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Abstract: This paper proposes a novel algorithm for calibrated
multi-view stereopsis that outputs a (quasi) dense set of rectan-
gular patches covering the surfaces visible in the input images.
This algorithm does not require any initialization in the form of a
bounding volume, and it detects and discards automatically out-
liers and obstacles. It does not perform any smoothing across
nearby features, yet is currently the top performer in terms of both
coverage and accuracy for four of the six benchmark datasets pre-
sented in [20]. The keys to its performance are effective tech-
niques for enforcing local photometric consistency and global
visibility constraints. Stereopsis is implemented as a match, ex-
pand, and filter procedure, starting from a sparse set of matched
keypoints, and repeatedly expanding these to nearby pixel corre-
spondences before using visibility constraints to filter away false
matches. A simple but effective method for turning the resulting
patch model into a mesh appropriate for image-based modeling is
also presented. The proposed approach is demonstrated on vari-
ous datasets including objects with fine surface details, deep con-
cavities, and thin structures, outdoor scenes observed from a re-
stricted set of viewpoints, and “crowded” scenes where moving
obstacles appear in different places in multiple images of a static
structure of interest.

1. Introduction

As in the binocular case, although most early work in
multi-view stereopsis (e.g., [12, 15, 19]) tended to match
and reconstruct all scene points independently, recent ap-
proaches typically cast this problem as a variational one,
where the objective is to find the surface minimizing a
global photometric discrepancy functional, regularized by
explicit smoothness constraints [1, 8, 17, 18, 22, 23] (a ge-
ometric consistency terms is sometimes added as well [3,
4, 7, 9]). Competing approaches mostly differ in the type
of optimization techniques that they use, ranging from
local methods such as gradient descent [3, 4, 7], level
sets [1, 9, 18], or expectation maximization [21], to global
ones such as graph cuts [3, 8, 17, 22, 23]. The variational
approach has led to impressive progress, and several of the
methods recently surveyed by Seitz et al. [20] achieve a rel-

ative accuracy better than 1/200 (1mm for a 20cm wide ob-
ject) from a set of low-resolution (640×480) images. How-
ever, it typically requires determining a bounding volume
(valid depth range, bounding box, or visual hull) prior to
initiating the optimization process, which may not be feasi-
ble for outdoor scenes and/or cluttered images. 1 We pro-
pose instead a simple and efficient algorithm for calibrated
multi-view stereopsis that does not require any initializa-
tion, is capable of detecting and discarding outliers and ob-
stacles, and outputs a (quasi) dense collection of small ori-
ented rectangular patches [6, 13], obtained from pixel-level
correspondences and tightly covering the observed surfaces
except in small textureless or occluded regions. It does not
perform any smoothing across nearby features, yet is cur-
rently the top performer in terms of both coverage and accu-
racy for four of the six benchmark datasets provided in [20].
The keys to its performance are effective techniques for en-
forcing local photometric consistency and global visibility
constraints. Stereopsis is implemented as a match, expand,
and filter procedure, starting from a sparse set of matched
keypoints, and repeatedly expanding these to nearby pixel
correspondences before using visibility constraints to fil-
ter away false matches. A simple but effective method for
turning the resulting patch model into a mesh suitable for
image-based modeling is also presented. The proposed ap-
proach is applied to three classes of datasets:
• objects, where a single, compact object is usually fully
visible in a set of uncluttered images taken from all around
it, and it is relatively straightforward to extract the apparent
contours of the object and compute its visual hull;
• scenes, where the target object(s) may be partially oc-
cluded and/or embedded in clutter, and the range of view-
points may be severely limited, preventing the computation
of effective bounding volumes (typical examples are out-
door scenes with buildings or walls); and

1In addition, variational approaches typically involve massive opti-
mization tasks with tens of thousands of coupled variables, potentially
limiting the resolution of the corresponding reconstructions (see, however,
[18] for a fast GPU implementation). We will revisit tradeoffs between
computational efficiency and reconstruction accuracy in Sect. 5.
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Figure 1. Overall approach. From left to right: a sample input image; detected features; reconstructed patches after the initial matching;
final patches after expansion and filtering; polygonal surface extracted from reconstructed patches.

