Feedback and Discussion

- Why C++?
- What is " K * $[R, t]$ "?
- A1: Calibration
- What is the main source of the error in camera calibration?
- Why cannot I crop the image (but snapshots of the full viewer)?
- How to determine the sign of rho?
- A2: Triangulation
- Determine the correct R-t pair
- The effect of errors in K on reconstruction
- What will be the ideal evaluation method?
- Interpretation of "reprojection error"
- The accuracy of reconstruction from two similar views

Why C++?

- Performance is critical
- Large images, point clouds, matrices
- SfM, MVS, numerical algorithms ...
- Deployment
- "bilingual" ©

What is " K * $[R, t]$ "?

- It is not $K * R * t$
- $[R, t]$ denotes the concatenation of R and t
- Appending to to so t becomes its last column
- Notation: Tor t?
- T is a matrix
- T and \mathbf{t} represent the same translation transformation
- $K *[R, t]=K * T * R$
- Be careful: it is not $K * R * T$

$$
\mathbf{P}^{\prime}=\mathbf{T} \cdot \mathbf{R} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & \mathrm{t}_{\mathrm{x}} \\
\sin \theta & \cos \theta & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]
$$

A1: Calibration

-What is the main source the error in camera calibration?

A1: Calibration

- What is the main source of the error in camera calibration?
- Inaccuracy in pixel locations: manually picking pixels

A1: Calibration

-What is the main source of the error in camera calibration?

- Inaccuracy in pixel locations: manually picking pixels

A1: Calibration

- Why cannot I crop the image (but using the snapshot of the full viewer)?


```
P\mathbf{m}=0}=>\begin{array}{l}{\underset{\mathbf{m}}{\operatorname{minizize}}}\end{array}|P\mathbf{m}\mp@subsup{|}{}{2
```

$$
M=K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right]
$$

$$
K=\left[\begin{array}{ccc}
f_{x} & s & u_{0} \\
0 & f_{y} & v_{0} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & u_{0} \\
0 & \frac{\beta}{\sin \theta} & v_{0} \\
0 & 0 & 1
\end{array}\right] \quad R=\left[\begin{array}{c}
\mathbf{r}_{1}^{T} \\
\mathbf{r}_{2}^{T} \\
\mathbf{r}_{3}^{T}
\end{array}\right], \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]
$$

$$
M=\left[\begin{array}{cc}
\alpha \mathbf{r}_{1}^{T}-\alpha \cot \theta \mathbf{r}_{2}^{T}+u_{0} \mathbf{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \mathbf{r}_{2}^{T}+v_{0} \mathbf{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\mathbf{r}_{3}^{T} & t_{z}
\end{array}\right]_{\text {SVD-solved projection matrix }}
$$

SVD-solved projection matrix is known up to scale, i.e., $\rho \mathcal{M}=M \leftarrow$ The true values of project matrix

$$
\mathcal{M}=\frac{1}{\rho} M=\frac{1}{\rho}\left[\begin{array}{cc}
\alpha \mathbf{r}_{1}^{T}-\alpha \cot \theta \mathbf{r}_{2}^{T}+u_{0} \mathbf{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \mathbf{r}_{2}^{T}+v_{0} \mathbf{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\mathbf{r}_{3}^{T} & t_{z}
\end{array}\right]
$$

A1: Calibration

- How to determine the sign of rho?
- Size of rho: the scale factor between the SVD-solved projection matrix and the actual projection matrix
- Sign of rho

Extrinsic parameters:

$$
\begin{aligned}
\mathbf{r}_{1} & =\frac{\mathbf{a}_{2} \times \mathbf{a}_{\mathbf{3}}}{\left\|\mathbf{a}_{2} \times \mathbf{a}_{3}\right\|} \\
\mathbf{r}_{2} & =\mathbf{r}_{\mathbf{3}} \times \mathbf{r}_{1} \\
\mathbf{r}_{3} & =\rho \mathbf{a}_{\mathbf{3}} \\
\mathbf{t} & =\rho K^{-1} \mathbf{b}
\end{aligned}
$$

A1: Calibration

- How to determine the sign of rho?
- Size of rho: the scale factor between the SVD-solved projection matrix and the actual projection matrix
- Sign of rho
- What about testing
reprojection_error_with_positive_sign < reprojection_error_with_positive_sign

A2: Triangulation

- Determine the correct R-t pair
- The effect of errors in K on reconstruction
- What will be the ideal evaluation method?
- Interpretation of "reprojection error"
- The accuracy of reconstruction from two similar views

A2: Triangulation

- Determine the correct R-t pair
- Determine if a 3D point lies in front of both cameras

M_0 and M_1 are the projection matrices of the two cameras

```
int front_of_camera_0 = 0;
int front_of_camera_1 = 0;
for (const Vector3D& P : points3D) {
    // Point in the first camera coordinate system
    Vector3D P_cam0 = M_0 * P.homogeneous();
    if (P_cam0.z() > 0) {
            ++front_of_camera_0;
    }
    // Point in the second camera coordinate system
    Vector3D P_cam1 = M_1 * P.homogeneous();
    if (P_cam1.z() > 0) {
        ++front_of_camera_1;
    }
```


A2: Triangulation

- Determine the correct R-t pair
- The one having the largest number of 3D points in front of BOTH cameras

```
const vec3 p3d = triangulate(M, M_prime, p1, p2);
const vec4 p3d_h = vec4{ p3d.x, p3d.y, p3d.z, w_in: 1.0 };
// First camera check
if (p3d.z > 0) found++;
// Second camera check
if ((Rt * p3d_h).z > 0) found++;
```

```
const vec3 p3d = triangulate(M, M_prime, p1, p2);
const vec4 p3d_h = vec4{ p3d.x, p3d.y, p3d.z, w_in: 1.0 };
if (p3d.z > 0 && (Rt * p3d_h).z > 0)
    found++;
```


A2: Triangulation

- The effect of errors in K on reconstruction
- How K can be obtained in practice?
- Does K have to be very accurate?

A2: Triangulation

- What will be the ideal evaluation method?
- Reprojection error?

A2: Triangulation

- Interpretation of "reprojection error"
- MSE (Mean Squared Error)

$$
\mathrm{MSE}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

- RMSE (Root Mean Squared Error)
- Average distance

$$
R M S E=\sqrt{M S E}
$$

- Reprojection error

$$
\sum_{i}\left\|M \hat{\mathbf{P}}_{i}-\mathbf{p}_{i}\right\|^{2}
$$

A2: Triangulation

- The accuracy of reconstruction from two views
- Why?
- How to improve?

