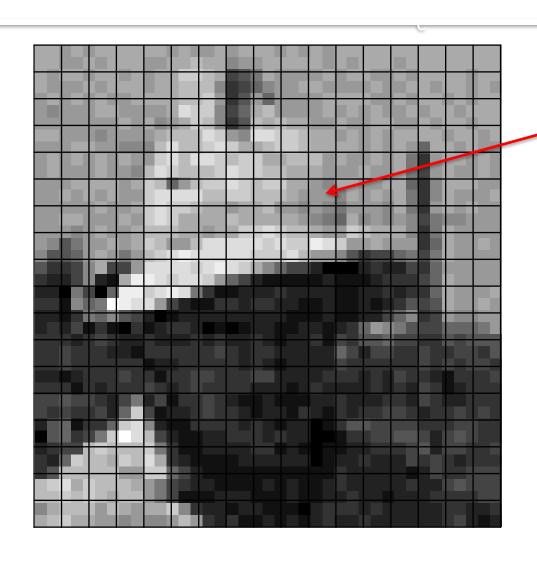


Lecture Camera Models

Liangliang Nan

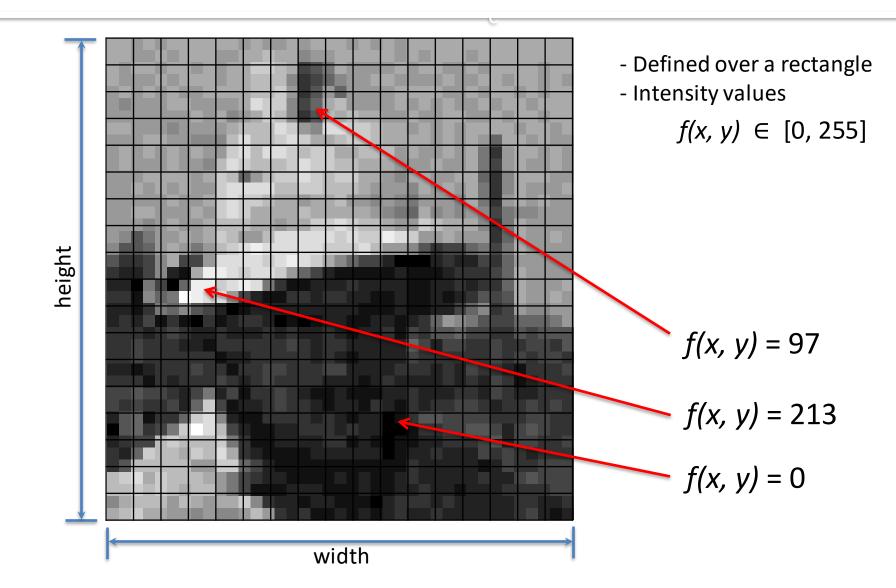


$$P = f(x, y)$$

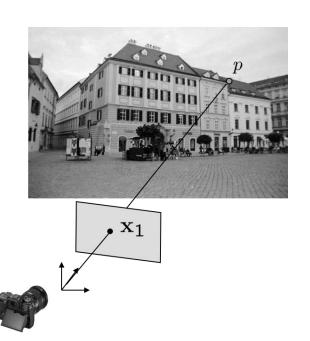
$$f: R^2 \triangleright R$$

Pixel

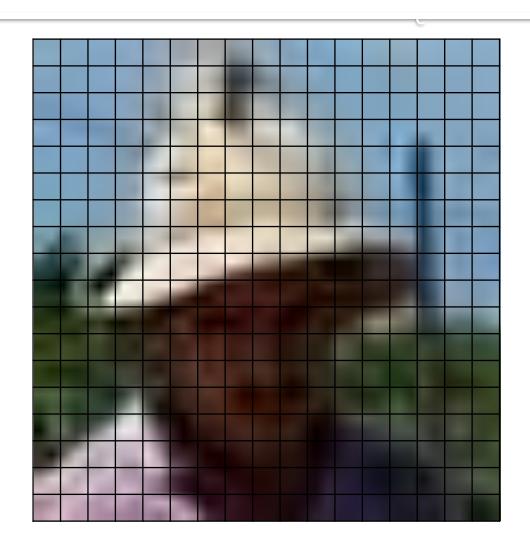
What is an image?



