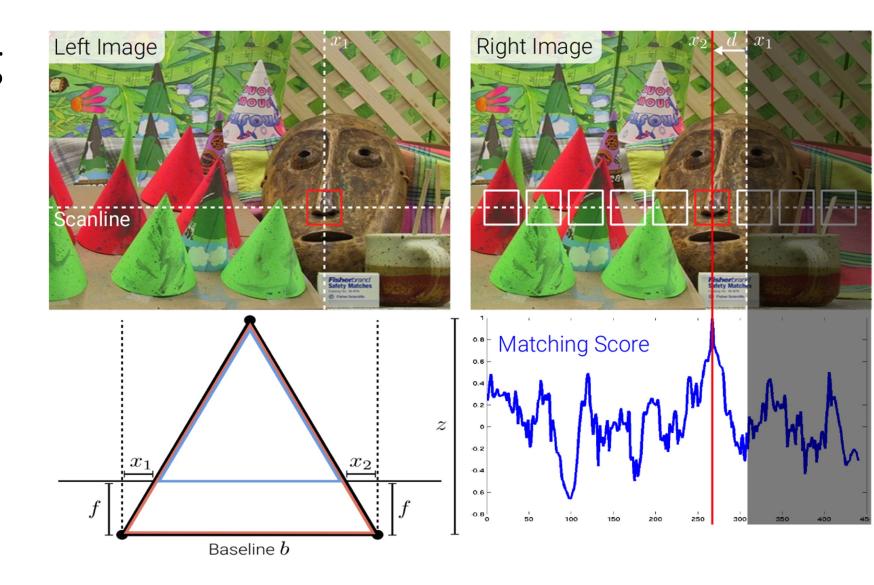
Other triangulation methods

Stereo matching

$$disparity = x_1 - x_2$$

$$\frac{baseline}{depth} = \frac{baseline - disparity}{depth - focal\ length}$$

$$depth = \frac{baseline \cdot focal \ length}{disparity}$$



Slide credit: Andreas Geiger

$$SSD = \sum \sum (I_{left} - I_{right})^2$$
 \rightarrow Sum of squares difference

$$AD = \sum \sum |(I_{left} - I_{right})| \rightarrow Absolute difference$$

$$CC = \sum \sum (I_{left} \cdot I_{right}) \rightarrow \text{Cross correlation}$$

$$NCC = \frac{\sum (I_{left} \cdot I_{right})}{\sqrt{\sum \sum (I_{left} \cdot I_{left})} \cdot \sqrt{\sum \sum (I_{right} \cdot I_{right})}} \rightarrow \text{Normalized cross correlation}$$

The same object may look different from different angle.

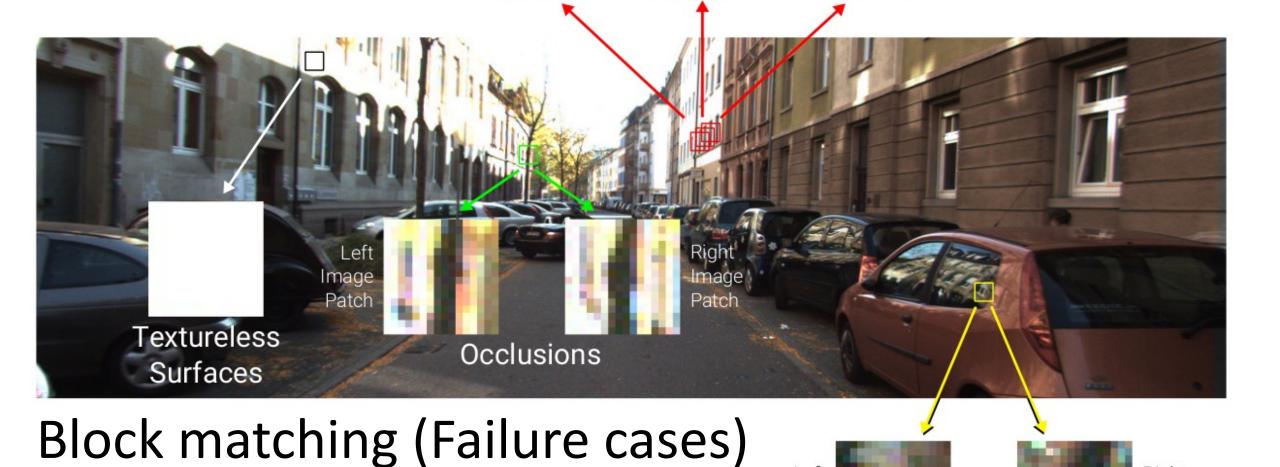
M. C. Escher, 1945

Repetitive structures

Right

Image

Patch



Slide credit: Andreas Geiger

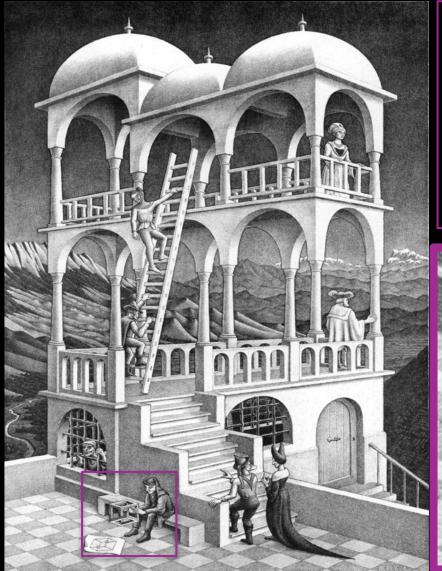
Non-Lambertian Surfaces

Left

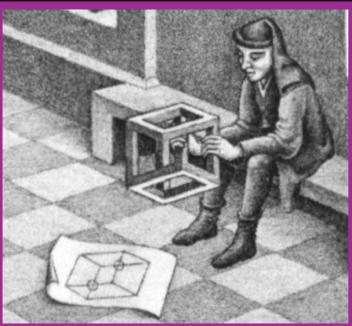
Image Patch

Other challenges:

- Repetitive structures
- Lighting variations
- Vignetting effects
- Motion blur
- Sensor noise
- Color inbalance
- White inbalance
- etc.

