

GEO1016 Photogrammetry and 3D Computer Vision

Image Matching

Liangliang Nan

Today's Agenda

- Review last lecture
 - Reconstruct 3D Geometry
- Image matching

Triangulation

- Find coordinates of 3D points from projections in two views
 - The linear method
 - Easy to solve and very efficient
 - Any number of corresponding image points
 - Can handle multiple views
 - Used as initialization to advanced methods

 $AP = 0 \qquad A = \begin{bmatrix} xM_3 - M_1 \\ yM_3 - M_2 \\ x'M'_3 - M'_1 \\ y'M'_3 - M'_2 \end{bmatrix}$

Triangulation

- Find coordinates of 3D points from projections in two views
 - The linear method
 - Easy to solve and very efficient
 - Any number of corresponding image points
 - Can handle multiple views
 - Used as initialization to advanced methods
 - The non-linear method

$$\min_{\hat{P}} \sum_{i} \|M\hat{P}_{i} - p_{i}\|^{2}$$

Reprojection error

 $AP = 0 \qquad A = \begin{bmatrix} xM_3 - M_1 \\ yM_3 - M_2 \\ x'M'_3 - M'_1 \\ y'M'_3 - M'_2 \end{bmatrix}$

Structure from Motion

- Structure
 - 3D geometry of the scene/object
- Motion
 - Camera locations and orientations
- Structure from Motion
 - Compute geometry from moving cameras
 - Simultaneously refine structure and motion

Bundle Adjustment

• Minimize sum of squared re-projection errors:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$

- Minimizing this function is called *bundle adjustment*
- Initialization
 - From chained 2-view reconstruction
 - Relative motion can be estimated from the corresponding images points
 - 3D points can be estimated from the relative motion using triangulation

Quizzes

- What are the differences between bundle adjustment and the non-linear method for triangulation?
- Given a camera that can **only translate** along a certain direction, can it be used to take images for 3D reconstruction?
- Given a camera that can **freely rotate only**, can it be used to take images for 3D reconstruction?

Today's Agenda

• Review last lecture

Reconstruct 3D Geometry

Image matching

ŤUDelft 3Dgeoinfo

Imaging Matching

- Find Corresponding Image Points
 - Key points
 - Image descriptors
 - Matching

Key Points

- Distinctive locations
- Interesting or stand out
- Remain unchanged
 - Rotate, translate, shrink/expand, distortion ...

10 matching pairs

Descriptors

- What makes a key point different from other key points?
 - The way we **describe** the key points
 - High-dimensional vectors
- Feature (key point + descriptor)
 - e.g., **SIFT**, SURF

10 matching pairs

Northeast Follow

David Lowe

International journal of computer vision 60 (2), 91-110

Professor Emeritus, Computer Science Dept., <u>University of British Columbia</u> Verified email at cs.ubc.ca - <u>Homepage</u> Computer Vision Object Recognition

Motivation

- Scale invariant
 - Decompose the image into multiple scales and describe the key points at each scale

- Rotation invariant
 - Dominant orientation of the gradient directions

- Gradient
 - A vector
 - Direction: the one with the greatest rate of increase of the function value
 - Magnitude: how fast the function value increases

- Overall procedure at a high level
 - 1. Scale-space extrema detection
 - Goal: Identify potential key points invariant to scale and orientation
 - Method: Search over all scales and image locations
 - 2. Key point localization
 - 3. Orientation assignment
 - 4. Key point description

• Image Pyramids

And so on.

3rd level is derived from the 2nd level according to the same function

2nd level is derived from the original image according to some function

Bottom level is the original image.

3 3

• Image Pyramids (Gaussian)

Weighted average of its neighboring pixels, weights specified by Gaussian function

 $L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$

At 2nd level, each pixel is the result of applying a Gaussian filter to the first level and then subsampling to reduce the size.

0.8 0.6 0.4

Bottom level is the original image.