- Projection of the scene on the image plane
- Digital (discrete) image
 - A matrix of integer values



	$\xrightarrow{\mathcal{I}}$							
$i \perp$	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
↓	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30



A color image: R, G, B channels

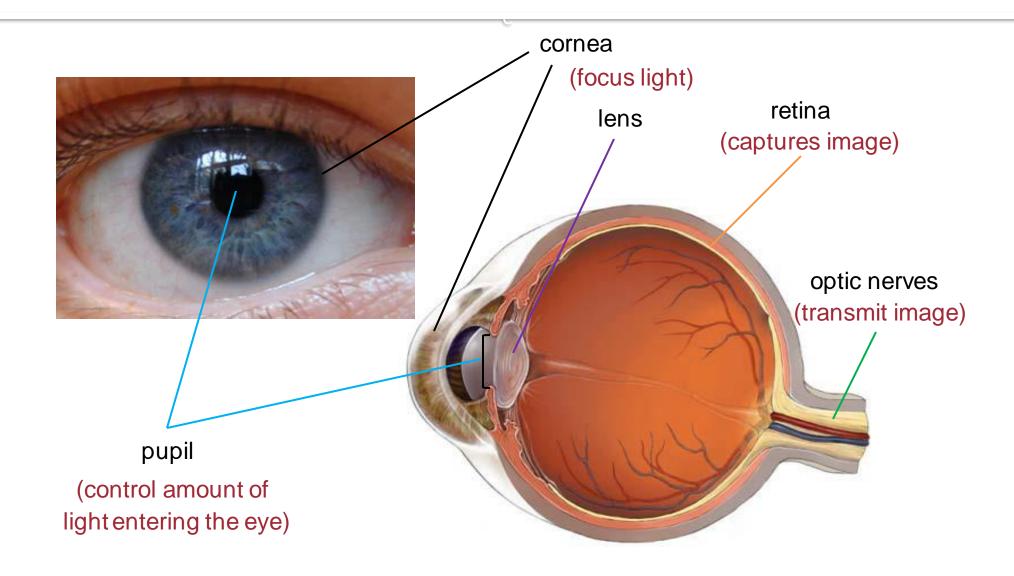
$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

"vector-valued" function

Today's agenda

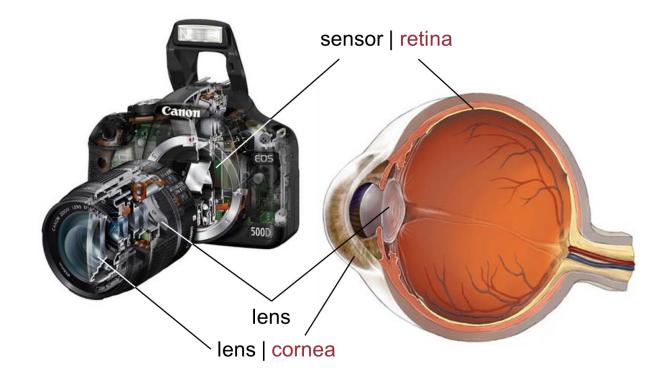
- Images
- Camera Models

We see the world through our eyes...



Machines see the world through cameras...

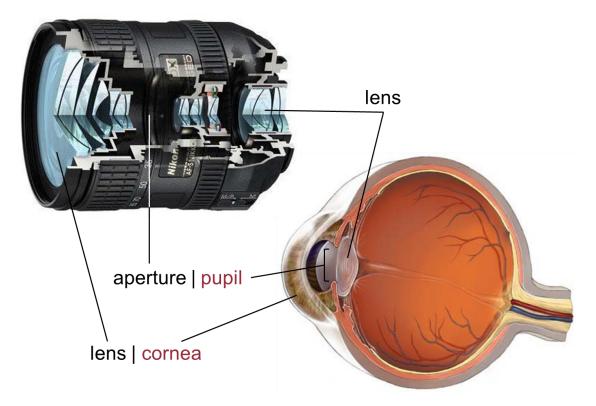
- Camera is structurally the same as our eyes
 - Lens does similarly to our lens and cornea
 - Sensor receives the light signals to form images



3Dgeoinfo

Machines see the world through cameras...