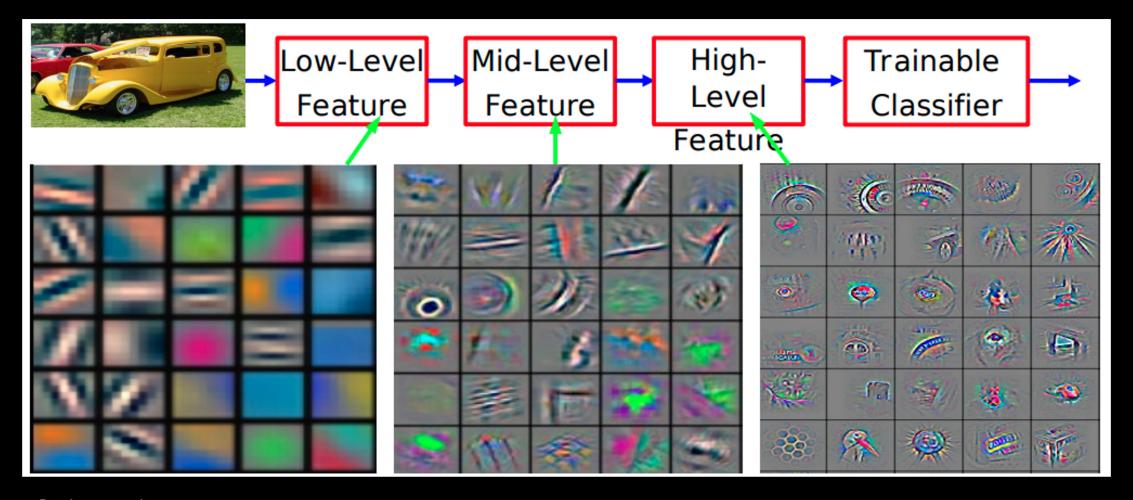


A PhD trying to use block matching



M. C. Escher, 1958

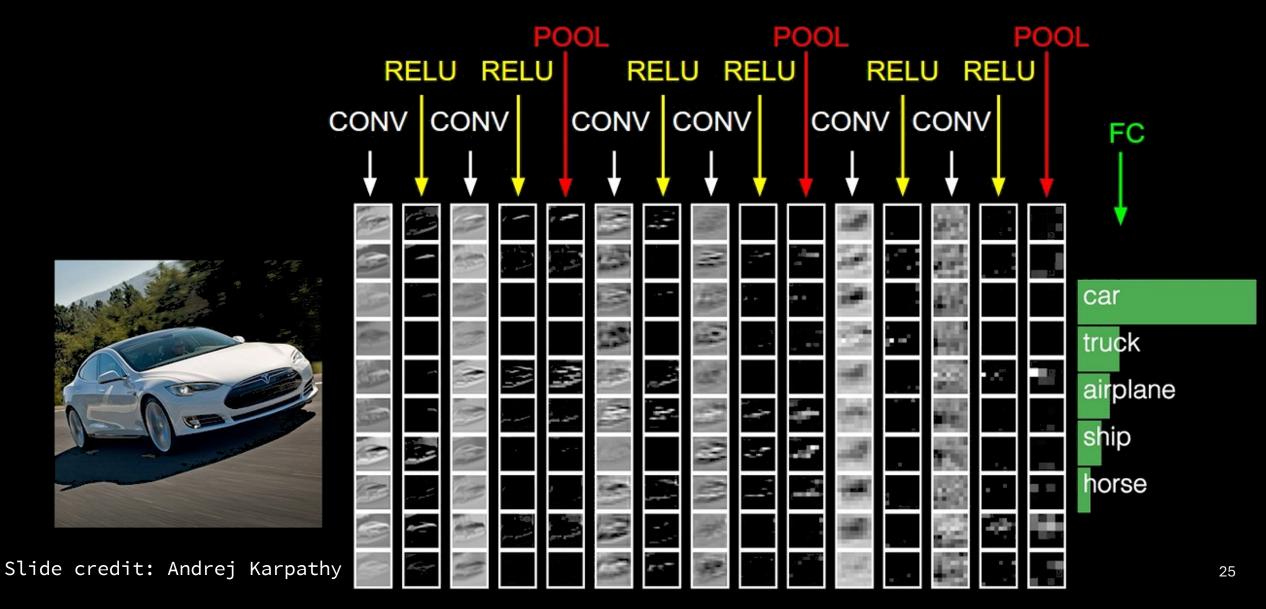
Convolutional features



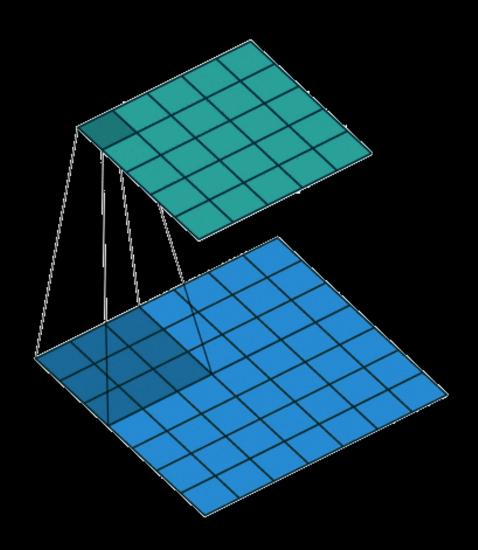
Slide credit: Yann Lecun

Image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)