• crowded scenes, where moving obstacles appear in differ-
ent places in multiple images of a static structure of interest
(e.g., people passing in front of a building).

Techniques such as space carving [12, 15, 19] and vari-
ational methods based on gradient descent [3, 4, 7], level
sets [1, 9, 18], or graph cuts [3, 8, 17, 22, 23] typically
require an initial bounding volume and/or a wide range of
viewpoints. Object datasets are the ideal input for these al-
gorithms, but methods using multiple depth maps [5, 21] or
small, independent surface elements [6, 13] are better suited
to the more challenging scene datasets. Crowded scenes
are even more difficult. The method proposed in [21] uses
expectation maximization and multiple depth maps to re-
construct a crowded scene despite the presence of occlud-
ers, but it is limited to a small number of images (typi-
cally three). As shown by qualitative and quantitative ex-
periments in the rest of this paper, our algorithm effec-
tively handles all three types of data, and, in particular,
outputs accurate object and scene models with fine surface
detail despite low-texture regions, large concavities, and/or
thin, high-curvature parts. As noted earlier, it implements
multi-view stereopsis as a simple match, expand, and fil-
ter procedure (Fig. 1): (1) Matching: features found by
Harris and Difference-of-Gaussians operators are matched
across multiple pictures, yielding a sparse set of patches
associated with salient image regions. Given these initial
matches, the following two steps are repeated n times (n= 3
in all our experiments): (2) Expansion: a technique similar
to [16, 2, 11, 13] is used to spread the initial matches to
nearby pixels and obtain a dense set of patches. (3) Fil-
tering: visibility constraints are used to eliminate incorrect
matches lying either in front or behind the observed surface.
This approach is similar to the method proposed by Lhuil-
lier and Quan [13], but their expansion procedure is greedy,
while our algorithm iterates between expansion and filter-
ing steps, which allows us to process complicated surfaces.
Furthermore, outliers cannot be handled in their method.
These differences are also true with the approach by Kushal
and Ponce [11] in comparison to ours. In addition, only a
pair of images can be handled at once in [11], while our
method can process arbitrary number of images uniformly.

2. Key Elements of the Proposed Approach

Before detailing our algorithm in Sect. 3, we define here
the patches that will make up our reconstructions, as well
as the data structures used throughout to represent the input
images. We also introduce two other fundamental building
blocks of our approach, namely, the methods used to ac-
curately reconstruct a patch once the corresponding image
fragments have been matched, and determine its visibility.

2.1. Patch Models

A patch p is a rectangle with center c(p) and unit nor-
mal vector n(p) oriented toward the cameras observing it
(Fig. 2). We associate with p a reference image R(p), cho-
sen so that its retinal plane is close to parallel to p with little
distortion. In turn, R(p) determines the orientation and ex-
tent of the rectangle p in the plane orthogonal to n(p), so
the projection of one of its edges into R(p) is parallel to the
image rows, and the smallest axis-aligned square contain-
ing its image covers a µ × µpixel2 area (we use values of
5 or 7 for µ in all of our experiments). Two sets of pic-
tures are also attached to each patch p: the images S(p)
where p should be visible (despite self-occlusion), but may
in practice not be recognizable (due to highlights, motion
blur, etc.), or hidden by moving obstacles, and the images
T (p) where it is truly found (R(p) is of course an element
of T (p)). We enforce the following two constraints on the
model: First, we enforce local photometric consistency by
requiring that the projected textures of every patch p be con-
sistent in at least γ images (in other words |T (p)| ≥ γ , with
γ = 3 in all but three of our experiments, where γ is set to
2). Second, we enforce global visibility consistency by re-
quiring that no patch p be occluded by any other patch in
any image in S(p). 2