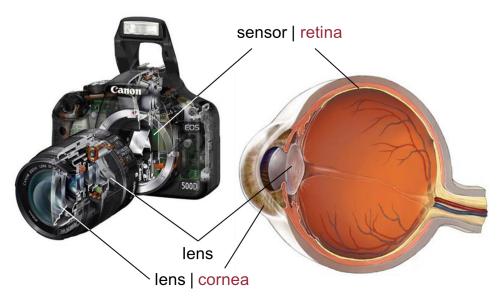
- Camera is structurally the same as our eyes
 - Lens does similarly to our lens and cornea
 - Sensor receives the light signals to form images
 - Aperture controls the amount of light



3Dgeoinfo

Camera vs. eye

- Similarities
 - Image focusing (cornea & lens)
 - Light adjustment (pupil & aperture)
- Differences (just name a few)
 - Lens focus
 - Camera: lens moves closer/further from the film
 - Eye: lens changes shape to focus
 - Sensitivity to light
 - Camera: A film is designed to be uniformly sensitive to light
 - Eye: retina is not; has greater sensitivity in dark



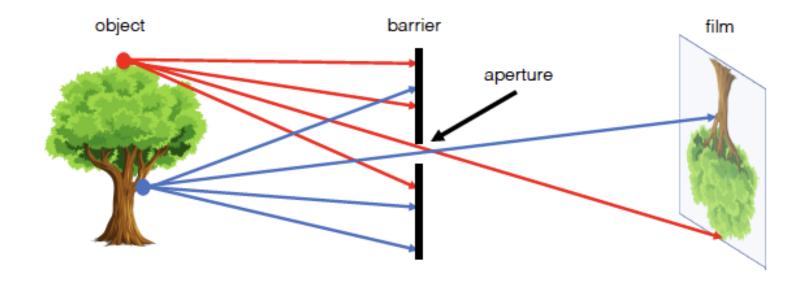
Imaging ...

- Images are 2D projections of real-world scenes
- Images capture two kinds of information:
 - Geometric: points, lines, curves, etc.
 - Photometric: intensity, color
- Complex 3D-2D relationships
 - Camera models approximate relationships