Convolutional network architecture



2D and 3D convolutions



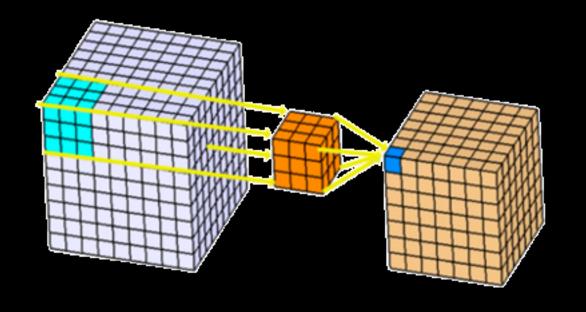
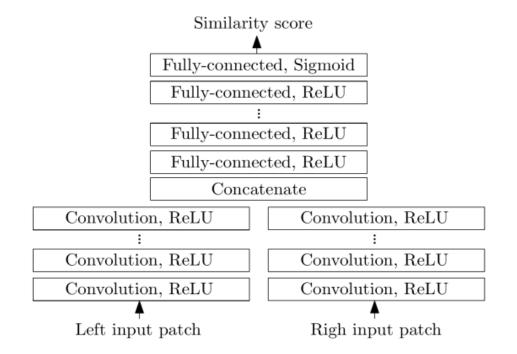


Image credit:
https://biplabbarman097.medium.com/3dconvolutions-and-its-applications6dd2d0e9e63f

Block matching using deep learning

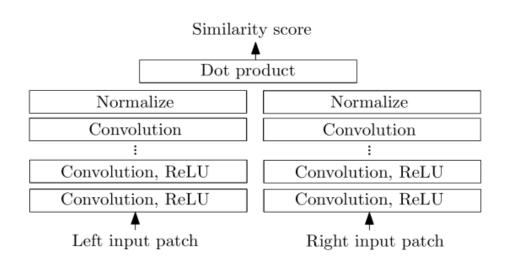
Learned Similarity:

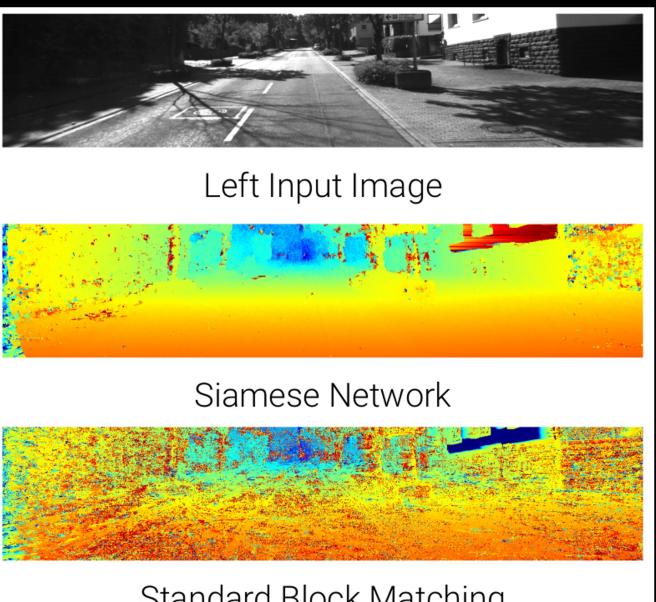
- Learn features & sim. metric
- Potentially more expressive
- Slow (WxHxD MLP evaluations)



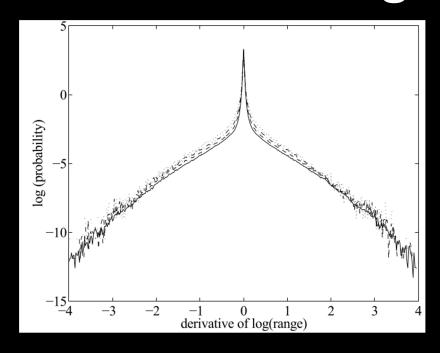
Cosine Similarity:

- ► Learn features & apply dot-product
- Features must do the heavy lifting
- Fast matching (no network eval.)





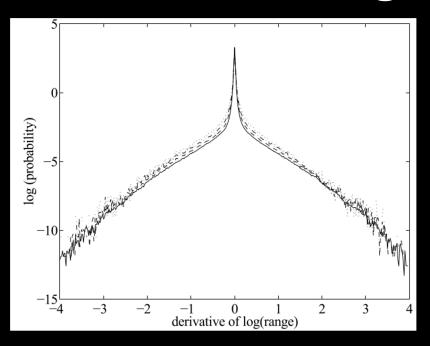
Standard Block Matching



Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.

$$p(\mathbf{D}) \propto \exp \left\{ -\sum_{i} \psi_{data}(d_i) - \lambda \sum_{i \sim j} \psi_{smooth}(d_i, d_j) \right\}$$

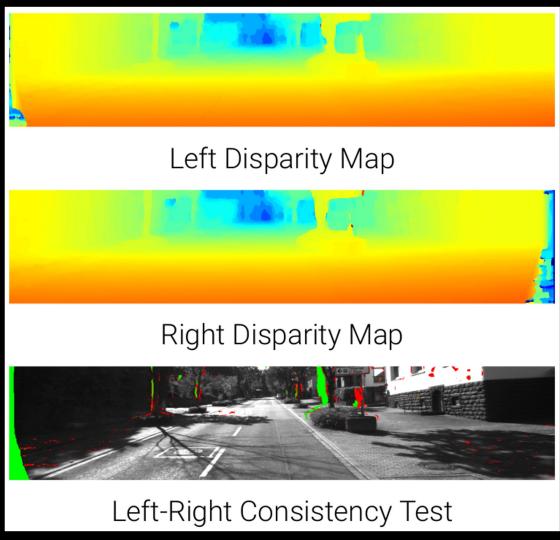
Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts". PAMI(1999)



Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.