2.2. Image Models

We associate with each image I a regular grid of β1×
β1pixel2 cells C(i, j), and attempt to reconstruct at least one

2A patch p may be occluded in one or several of the images in S(p)
by moving obstacles, but these are not reconstructed by our algorithm and
thus do not generate occluding patches.
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Figure 2. Definition of a patch (left) and of the images associated
with it (right). See text for the details.

patch in every cell (we use values of 1 or 2 for β1 in all
our experiments). The cell C(i, j) keeps track of two dif-
ferent sets Qt(i, j) and Qf (i, j) of reconstructed patches po-
tentially visible in C(i, j): A patch p is stored in Qt(i, j) if
I ∈ T (p), and in Qf (i, j) if I ∈ S(p) \ T (p). We also as-
sociate with C(i, j) the depth of the center of the patch in
Qt(i, j) closest to the optical center of the corresponding
camera. This amounts to attaching a depth map to I, which
will prove useful in the visibility calculations of Sect. 2.4.

2.3. Enforcing Photometric Consistency

Given a patch p, we use the normalized cross correlation
(NCC) N(p, I,J) of its projections into the images I and J to
measure their photometric consistency. Concretely, a µ×µ
grid is overlaid on p and projected into the two images, the
correlated values being obtained through bilinear interpo-
lation. Given a patch p, its reference image R(p), and the
set of images T (p) where it is truly visible, we can now
estimate its position c(p) and its surface normal n(p) by
maximizing the average NCC score

N̄(p) =
1

|T (p)|−1 ∑
I∈T (p),I �=R(p)

N(p,R(p), I) (1)

with respect to these unknowns. To simplify computations,
we constrain c(p) to lie on the ray joining the optical center
of the reference camera to the corresponding image point,
reducing the number of degrees of freedom of this opti-
mization problem to three—depth along the ray plus yaw
and pitch angles for n(p), and use a conjugate gradient
method [14] to find the optimal parameters. Simple meth-
ods for computing reasonable initial guesses for c(p) and
n(p) are given in Sects. 3.1 and 3.2.

2.4. Enforcing Visibility Consistency

The visibility of each patch p is determined by the im-
ages S(p) and T (p) where it is (potentially or truly) ob-
served. We use two slightly different methods for construct-
ing S(p) and T (p) depending on the stage of our reconstruc-
tion algorithm. In the matching phase (Sect. 3.1), patches
are reconstructed from sparse feature matches, and we have

to rely on photometric consistency constraints to deter-
mine (or rather obtain an initial guess for) visibility. Con-
cretely, we initialize both sets of images as those for which
the NCC score exceeds some threshold: S(p) = T (p) =
{I|N(p,R(p), I) > α0}. On the other hand, in the expan-
sion phase of our algorithm (Sect. 3.2), patches are by con-
struction dense enough to associate depth maps with all im-
ages, and S(p) is constructed for each patch by thresholding
these depth maps—that is, S(p) = {I|dI(p)≤ dI(i, j)+ρ1},
where dI(p) is the depth of the center of p along the corre-
sponding ray of image I, and dI(i, j) is the depth recorded
in the cell C(i, j) associated with image I and patch p. The
value of ρ1 is determined automatically as the distance at
the depth of c(p) corresponding to an image displacement
of β1 pixels in R(p). Once S(p) has been estimated, photo-
metric consistency is used to determine the images where p
is truly observed as T (p) = {I ∈ S(p)|N(p,R(p), I) > α1}.
This process may fail when the reference image R(p) is it-
self an outlier, but, as explained in the next section, our al-
gorithm is designed to handle this problem. Iterating its
matching and filtering steps also helps improve the reliabil-
ity and consistency of the visibility information.