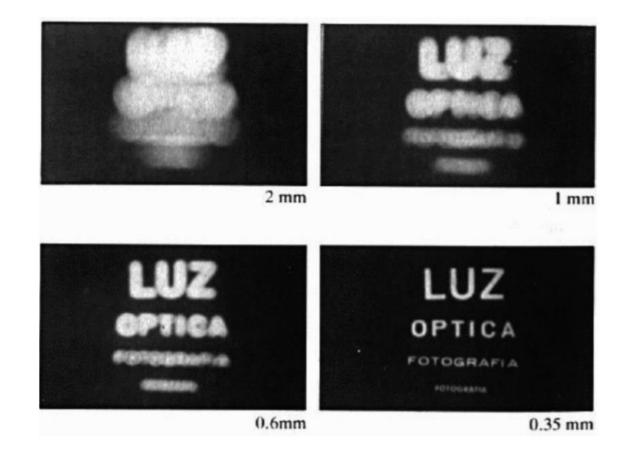
Camera models

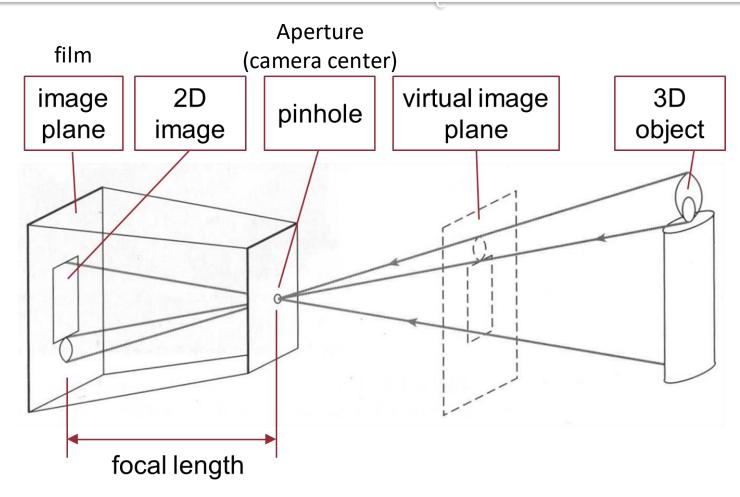
- Pinhole camera model
- Perspective projection model
 - Most commonly used model

One-to-one mapping

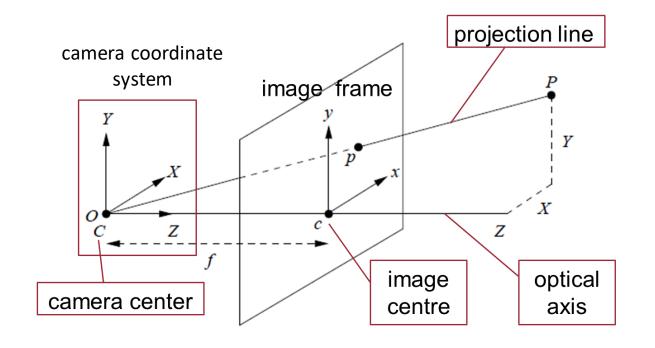


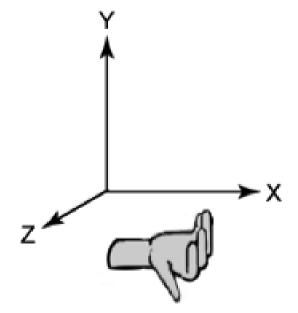
Assumption: aperture is a single point.





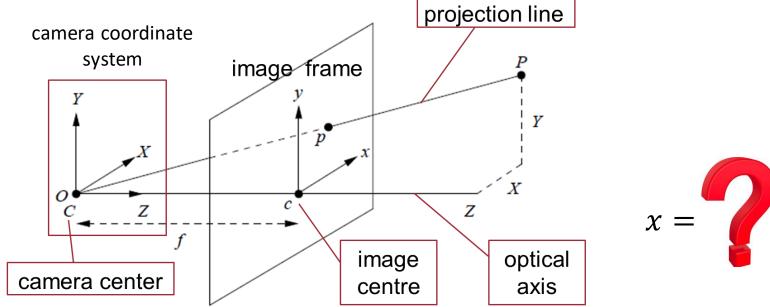
• 3D point $P = (X, Y, Z)^T$ projected to 2D image $p = (x, y)^T$