• Scale-space extrema detection

Gaussian filter

 $L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$

Laplacian of Gaussian (LoG)

Compute a set of values at different scales Find local maxima across scales (x, y, σ)

More details: https://en.wikipedia.org/wiki/Laplace_operator¹⁹

- Scale-space extrema detection
 - Local maxima across scale
 - Potential key point at (x, y) at scale σ

LoG (low sigma, small corner) > LoG (low sigma, large corner) LoG (high sigma, small corner) < LoG (high sigma, large corner)

- Overall procedure at a high level
 - 1. Scale-space extrema detection
 - 2. Key point localization
 - Motivation: potential key points have errors and outliers
 - Goal: refine to obtain the distinctive key points
 - 3. Orientation assignment
 - 4. Key point description

- Key point localization
 - A refinement step
 - Potential key points -> Distinctive key points
 - Eliminate low-contrast key points and edge key points
 - Comparing to a threshold (0.03 in the original paper)
 - Reject if smaller than the threshold
 - What remain are strong interest points
 - i.e., keypoints with higher confidence

- Overall procedure at a high level
 - 1. Scale-space extrema detection
 - 2. Key point localization
 - 3. Orientation assignment
 - 4. Key point description

- Orientation assignment
 - Assign one orientation to each key point based on local image gradient directions
 - Create a histogram of local gradient directions at the selected scale
 - Assign orientation at the peak of the smoothed histogram
 - Each key specifies (x, y, scale, orientation)

- Orientation assignment
 - Assign one orientation to each key point based on local image gradient directions
 - Create a histogram of local gradient directions at the selected scale
 - Assign orientation at the peak of the smoothed histogram
 - Each key specifies (x, y, scale, orientation)
 - Rotation independence
 - Subtract key point rotation from each orientation

• Orientation assignment

Key points are displayed as vectors indicating scale, orientation, and location

832 initial key points

Detected key points and their orientations

832 initial key points

• Stages of key point selection

Key points are displayed as vectors indicating scale, orientation, and location

233 × 189 input

729 key points after the contrast threshold (0.03)

filtered out less distinctive key points

• Stages of key point selection

Key points are displayed as vectors indicating scale, orientation, and location

28

- Overall procedure at a high level
 - 1. Scale-space extrema detection
 - 2. Key point localization
 - 3. Orientation assignment

4. Key point description

- Key point description
 - Location (x, y)
 - Scale
 - Orientation
- Key point descriptor
 - Highly distinctive
 - Invariant to variations such as changes in viewpoint, distortion, illumination, etc.

- Key point description
 - 16 x 16 neighborhood of the key point
 - Divided into 16 sub-blocks of 4x4 size
 - For each sub-block, create 8 bin orientation histogram
 - Value: sum of gradient magnitude at each direction

- Key point description
 - 16 x 16 neighborhood of the key point
 - Divided into 16 sub-blocks of 4x4 size
 - For each sub-block, create 8 bin orientation histogram
 - Concatenate histograms of 16 sub-blocks

Feature Matching

- Matching key points
 - Ideal case: find the nearest neighbor
 - Practice
 - Real-world images are very noisy
 - Second closest-match can be very near to the first

TUDel 3Dgeoint

Feature Matching

- Matching key points
 - Ideal case: find the nearest neighbor
 - Practice
 - Real-world images are very noisy
 - Second closest-match can be very near to the first

Reject if
$$\frac{\text{closest-distance}}{\text{second-closest distance}} > 0.8$$

- Can eliminate about 90% of false matches while discards only 5% correct matches

Feature Matching

- Matching key points
 - Ideal case: find the nearest neighbor
 - Practice
 - Real-world images are very noisy
 - Second closest-match can be very near to the first

Reject if
$$\frac{\text{closest-distance}}{\text{second-closest distance}} > 0.8$$

- Can eliminate about 90% of false matches while discards only 5% correct matches

- Sophisticate strategies
 - RANSAC

- Characteristics of SIFT
 - Locality: features are local, so robust to occlusion and clutter
 - Distinctiveness: individual features can be matched to a large database of objects
 - Quantity: many features can be generated for even small objects
 - Efficiency: close to real-time performance
 - Extensibility: can easily be extended to wide range of differing feature types

Applications

. . .

- Image stitching
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation

For more details of the SIFT algorithm:

Distinctive image features from scale-invariant keypoints

D. Lowe. International journal of computer vision 60 (2), 91-110, 2004

Extensions or similar features

- SIFT (Scale-Invariant Feature Transform)
- SURF (Speeded-Up Robust Features)
- FAST (Features from Accelerated Segment Test)
- BRIEF (Binary Robust Independent Elementary Features)
- ORB (Oriented FAST and Rotated BRIEF)

Lab: Image matching (code available)

Lab: Image matching (code available)

Next lecture

- Multi-view Stereo
 - Obtaining dense point clouds

Images + camera information

Dense 3d point cloud