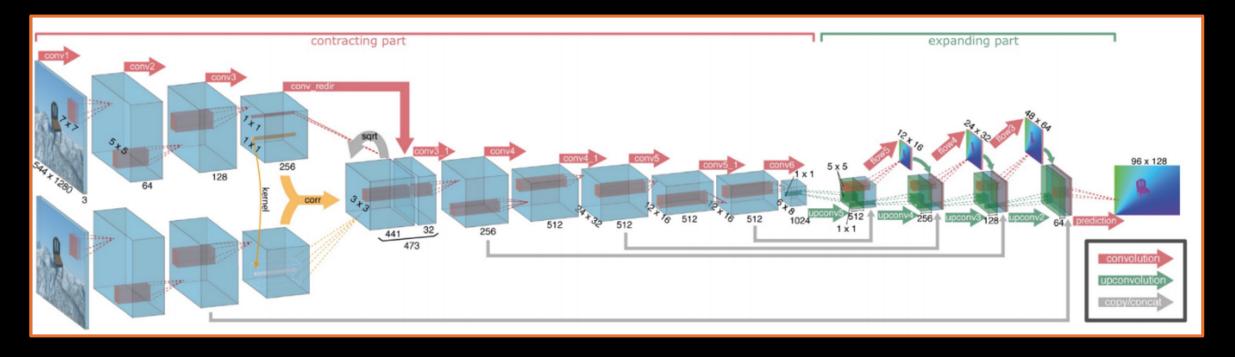
$$p(\mathbf{D}) \propto \exp\left\{-\sum_{i} \psi_{data}(d_i) - \lambda \sum_{i \sim j} \psi_{smooth}(d_i, d_j)\right\}$$

Semi-Global Matching Algorithm



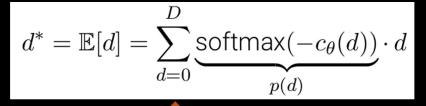
Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts". PAMI(1999)

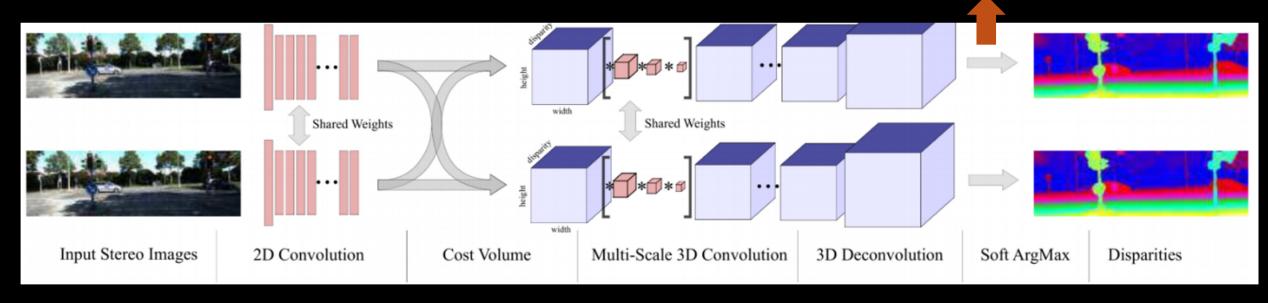
DISPNET



- DispNet was one of the first end-to-end trained deep neural network for stereo disparity
- It used a U-Net like architecture with skip-Connections to retain details
- It introduces correlation layer
- Multi-scale loss (disparity error in pixels), curriculum learning (easy-to-hard)

GC-net





- Key idea: calculate disparity cost volume and apply 3D convolutions on it
- Convert the learned matching cost c to disparity via the expectation(probability volume)
- Slightly better performance but large memory requirements (3D feature volume)

Multi-view stereo

• MVS Goal: To find a 3D shape that explains the images.

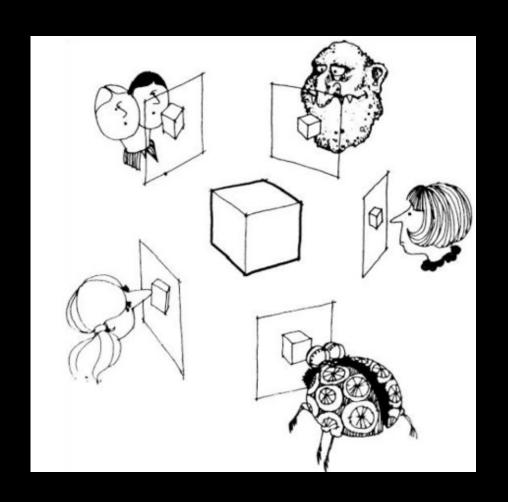


Image credit: Svetlana Lazebnik

PMVS in 1 slide

Detect

• Detect keypoints

Triangulate

• Triangulate a sparse set of initial matches

Expand

• Iteratively expand matches to nearby locations

Filter

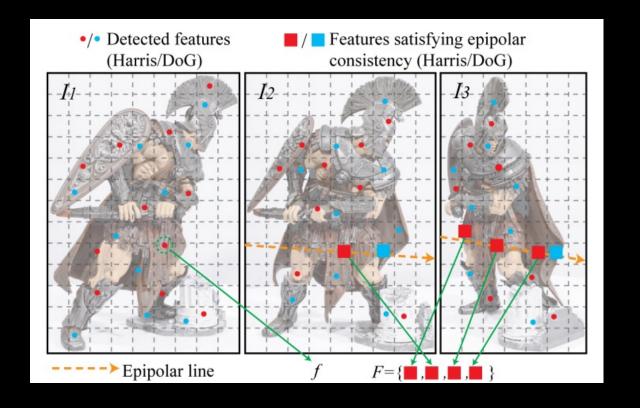
• Use visibility constraints to filter out false matches

