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Today’s Agenda

* Review last lecture

— Reconstruct 3D Geometry

* |Image matching
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Triangulation

* Find coordinates of 3D points from projections in two views

— The linear method (aMs — My
* Easy to solve and very efficient AP =0 A= o M, — M
* Any number of corresponding image points [y Mz — M,

* Can handle multiple views

e Used as initialization to advanced methods
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Triangulation

* Find coordinates of 3D points from projections in two views

— The linear method (aMs — My
* Easy to solve and very efficient AP =0 A= o M, — M
* Any number of corresponding image points [y Mz — M,

* Can handle multiple views
e Used as initialization to advanced methods

— The non-linear method

min Z | M j pill?
2
-

Reprojection error




Structure from Motion

e Structure

— 3D geometry of the scene/object

* Motion

— Camera locations and orientations

e Structure from Motion e
1: *1

— Compute geometry from moving cameras
— Simultaneously refine structure and motion

Camera 2

Ryt,
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Camera 3

R3, t?:
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Bundle Adjustment

* Minimize sum of squared re-projection errors:

m n U 2
g(X,R,T) = Z Z wi - [P R ) — [vlﬂ |

i=1 j=1
* Minimizing this functionis called bundle adjustment
* |nitialization

— From chained 2-view reconstruction
* Relative motion can be estimated from the corresponding images points
* 3D points can be estimated from the relative motion using triangulation
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Quizzes

 What are the differences between bundle adjustment and the
non-linear method for triangulation?

* Given a camera that can only translate along a certain
direction, can it be used to take images for 3D reconstruction?

* Given a camera that can freely rotate only, can it be used to
take images for 3D reconstruction?
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Today’s Agenda

* Review last lecture

— Reconstruct 3D Geometry

* |Image matching C—O
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Imaging Matching g

* Find Corresponding Image Points
— Key points

— Image descriptors

— Matching
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Key Points

* Distinctive locations
* |nteresting or stand out

* Remain unchanged
* Rotate, translate, shrink/expand, distortion ...

10 matching pairs

10
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Descriptors

* What makes a key point different from other key points?
— The way we describe the key points
— High-dimensional vectors

e Feature (key point + descriptor)
—e.g., SIFT, SURF

10 matching pairs
11
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David Lowe

Professor Emeritus, Computer Science Dept., University of British Columbia
Verified email at cs.ubc.ca - Homepage

Computer Vision Object Recognition

TITLE CITED BY YEAR
Distinctive image features from scale-invariant keypoints 75291 2004
DG Lowe

International journal of computer vision 60 (2), 91-110

12
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Motivation

e Scaleinvariant

— Decompose the image into multiple scales and describe the key
points at each scale

e Rotation invariant

— Dominant orientation of the gradient directions

13
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e Gradient

— A vector
* Direction: the one with the greatest rate of increase of the function value
* Magnitude: how fast the function value increases

14
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* Overall procedure at a high level

1. Scale-space extrema detection

« Goal: ldentify potential key points invariant to scale and orientation
* Method: Search over all scales and image locations

2. Key point localization
. Orientation assignment
4. Key point description

w

15
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* Image Pyramids

And so on.

3d level is derived from the 2™ |evel
according to the same function

2" level is derived from the original image
according to some function

Bottom level is the original image.

16
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SIFT

* |mage Pyramids (Gaussian)
> 02 |

Weighted average of its neighboring pixels,rv0 h
- weights specified by Gaussian function -

At 2™ |evel, each pixel is the result of applying
a Gaussian filter to the first level and then
subsampling to reduce the size.

Gaussia

Bottom level is the original image.

18
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« Scale-space extrema detection

A The scale space of an image

L(x,y.0) = G(x.y.0) * I(z,y)

Laplacian of Gaussian (LoG)

0°L 0°L ?
271 — |

GaussiapHi I

Compute a set of values at different scales
Find local maxima across scales (x, y, o)

More details: https://en.wikipedia.org/wiki/Laplace operator °
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« Scale-space extrema detection

— Local maxima across scale
— Potential key point at (x, y) at scale o

@ _

LoG (low sigma, small corner) > LoG (low sigma, large corner)
LoG (high sigma, small corner) < LoG (high sigma, large corner)

20
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* Overall procedure at a high level

1. Scale-space extrema detection

2. Key point localization

« Motivation: potential key points have errors and outliers
« Goal: refine to obtain the distinctive key points