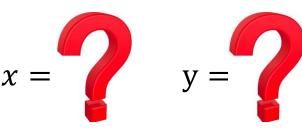




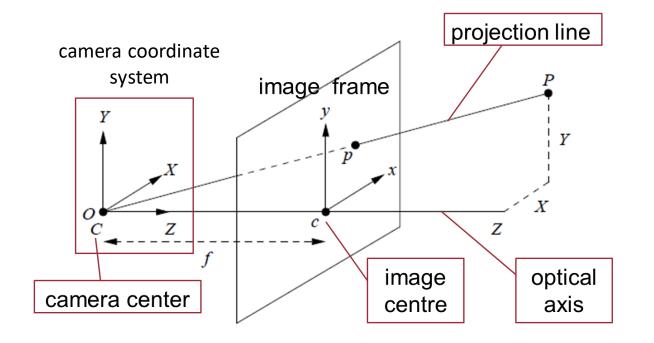
Right-handed coordinate system

• 3D point $P = (X, Y, Z)^T$ projected to 2D image $p = (x, y)^T$





• 3D point $P = (X, Y, Z)^T$ projected to 2D image $p = (x, y)^T$

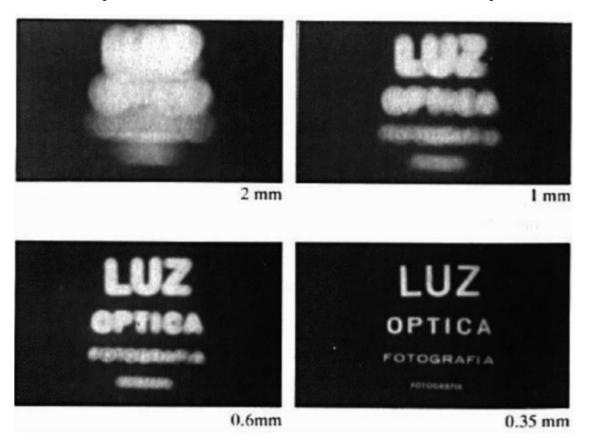


$$\frac{X}{Z} = \frac{x}{f}, \qquad \frac{Y}{Z} = \frac{y}{f}$$

$$x = f \frac{X}{Z}, \qquad y = f \frac{Y}{Z}$$

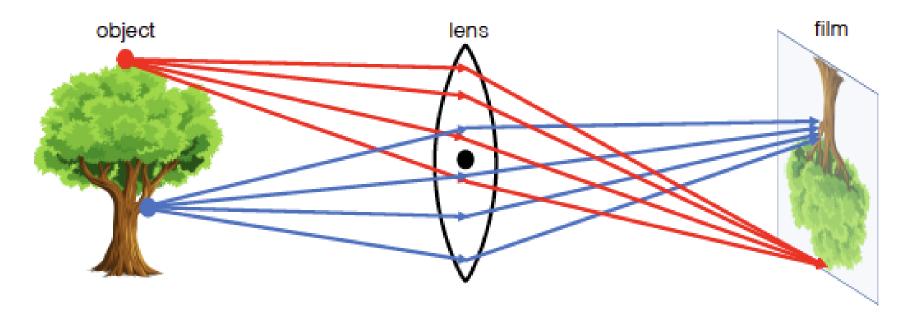
Simplest form of perspective projection

Compromise between sharpness and brightness



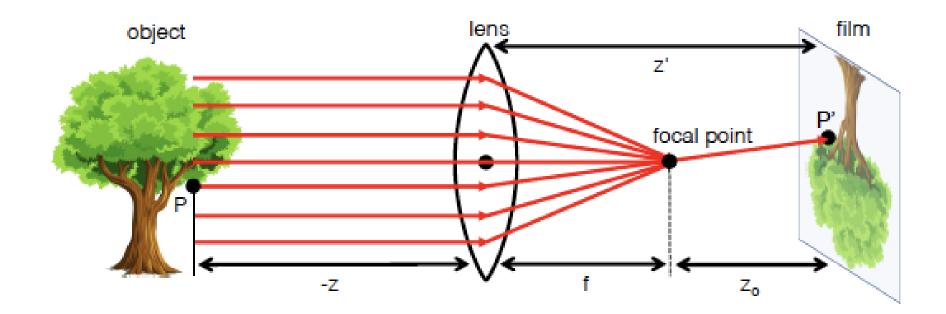
Can we develop cameras that take images both sharp and bright

- Balancing sharpness and brightness using lenses
 - Replace the pinhole with a lens
 - The lens refracts light
 - The lens converges all rays of light of same points to a single point



Lens

- Converges all rays of light of same points to a single point
- Focuses parallel light rays to the focal point



$$x = f \frac{X}{Z}, \qquad y = f \frac{Y}{Z}$$

Image plane coordinates in physical measurements (mm)

Change of unit: physical measurements -> pixels

$$x = kf\frac{X}{Z}, \qquad y = lf\frac{Y}{Z}$$

What if k = l

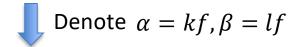
- x, y: image coordinates (pixels)
- k, l: scale parameters (pixels/mm)
- -f: focal length (mm)

$$x = f \frac{X}{Z}, \qquad y = f \frac{Y}{Z}$$

Image plane coordinates in physical measurements (mm)