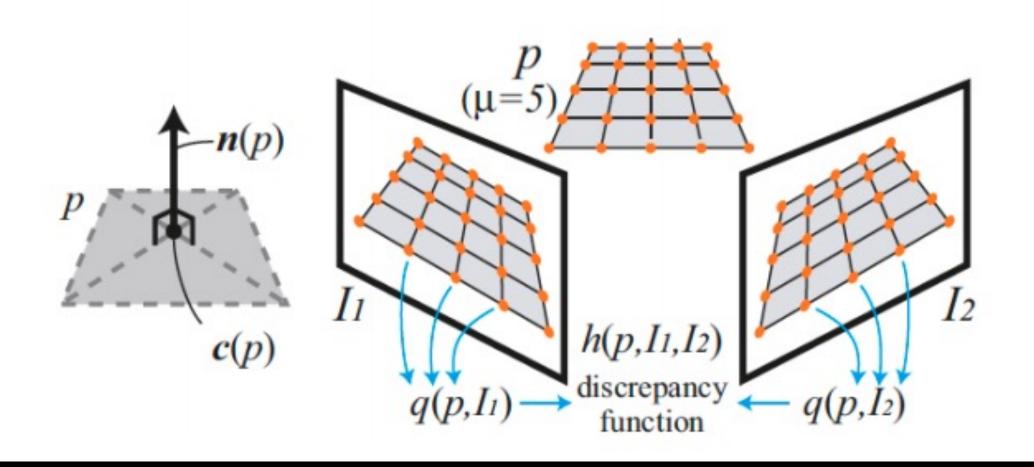
Perform

• Perform surface reconstruction

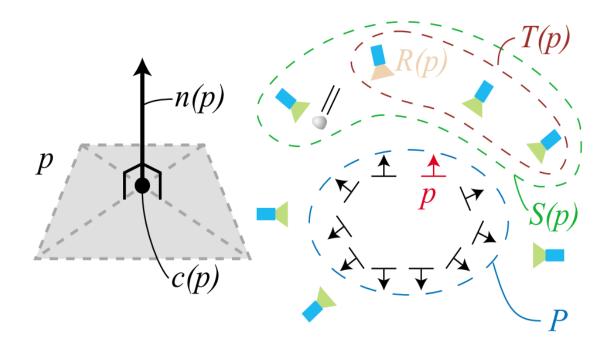
Feature Detection

- 1. Divide grid to cells (32x32)
- Use Harris Detector and DoG to find corners
- 3. Try to find 4 good corners in each cell (uniform overage)





Patch Geometry



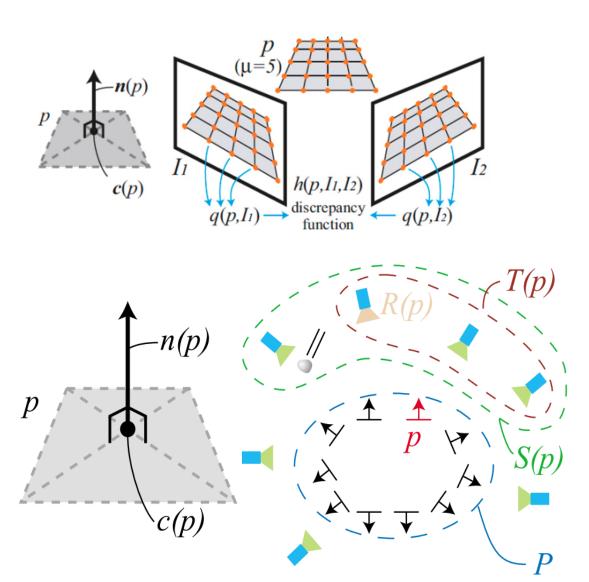
Patch Model Initialization

Patch Initialization

 $c(p) \leftarrow$ Triangulation from from two patches

 $n(p) \leftarrow c(p)O(I_i)/|c(p)O(I_i)|$ normal initialization

 $R(p) \leftarrow I_i$ reference image of p



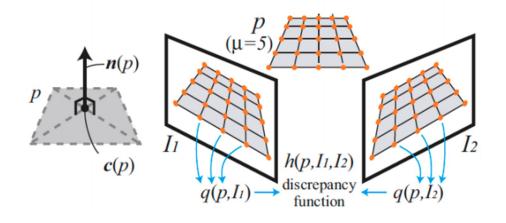
Patch Discrepancy

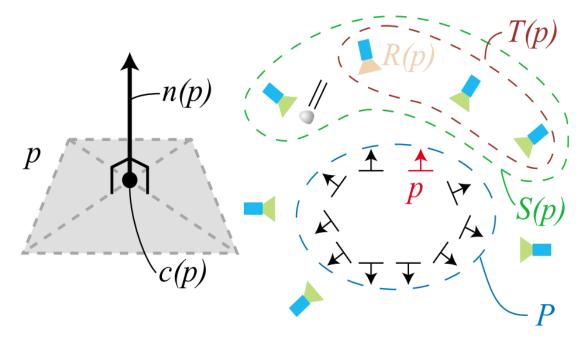
Patch Discrepancy

h(p, I, R(p)) = 1 - NCC(p, I, R(p))discrepancy function

$$g(p) = \frac{1}{|S(p) \setminus R(p)|} \sum_{I \in S(p) \setminus R(p)} h(p, I, R(p))$$
 Objective to minimize

 $S(p) \leftarrow$ the set of images patch may seem





Patch True Discrepancy

Patch True Discrepancy

$$T(p) = \{ I \mid I \in S(p), h(p, I, R(p)) \le \tau \}$$

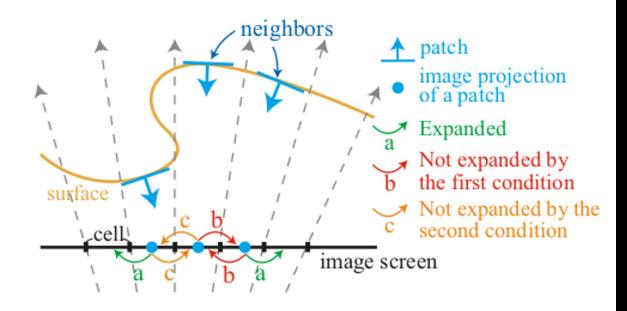
$$g^*(p) = \frac{1}{|T(p) \setminus R(p)|} \sum_{I \in T(p) \setminus R(p)} h(p, I, R(p))$$
True objective to minimize

$$argmin_{n(c),c(p)} g^*(p)$$

 $S(p) \leftarrow$ the set of images patch may seem

 $T(p) \leftarrow$ the set of images patch truly seem

 $n(p), c(p) \leftarrow$ find normal and center of patch that minimizes objective



Expansion and Filtering

Expansion

- 1. Identify neighbouring cells for possible expansion
- 2. Test if there is already a patch very close to that region
- 3. Test for depth discontinuity