3. Orientation assignment
4. Key point description
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* Key pointlocalization

— A refinement step
* Potential key points -> Distinctive key points

— Eliminate low—contrast key points and edge key points
 Comparing to a threshold (0.03 in the original paper)

* Reject if smaller than the threshold

— What remain are strong interest points
* i.e., keypoints with higher confidence
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* Overall procedure at a high level
1. Scale-space extrema detection
2. Key point localization

3. Orientation assignment

4. Key point description

23
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* Orientation assignment

— Assign one orientation to each key point based on local image
gradient directions
* Create a histogram of local gradient directions at the selected scale
e Assign orientation at the peak of the smoothed histogram
* Each key specifies (x, y, scale, orientation)

do .

24
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* Orientation assignment

— Assign one orientation to each key point based on local image
gradient directions
* Create a histogram of local gradient directions at the selected scale
e Assign orientation at the peak of the smoothed histogram
e Each key specifies (x, y, scale, orientation)

— Rotation independence
e Subtract key point rotation from each orientation

do .

o * 21
25
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 QOrientation assignment

Key points are displayed as vectors indicating scale, orientation, and location

233 x 189 input 832 initial key points

(a)

Detected key points and their orientations

26
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« Stages of key point selection

Key points are displayed as vectors indicating scale, orientation, and location

233 x 189 input 832 initial key points

(a)

729 key points after the e
contrast threshold (0.03)

= R L e

(c)

filtered out less distinctive key points 2
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« Stages of key point selection

Key points are displayed as vectors indicating scale, orientation, and location

233 x 189 input 832 initial key points

(a)

729 key points after the B

547 key points after the
contrast threshold (0.03)

ratio threshold (75%)

= R T ety

(c)
28
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* Overall procedure at a high level
1. Scale-space extrema detection
2. Key point localization
3. Orientation assignment
4. Key point description

29
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« Key point description
— Location (x, y)
— Scale
— Orientation

« Key point descriptor
— Highly distinctive

— Invariant to variations such as changes in viewpoint, distortion,
illumination, etc.
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« Key point description
— 16 x 16 neighborhood of the key point
— Divided into 16 sub-blocks of 4x4 size

— For each sub-block, create 8 bin orientation histogram
« Value: sum of gradient magnitude at each direction
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« Key point description
— 16 x 16 neighborhood of the key point
— Divided into 16 sub-blocks of 4x4 size
— For each sub-block, create 8 bin orientation histogram
— Concatenate histograms of 16 sub-blocks

m

The result: 128 dimensions feature vector.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

32
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« Matching key points
— Ideal case: find the nearest neighbor

— Practice
e Real-world images are very noisy

e Second closest-match can be very near to the first

33
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Feature Matching

« Matching key points
— Ideal case: find the nearest neighbor
— Practice

* Real-world images are very noisy
* Second closest-match can be very near to the first

closest—distance
: >
second-closest distance

Reject if

— Can eliminate about 90% of false matches while discards only 5% correct matches
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Feature Matching

« Matching key points
— Ideal case: find the nearest neighbor
— Practice

* Real-world images are very noisy
* Second closest-match can be very near to the first

closest—distance
: >
second-closest distance

Reject if

— Can eliminate about 90% of false matches while discards only 5% correct matches

— Sophisticate strategies
- RANSAC
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« Characteristics of SIFT
— Locality: features are local, so robust to occlusion and clutter

— Distinctiveness: individual features can be matched to a large
database of objects

— Quantity: many features can be generated for even small objects
— Efficiency: close to real-time performance

— Extensibility: can easily be extended to wide range of differing
feature types
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* Applications

— Image stitching

— 3D reconstruction
— Motion tracking

— Object recognition
— Indexing and database retrieval
— Robot navigation

For more details of the SIFT algorithm:

Distinctive image features from scale-invariant keypoints
D. Lowe. International journal of computer vision 60 (2), 91-110, 2004

37
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Extensions or similar features

e SIFT (Scale-Invariant Feature Transform)

 SURF (Speeded-Up Robust Features)

e FAST (Features from Accelerated Segment Test)

* BRIEF (Binary Robust Independent Elementary Features)
 ORB (Oriented FAST and Rotated BRIEF)

38
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Lab: Image matching (code available)

39
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Lab: Image matching (code available)

40
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Next lecture

* Multi-view Stereo
— Obtaining dense point clouds

Images + camera information Dense 3d pointcloud

41
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