Change of unit: physical measurements -> pixels

$$x = kf\frac{X}{Z}, \qquad y = lf\frac{Y}{Z}$$



$$x = \alpha \frac{X}{Z}, \qquad y = \beta \frac{Y}{Z}$$

Perspective projection model

- Change of coordinate system
 - Image plane coordinates have origin at image center
 - Digital image coordinates have origin at top-left corner

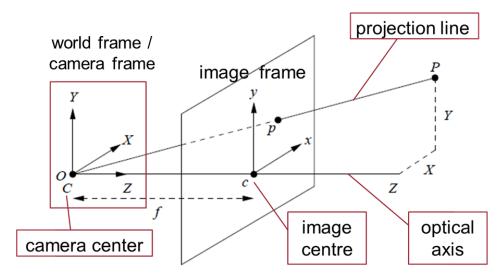
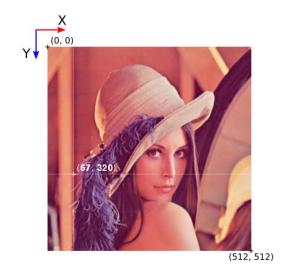


Image plane coordinates



Digital image coordinates

- Change of coordinate system
 - Image plane coordinates have origin at image center
 - Digital image coordinates have origin at top-left corner

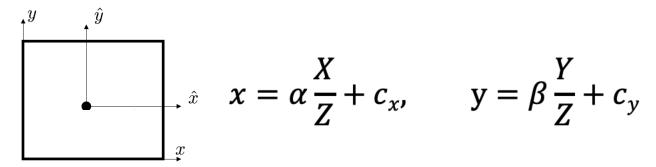
$$x = \alpha \frac{X}{Z}, \qquad y = \beta \frac{Y}{Z}$$

Image center (principal point): (c_x, c_y)

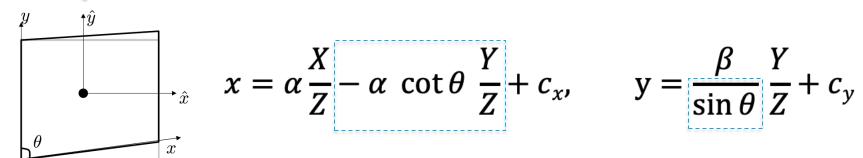
- Change of coordinate system
 - Image plane coordinates have origin at image center
 - Digital image coordinates have origin at top-left corner

$$x=lpharac{X}{Z}, \qquad y=etarac{Y}{Z}$$
 Image center (principal point): (c_x, c_y) $x=lpharac{X}{Z}+c_x, \qquad y=etarac{Y}{Z}+c_y$

- Image frame may not be exactly rectangular
 - Due to sensor manufacturing errors

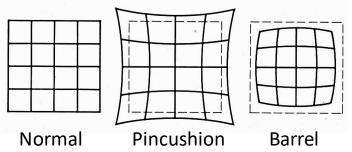


θ: skew angle between x- and y-axis



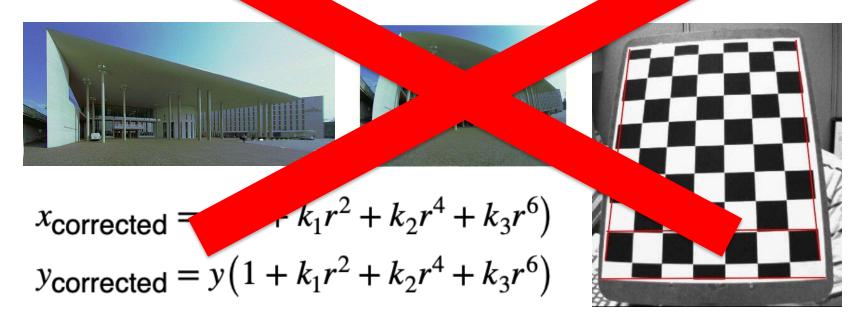
Perspective projection model

- Other types of distortions
 - Common aberration: radial distortion
 - Different portions of the lens have differing focal lengths
 - Straight lines appear curved
 - Errors by radial distortion << scanning resolution of image