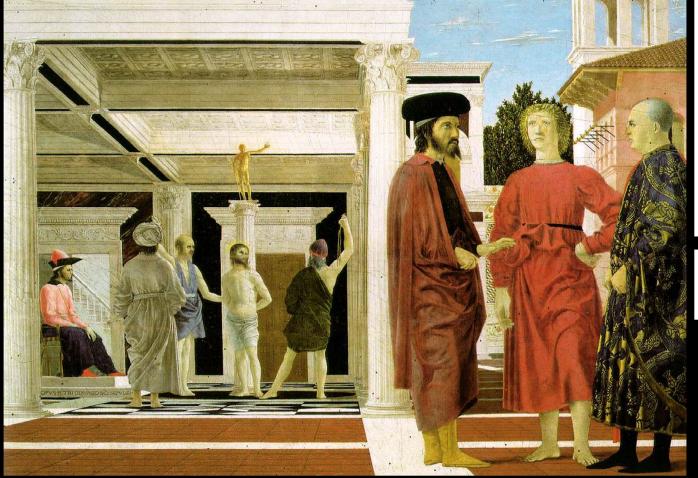
Filtering

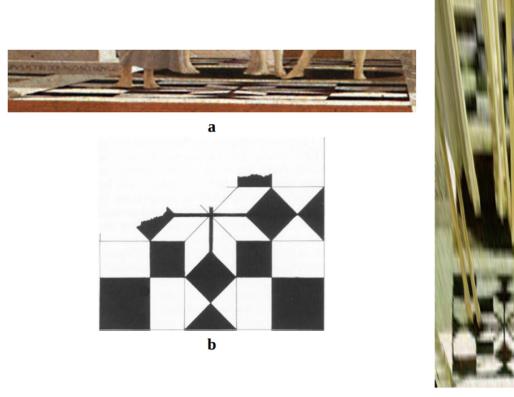
- 1. Photometric consistency filter
- 2. Geometric consistency filter
- 3. Occlusion check

VisualSFM+PMVS

MVSNet – Differential Homography

MVSNet – Differential Homography

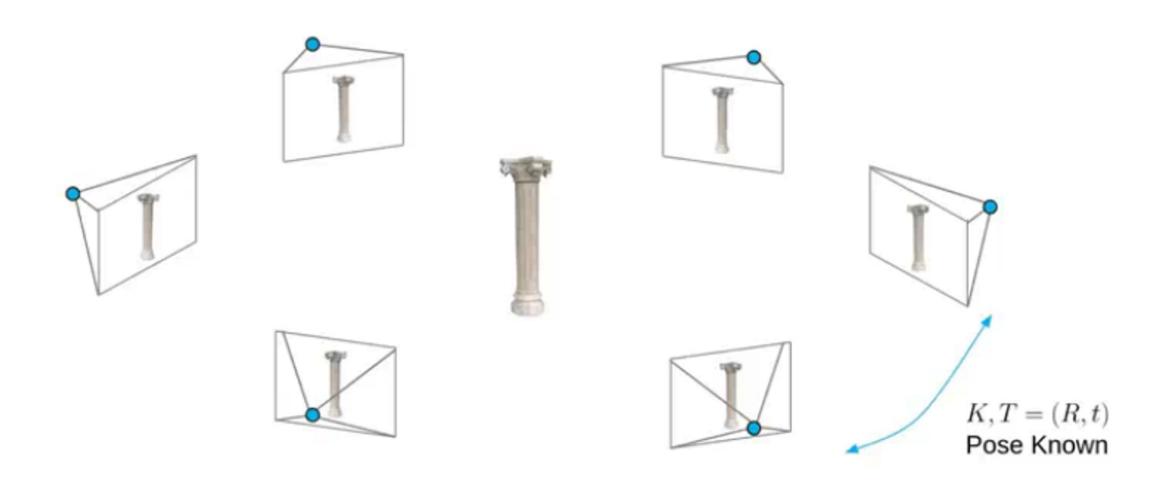




$$\mathbf{p}_{i,j} = \mathbf{K}_i \cdot (\mathbf{R}_{0,i} \cdot (\mathbf{K}_0^{-1} \cdot \mathbf{p} \cdot d_j) + \mathbf{t}_{0,i})$$

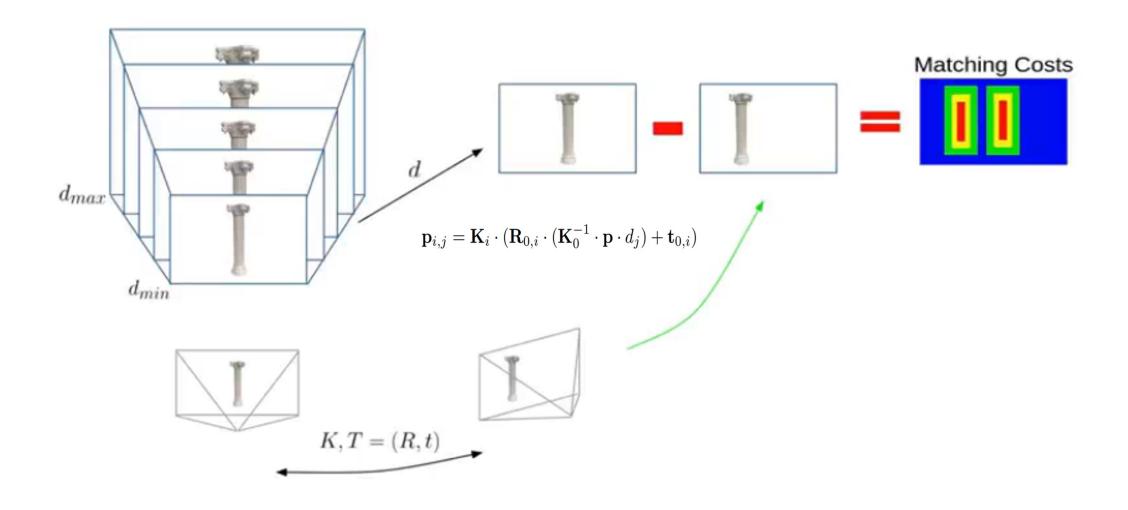
Criminisi et. al. (2002): Bringing Pictorial Space to Life