3. Algorithm

3.1. Matching

As the first step of our algorithm, we detect corner and
blob features in each image using the Harris and Difference-
of-Gaussian (DoG) operators. 3 To ensure uniform cov-
erage, we lay over each image a coarse regular grid of
β2×β2pixel2 cells, and return as corners and blobs for each
cell the η local maxima of the two operators with strongest
responses (we use β2 = 32 and η = 4 in all our experi-
ments). After these features have been found in each image,
they are matched across multiple pictures to reconstruct a
sparse set of patches, which are then stored in the grid of
cells C(i, j) overlaid on each image (Fig. 3): Consider an
image I and denote by O the optical center of the corre-
sponding camera. For each feature f detected in I, we col-
lect in the other images the set F of features f ′ of the same
type (Harris or DoG) that lie within ι = 2pixels from the
corresponding epipolar lines, and triangulate the 3D points
associated with the pairs ( f , f ′). We then consider these
points in order of increasing distance from O as potential
patch centers, 4 and return the first patch “photoconsistent”
in at least γ images (Fig. 3, top). More concretely, for each

3Briefly, let us denote by Gσ a 2D Gaussian with standard deviation
σ . The response of the Harris filter at some image point is defined as
H = det(M)−λ trace2(M), where M =Gσ0 ∗(∇I∇IT ), and ∇I is computed
by convolving the image I with the partial derivatives of the Gaussian Gσ1 .
The response of the DoG filter is D = |(Gσ2 −G√2σ2

) ∗ I|. We use σ0 =
σ1 = σ2 = 1pixel and λ = 0.06 in all of our experiments.

4Empirically, this heuristic has proven to be effective in selecting
mostly correct matches at a modest computational expense.
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(Harris/DoG)
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Input: Features detected in each image.
Output: Initial sparse set of patches P.

Cover each image with a grid of β1×β1pixel2 cells;
P← φ ;
For each image I with optical center O

For each feature f detected in I and lying in an empty cell
F← {Features satisfying the epipolar consistency};
Sort F in an increasing order of distance from O;
For each feature f ′ ∈ F
R(p)← I; T (p)← {J|N(p,R(p),J)≥ α0};
c(p)← 3D point triangulated from f and f ′;
n(p)← Direction of optical ray from c(p) to O;
n(p),c(p)← argmax N̄(p);
S(p)← {J|N(p,R(p),J) ≥ α0};
T (p)←{J|N(p,R(p),J) ≥ α1};
If |T (p)| ≥ γ

register p to the corresponding cells in S(p);
exit innermost For loop, and add p to P.

Figure 3. Feature matching algorithm. Top: An example showing
the features f ′ ∈ F satisfying the epipolar constraint in images I2
and I3 as they are matched to feature f in image I1 (this is an
illustration only, not showing actual detected features). Bottom:
The matching algorithm. The values used for α0 and α1 in all our
experiments are 0.4 and 0.7 respectively.

feature f ′, we construct the potential surface patch p by tri-
angulating f and f ′ to obtain an estimate of c(p), assign to
n(p) the direction of the optical ray joining this point to O,
and set R(p) = I. After initializing T (p) by using photo-
metric consistency as in Sect. 2.4, we use the optimization
process described in Sect. 2.3 to refine the parameters of
c(p) and n(p), then initialize S(p) and recompute T (p). Fi-
nally, if p satisfies the constraint |T (p)| ≥ γ , we compute
its projections in all images in S(p), register it to the corre-
sponding cells, and add it to P (Fig. 3, bottom). Note that
since the purpose of this step is only to reconstruct an initial,
sparse set of patches, features lying in non-empty cells are
skipped for efficiency. Also note that the patch generation
process may fail if the reference image R(p) is an outlier,
for example when f correspond to a highlight. This does
not prevent, however, the reconstruction of the correspond-

ing surface patch from another image. The second part of
our algorithm iterates (three times in all our experiments)
between an expansion step to obtain dense patches and a
filtering step to remove erroneous matches and enforce vis-
ibility consistency, as detailed in the next two sections.