Perspective projection model

- Other types of distortions
 - Common aberration: radial distortion
 - Different portions of the lens have differing focal lengths
 - Straight lines appear curved
 - Errors by radial distortion << scanning resolution of image



$$x = \alpha \frac{X}{Z} - \alpha \cot \theta \frac{Y}{Z} + c_x, \qquad y = \frac{\beta}{\sin \theta} \frac{Y}{Z} + c_y$$

Rewrite in matrix-vector product form

$$\mathbf{P} = [X, Y, Z]^{T}, \quad \mathbf{p} = [x, y, 1]^{T}$$

(homogeneous coordinates)

$$\mathbf{p} = K\mathbf{P}, \qquad K =$$

$$x = \alpha \frac{X}{Z} - \alpha \cot \theta \frac{Y}{Z} + c_x, \qquad y = \frac{\beta}{\sin \theta} \frac{Y}{Z} + c_y$$

Rewrite in matrix-vector product form

$$P = [X, Y, Z]^T, p = [x, y, 1]^T$$

(homogeneous coordinates)

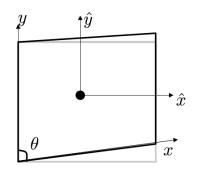
$$\mathbf{p} = K\mathbf{P}, \qquad K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

Intrinsic parameter matrix

For simplicity, people use a simpler form of K

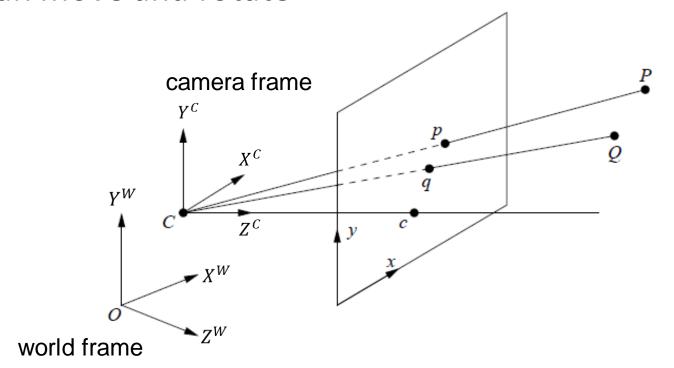
$$K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$
 s: skew param

s: skew parameter



- Internal characteristics
 - focal length, skew distortion, and image center.

- Camera motion
 - World frame may not align with the camera frame
 - Camera can move and rotate



Camera motion

- World frame may not align with the camera frame
- Camera can move and rotate

$$\mathbf{P}^{C} = \begin{bmatrix} R_{W}^{C} & \mathbf{P}^{W} \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} \mathbf{t}_{W}^{C} & \text{World frame} \\ 4 & \text{World frame} \end{bmatrix}$$

- 1. Coordinates of 3D scene point in camera frame.
- 2. Coordinates of 3D scene point in world frame.
- 3. Rotation matrix of world frame in camera frame.
- 4. Position of world frame's origin in camera frame.

Combine intrinsic and extrinsic parameters

$$\mathbf{p} = K\mathbf{P}, \qquad \mathbf{P}^{C} = R_{W}^{C} \cdot \mathbf{P}^{W} + \mathbf{t}_{W}^{C}$$

$$\mathbf{p} = K(R_{W}^{C} \cdot \mathbf{P}^{W} + \mathbf{t}_{W}^{C})$$

Use a simpler notation

$$\mathbf{p} = K(R\mathbf{P} + \mathbf{t})$$

$$= K[R \mathbf{t}]\mathbf{P}$$

$$= M\mathbf{P}$$

$$M = K[R \mathbf{t}]: 3 \times 4 \text{ projection matrix}$$

Summary

- Simplest camera model: pinhole model.
- Most commonly used model: perspective model.
- Intrinsic parameters:
 - Focal length, principal point (image center), skew factor
- Extrinsic parameters:
 - Camera rotation and translation.

Further reading:

- R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.
 - Camera models: Section 2.1.5
 - Lens distortion: Section 2.1.6

Next lecture

Camera calibration

