GEO1016 Photogrammetry and 3D Computer Vision

Lecture
 Introduction

Liangliang Nan

Agenda

- The teacher and teaching assistant
- Overview of the course
- What the course is about
- What you will learn
- Lectures
- Assignments
- Final exam
- Communication method
- Review linear algebra basics

Teacher \& teaching assistant

Liangliang Nan
LiangliangNan\#0976

Nail Ibrahimli
nibrahimli\#5857

What the course is about

- Photogrammetry
- Computer Vision
- 3D Computer Vision

What are the differences?

What the course is about

- Photogrammetry
- General
- Obtaining info about objects or environment
- Recording: digital image capturing
- Measuring: generating 2D or 3D measurements
- Interpreting: detecting interested objects
- Output can be
- A map
- A drawing
- 3D model
- ...

What the course is about

- Photogrammetry
- General
- Specific scopes in GEO1016
- Extracting 3D geometry from images
- Goal: generating 3D digital models of an object
- Using well-defined photogrammetric methods
- e.g., structure from motion, multi-view stereo

What the course is about

- Photogrammetry
- Computer vision
- Training computers to interpret and understand the visual world
- Using digital images or videos
- Mimics the human visual system
- Video tracking
- Object detection/recognition
- Scene reconstruction
- ...

What the course is about

- Photogrammetry
- Computer vision
- 3D computer vision
- Scene reconstruction/modeling
- 3D data processing (e.g., semantic segmentation, classification)

What the course is about

- Photogrammetry
- Computer vision
- 3D computer vision
- Scene reconstruction/modeling
- 3D data processing (e.g., semantic segmentation, classification)

Within this course:
3D computer vision == Photogrammetry

What the course is about

- Demo

What the course is about

- Photogrammetry
- Computer vision
- 3D computer vision
- Scene reconstruction/modeling
- 3D data processing (e.g., semantic segmentation, classification)
- Urban objects

What the course is about

- Photogrammetry
- Computer vision
- 3D computer vision
- Scene reconstruction/modeling
- 3D data processing (e.g., semantic segmentation, classification)
- Urban objects
- Point clouds vs. Surface models

What the course is about

- Demo

Code \& data: https://github.com/LiangliangNan/PolyFit

Applications of 3DV

- 3D reconstruction from images

Applications of 3DV

- Façade parsing and 3D modeling

Nan et al. Template Assembly for Detailed Urban Reconstruction. Computer Graphics Forum, Vol. 34, No. 2, 2015

Applications of 3DV

- Semantic segmentation

What you will learn

- Theory, methodology, and algorithms
- The complete pipeline for modeling real-world objects (mainly buildings) from images
- Data acquisition
- Processing
- Reconstruction

Topics/Lectures

- 1,2: Introduction \& Linear algebra
- 3,4: Camera models
- 5,6: Camera calibration
- 7,8: Epipolar geometry
- 9,10: Triangulation \& structure from motion
- 11,12: Multi-view stereo [by Nail]
- 13,14: Surface reconstruction

Learning activities

- Lectures
- 2 hours per week
- Group work and lab sessions
- 2×2-hour sessions/week
- Teachers available at lab sessions
- Data acquisition
- Install/Use software
- Programming
- Debugging
- Discussion with teammates and/or teachers

Assessment

- 3 group assignments (40 \%)
- Group performance
- Personal contribution/Peer reviews
- Final exam (60\%):
- Types of questions
- Multiple-choice questions with a single correct answer
- Multiple-choice questions with at least 2 correct answers
- Open questions
- Lectures, handouts, assignments, lab exercises

Assessment

- Pass (on a 100-point scale)?
- Assignments >= 55\%
- Exam >= 55\%
- Total >=60\%
- Repair an assignment: if lower than 55%
- Only one chance
- Only be assessed with a 60\%
- Retake the exam: if lower than 55%
- Only one chance
- An entirely new examination

Assignments

- Three mandatory assignments, each released after the lecture
- Camera calibration
- Triangulation
- Reconstruction
- Programming: implementation and experiment 3DV algorithm

Assignments

- C++ source code framework provided
- If you fail one of the assignments?
- Depending code and data will be provided
- Work in groups (3 students per group)

Form your team here:
https://docs.google.com/document/d/1qNMGZIcXL10sY5ntmgh3I3ZswYm1TKtbQYA14SiVyg/edit?usp=sharing

Assignments

- What to submit?
- Report
- Max 3 pages (excluding figures, tables, references)
- Individual contribution

Isaac Newton (75%)

- Compared the reconstruction results from method [1] and method [2];
- Implemented the function reorient_normals ();
- Came up with a novel reconstruction method and implemented it in function reconstruct(); Wrote the "Methodology" section of the report.