3.2. Expansion

At this stage, we iteratively add new neighbors to ex-
isting patches until they cover the surfaces visible in the
scene. Intuitively, two patches p and p′ are considered to
be neighbors when they are stored in adjacent cells C(i, j)
and C(i′, j′) of the same image I in S(p), and their tangent
planes are close to each other. We only attempt to create
new neighbors when necessary—that is, when Qt(i′, j′) is
empty, 5 and none of the elements of Qf (i′, j′) is n-adjacent
to p, where two patches p and p′ are said to be n-adjacent
when |(c(p)−c(p′)) ·n(p)|+ |(c(p)−c(p′)) ·n(p′)|< 2ρ2.
Similar to ρ1, ρ2 is determined automatically as the distance
at the depth of the mid-point of c(p) and c(p′) correspond-
ing to an image displacement of β1 pixels in R(p). When
these two conditions are verified, we initialize the patch p′
by assigning to R(p′), T (p′), and n(p′) the corresponding
values for p, and assigning to c(p′) the point where the
viewing ray passing through the center ofC(i′, j′) intersects
the plane containing the patch p. Next, c(p′) and n(p′) are
refined by the optimization procedure discussed in Sect. 2.3,
and S(p′) is initialized from the depth maps as explained in
Sect. 2.4. Since some matches (and thus the correspond-
ing depth map information) may be incorrect at this point,
the elements of T (p′) are added to S(p′) to avoid missing
any image where p′ may be visible. Finally, after updating
T (p′) using photometric constraints as in Sect. 2.4, we ac-
cept the patch p′ if |T (p′)| ≥ γ still holds, then register it to
Qt(i′, j′) and Qf (i′, j′), and update the depth maps associ-
ated with images in S(p′). See Fig. 4 for the algorithm.

3.3. Filtering

Two filtering steps are applied to the reconstructed
patches to further enforce visibility consistency and remove
erroneous matches. The first filter focuses on removing
patches that lie outside the real surface (Fig. 5, left): Con-
sider a patch p0 and denote byU the set of patches that it oc-
cludes. We remove p0 as an outlier when |T (p0)| N̄(p0) <

∑p j∈U N̄(p j) (intuitively, when p0 is an outlier, both N̄(p0)
and |T (p0)| are expected to be small, and p0 is likely to be
removed). The second filter focuses on outliers lying in-
side the actual surface (Fig. 5, right): We simply recompute
S(p0) and T (p0) for each patch p0 using the depth maps
associated with the corresponding images (Sect. 2.4), and

5Intuitively, any patch p′ in Qt(i′, j′) would either already be a neigh-
bor of p, or be separated from it by a depth discontinuity, neither case
warranting the addition of a new neighbor.
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Input: Patches P from the feature matching step.
Output: Expanded set of reconstructed patches.

Use P to initialize, for each image, Qf , Qt , and its depth map.
While P is not empty

Pick and remove a patch p from P;
For each image I ∈ T (p) and cell C(i, j) that p projects onto

For each cell C(i′, j′) adjacent to C(i, j) such that Qt(i′, j′)
is empty and p is not n-adjacent to any patch in Qf (i′, j′)

Create a new p′, copying R(p′),T (p′) and n(p′) from p;
c(p′)← Intersection of optical ray through

center of C(i′, j′) with plane of p;
n(p′),c(p′)← argmaxN̄(p′);
S(p′)← {Visible images of p′ estimated by the

current depth maps } ∪ T (p′);
T (p′)←{J ∈ S(p′)|N(p′,R(p′),J)≥ α1};
If |T(p′) < γ |, go back to For-loop;
Add p′ to P;
Update Qt ,Qf and depth maps for S(p′);

Return all the reconstructed patches stored in Qf and Qt .