Multi-view stereo - plane sweep stereo



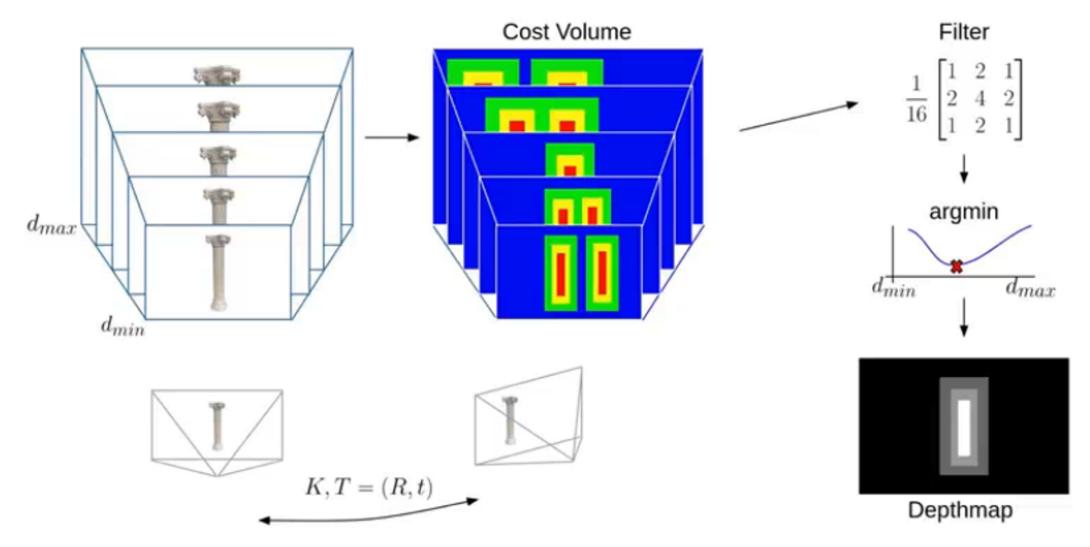
Slide credit: W. Nicholas Greene

Multi-view stereo - plane sweep stereo



Slide credit: W. Nicholas Greene

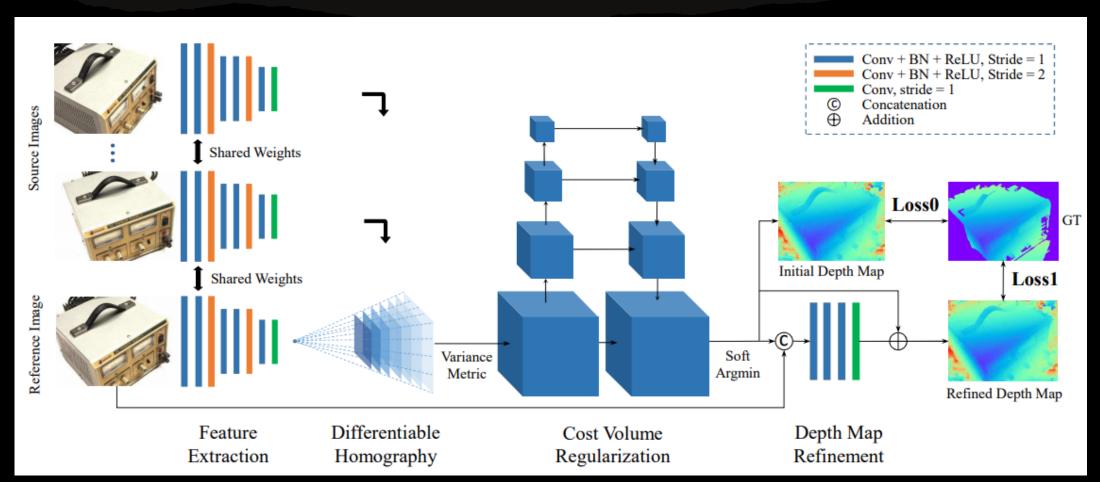
Multi-view stereo - plane sweep stereo



Slide credit: W. Nicholas Greene

MVSNET

Yao Yao et. al.: MVSNet: Depth Inference for Unstructured Multi-view Stereo. ECCV 2018



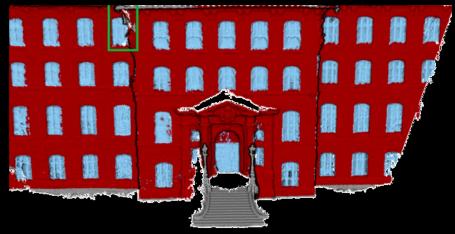
Gipuma PMVS SurfaceNet MVSNet (Ours) Gound Truth