Albert Einstein ($\mathbf{2 0} \%$)

- Preparing and pre-processing of the point clouds, i.e., taking photos, run SfM and MVS, cropping the buildings
from the messy point clouds, and normal estimation;
Wrote the "Implementation Details" section of the report.
Thomas Edison (5 \%)
- Wrote the "Abstract" section of the report.
- See an example on the Course Webpage

Assignments

- What to submit?
- Report
- Code
- Highly recommended: Collaboration using GitHub
- [optional] Include the link to the GitHub repository in the report
- Reproduce the results
- Doesn't compile:-10\%
- Doesn't reproduce the result: -10\%

Assignments

- What to submit?
- We allow multiple submissions
- Incorporating comments from teachers/peers
- Evaluation based on $1^{\text {st }}$ submission $+5 \%$ maximum

Example:

First submission 60\%, then final mark will be $<=65 \%$

Assignments

- What to submit?
- We allow multiple submissions
- Strict deadlines
- Late submission
- 10\% deducted per day late
- Not acceptable after 3 days late.

Assignments

- What to submit?
- We allow multiple submissions
- Strict deadline
- Teamwork
- Everyone active in coding/discussion/report
- We strongly discourage
- report writing to one person and code writing to another
- one person working on course A and another on course B
- strategically provide perfectly equal individual contributions

Assignments

- Copy from others/internet, or use ChatGPT
- Code
- Sentences
- Figures
- ...
- Submit to BrightSpace [plagiarism check turned on]

Assignments: start earlier

YOUR PLAN.

Communication method

- Course website
- https://3d.bk.tudelft.nl/courses/geo1016/

Communication method

- Course website
- https://3d.bk.tudelft.nl/courses/geo1016/
- Discussion
- Lab/Lecture hours
- Discord channel: https://discord.gg/zmaZDNkjiH

Grouping

- Find your teammates ...
- 3 students per team
- Put your name, student ID, and email address
https://docs.google.com/document/d/1qNMGZIcXL10sY5ntmgh313ZswYm1TKtbQY
A-14SiVyg/edit?usp=sharing

Review linear algebra

Vectors (i.e., 2D and 3D vectors)

Image

Vector arithmetic

- Addition

$$
\mathbf{v}+\mathbf{w}=\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)
$$

- Subtraction

$$
\mathbf{v}-\mathbf{w}=\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)=\left(x_{1}-y_{1}, x_{2}-y_{2}\right)
$$

Vector arithmetic

- Scalar product

$$
a \mathbf{v}=a\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right)
$$

- Dot (inner) product

$$
\overbrace{}^{v} \alpha \cdot v \cdot w=\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=x_{1} y_{1}+x_{2} y_{2}
$$

The inner product is a SCALAR!

$$
\mathrm{v} \cdot \mathrm{w}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=\|\mathrm{v}\| \cdot\|\mathrm{w}\| \cos \alpha
$$

Vector arithmetic

- Cross (vector) product

Magnitude: $\|u\|=\|v \times w\|=\|v\|\|w\| \sin \alpha$

Translation

Translation

$$
\begin{array}{r}
\mathbf{t}_{\mathrm{t}}^{\mathbf{P}=(x, y)} \begin{array}{r}
\mathrm{P}(x, y, 1) \\
\mathbf{t}=\left(t_{x}, t_{y}\right)
\end{array} \rightarrow\left(t_{x}, t_{y}, 1\right) \\
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
y \\
1
\end{array}\right] \\
=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{t} \\
0 & 1
\end{array}\right] \cdot \mathbf{P}=\mathbf{T} \cdot \mathbf{P}
\end{array}
$$

Scaling

$$
\mathbf{P}=(\mathrm{x}, \mathrm{y}) \rightarrow \mathbf{P}^{\prime}=\left(\mathrm{s}_{\mathrm{x}} \mathrm{x}, \mathrm{~s}_{\mathrm{y}} \mathrm{y}\right)
$$

$$
\mathbf{P}=(x, y) \rightarrow(x, y, 1)
$$

$$
\mathbf{P}^{\prime}=\left(s_{x} x, s_{y} y\right) \rightarrow\left(s_{x} x, s_{y} y, 1\right)
$$

$$
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
s_{x} x \\
s_{y} y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{S}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \cdot \mathbf{P}=\mathbf{S} \cdot \mathbf{P}
$$

Scaling \& Translation

$$
\begin{aligned}
& \mathbf{P}^{\prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\underbrace{\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]}_{\mathrm{A}}
\end{aligned}
$$

Rotation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right.}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What is the inverse transformation

Rotation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What is the inverse transformation

- Rotation by $-\theta$
R has many interesting properties:

$$
\mathbf{R}^{-1}=\mathbf{R}^{T} \quad \mathbf{R} \cdot \mathbf{R}^{\mathbf{T}}=\mathbf{R}^{\mathbf{T}} \cdot \mathbf{R}=\mathbf{I} \quad \operatorname{det}(\mathbf{R})=1
$$

Translation + Rotation + Scaling

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathbf{T} \cdot \mathrm{R} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{lll}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & \mathrm{t}_{\mathrm{x}} \\
\sin \theta & \cos \theta & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\left[\begin{array}{cc}
R^{\prime} & \mathrm{t}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{S} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ll}
R^{\prime} \mathrm{S} & \mathrm{t}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right] \quad \begin{array}{l}
\text { If } \mathrm{s}_{\mathrm{x}}=\mathrm{s}_{\mathrm{y}}, \text { this is a similarity } \\
\text { transformation }
\end{array}
\end{aligned}
$$

Next lecture

- Camera models

$\mathbf{p}=M \mathbf{P}$

Internal (intrinsic) parameters

External (extrinsic) parameters