Figure 4. Patch expansion algorithm.
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P1
P3

P4
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I3I2I1
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U

Figure 5. Outliers lying outside (left) or inside (right) the correct
surface. Arrows are drawn between the patches pi and the images
I j in S(pi), while solid arrows correspond to the case where I j ∈
T (pi). U denotes a set of patches occluded by an outlier. See text
for details.

remove p0 when |T (p0)| < γ . Note that the recomputed
values of S(p0) and T (p0) may be different from those ob-
tained in the expansion step since more patches have been
computed after the reconstruction of p0. Finally, we enforce
a weak form of regularization as follows: For each patch p,
we collect the patches lying in its own and adjacent cells in
all images of S(p). If the proportion of patches that are n-
adjacent to p in this set is lower than ε = 0.25, p is removed
as an outlier. The threshold α1 is initialized with 0.7, and
lowered by 0.2 after each expansion/filtering iteration.

4. Polygonal Surface Reconstruction

The reconstructed patches form an oriented point, or sur-
fel model. Despite the growing popularity of this type of
models in the computer graphics community [10], it re-
mains desirable to turn our collection of patches into sur-
face meshes for image-based modeling applications. The

S*

S

v
d(v)n(v)

Π(v)

Figure 6. Polygonal surface reconstruction. Left: bounding vol-
umes for the dino (visual hull), steps (convex hull), and city-hall
(union of hemispheres) datasets featured in Figs. 7 ,9 and 10.
Right: geometric elements driving the deformation process.

approach that we have adopted is a variant of the iterative
deformation algorithm presented in [4], and consists of two
phases. Briefly, after initializing a polygonal surface from
a predetermined bounding volume, the convex hull of the
reconstructed points, or a set of small hemispheres cen-
tered at these points and pointing away from the cameras,
we repeatedly move each vertex v according to three forces
(Fig. 6): a smoothness term for regularization; a photomet-
ric consistency term, which is based on the reconstructed
patches in the first phase, but is computed solely from the
mesh in the second phase; and, when accurate silhouettes
are available, a rim consistency term pulling the rim of the
deforming surface toward the corresponding visual cones.

Concretely, the smoothness term is −ζ1∆v + ζ2∆2v,
where ∆ denotes the (discrete) Laplacian operator relative to
a local parameterization of the tangent plane in v (ζ1 = 0.6
and ζ2 = 0.4 are used in all our experiments). In the first
phase, the photometric consistency term for each vertex v
essentially drives the surface towards reconstructed patches
and is given by ν(v)n(v), where n(v) is the inward unit
normal to S in v, ν(v) = max(−τ,min(τ,d(v))), and d(v)
is the signed distance between v and the true surface S∗
along n(v) (the parameter τ is used to bound the magni-
tude of the force, ensure stable deformation and avoid self-
intersections; its value is fixed as 0.2 times the average edge
length in S). In turn, d(v) is estimated as follows: We col-
lect the set Π(v) of π = 10 patches p′ with (outward) nor-
mals compatible with that of v (that is, −n(p′) · n(v) > 0,
see Fig. 6) that lie closest to the line defined by v and n(v),
and compute d(v) as the weighted average distance from v
to the centers of the patches in Π(v) along n(v)—that is,
d(v) = ∑p′∈Π(v)w(p′)[n(v) · (c(p′)− v)], where the weights
w(p′) are Gaussian functions of the distance between c(p′)
and the line, with standard deviation ρ1 defined as before,
and normalized to sum to 1. In the second phase, the pho-
tometric consistency term is computed for each vertex by
using the patch optimization routine as follows. At each
vertex v, we create a patch p by initializing c(p) with v,
n(p) with a surface normal estimated at v on S, and a set of
visible images S(p) from a depth-map testing on the mesh
S at v, then apply the patch optimization routine described
in Sect. 2.3. Let c∗(p) denote the value of c(p) after the
optimization, then c∗(p)− c(p) is used as the photometric
consistency term. In the first phase, we iterate until conver-
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Table 1. Characteristics of the datasets used in our experiments.
roman and skull datasets have been acquired in our lab, while
other datasets have been kindly provided by S. Seitz, B. Curless,
J. Diebel, D. Scharstein, and R. Szeliski (temple and dino, see
also [20]); C. Hernández Esteban, F. Schmitt and the Museum
of Cherbourg (polynesian); S. Sullivan and Industrial Light and
Magic (face, face-2, body, steps, and wall); and C. Strecha (city-
hall and brussels).