DDLMVS

This video demonstrates visual comparisons with COLMAP and PatchmatchNet

Semantic MVS

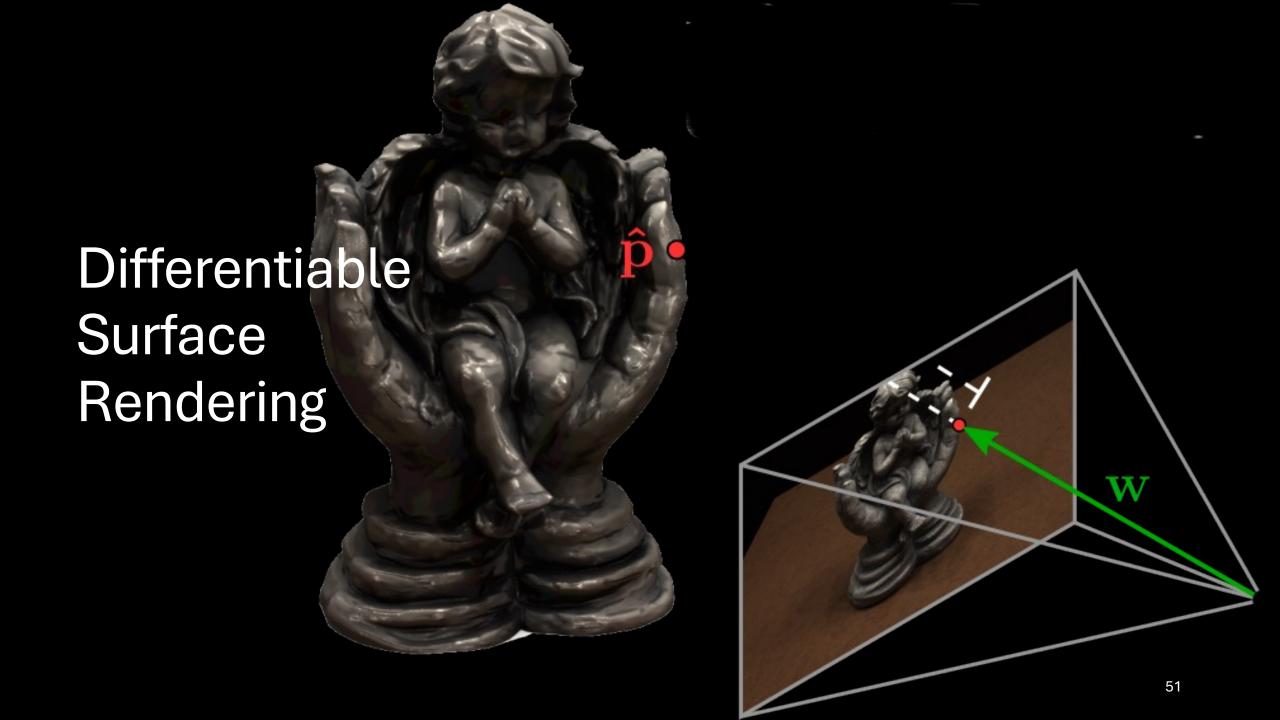




Input image

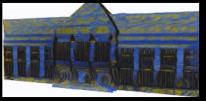
Semantic Reconstruction

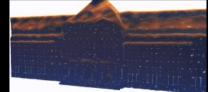
Groundtruth



Surface Reconstruction and Stylization

- Collect masked calibrated images
- II. Compute surface using rendering
- III. Apply stylization to the surface





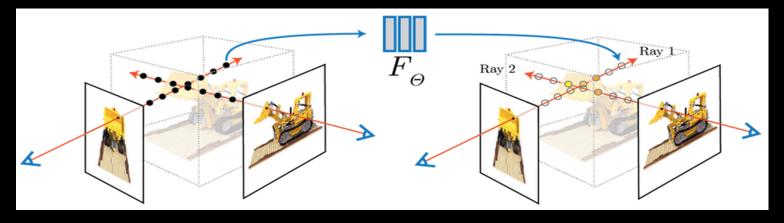


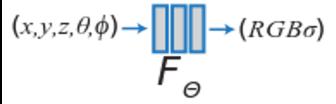
Source: Fabian Visser, StyleSDF (2023)

NeRF revolution

What is NeRF

- The word Neural obviously means that there's a Neural Network involved
- Radiance refers to the radiance of the scene that the Neural Network outputs. It is basically describing how much light is being emitted by a point in space in each direction, and
- The word **Field** means that the Neural Network models a continuous and non-discretized representation of the scene that it learns.





Assumptions:

- Camera poses are known
- Scene is static, objects do not move
- The scene appearance is constant
- Dense input capture

Architecture:

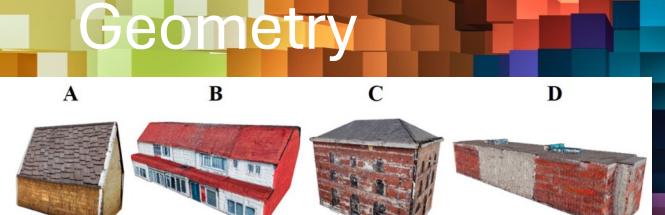
- 9 Layers MLP + ReLU
- 256 neurons in each layer
- 5D input (x,y,z) + view direction with PE
- 4D output representing RGB+density

Geometry → NeuS, VolSDF • Speed → Plenoctrees, DVGO Memory-Time trade-off → NeRF TensorRF, Instant-NGP • Sparse images → ReconFusion, DietNeRF Improvements Stylization → ARF, MuVieCAST Sparse pointcloud input → PointNeRF, Gaussian Splatting

GenAl for 3D: Text-to-3D Generation (DreamFusion)

GenAl for 3D: Sparse Reconstruction (ReconFusion)

3 views 6 views 9 views



An adorable cottage with a thatched roof

A two-storey brick townhouse with grey roof

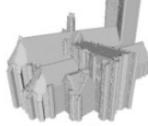
A three-storey brick building with grey roof and arched doors and windows

An exterior brick apartment

An exterior modern high glass window office

An oude kerk delft

A brick castle



Thanks for listening.