Name Images Image Size β1 µ γ
roman 48 1800×1200 1 5 3
temple 16 640×480 1 5 3
dino 16 640×480 1 7 3
skull 24 2000×2000 2 5 3

polynesian 36 1700×2100 2 5 3
face 4 1400×2200 1 7 2
face-2 13 1500×1400 1 5 3
body 4 1400×2200 1 7 2
steps 7 1500×1400 1 7 3

city-hall 5 3000×2000 2 7 3
wall 9 1500×1400 1 7 3

brussels 3 2000×1300 1 5 2

gence, remesh, increase the resolution of the surface, and
repeat the process until the desired resolution is obtained
(in particular, until image projections of edges of the mesh
become approximately β1 pixels in length, see [4] for de-
tails). The second phase is applied to the mesh only in its
desired resolution as a final refinement.

5. Experiments and Discussion

We have implemented the proposed approach in C++,
using the WNLIB [14] implementation of conjugate gradi-
ent in the patch optimization routine. The datasets used in
our experiments are listed in Table 1, together with the num-
ber of input images, their approximate size and a choice of
parameters for each data set. Note that all the parameters
except for β1, µ and γ have been fixed in our experiments.

We have first tested our algorithm on object datasets
(Figs. 1 and 7) for which a segmentation mask is available
in each image. A visual hull model is thus used to initialize
the iterative deformation process for all these datasets, ex-
cept for face and body, where a limited set of viewpoints is
available, and the convex hull of the reconstructed patches
is used instead. The segmentation mask is also used by our
stereo algorithm, which simply ignores the background dur-
ing feature detection and matching. The rim consistency
term has only been used in the surface deformation pro-
cess for the roman and skull datasets, for which accurate
contours are available. The bounding volume information
has not been used to filter out erroneous matches in our
experiments. Our algorithm has successfully reconstructed
various surface structures such as the high-curvature and/or
shallow surface details of roman, the thin cheek bone and
deep eye sockets of skull, and the intricate facial features

of face and face-2. Quantitative comparisons kindly pro-
vided by D. Scharstein on the datasets presented in [20]
show that the proposed method outperforms all the other
evaluated techniques in terms of accuracy (distance d such
that a given percentage of the reconstruction is within d
from the ground truth model) and completeness (percent-
age of the ground truth model that is within a given distance
from the reconstruction) on four out of the six datasets. The
datasets consists of two objects (temple and dino), each of
which constitutes three datasets (sparse ring, ring, and full)
with different numbers of input images, ranging from 16 to
more than 300, and our method achieves the best accuracy
and completeness on all the dino datasets and the smallest
sparse ring temple. Note that the sparse ring temple and
dino datasets consisting of 16 views have been shown in
Fig. 7 and their quantitative comparison with the top per-
formers [4, 5, 7, 18, 21, 22, 23] are given in Fig. 8. 6 Fi-
nally, the bottom part of Fig. 8 compares our algorithm with
Hernández Esteban’s method [7], which is one of the best
multi-view stereo reconstruction algorithms today, for the
polynesian dataset, where a laser scanned model is used as
a ground truth. As shown by the close-ups in this figure,
our model is qualitatively better than the Herández’s model,
especially at sharp concave structures. This is also shown
quantitatively using the same accuracy and completeness
measures as before.

Reconstruction results for scene datasets are shown in
Fig. 9. Additional information (such as segmentation
masks, bounding boxes, or valid depth ranges) is not avail-
able in this case. The city-hall example is interesting be-
cause viewpoints change significantly across input cameras,
and part of the building is only visible in some of the frames.
Nonetheless, our algorithm has successfully reconstructed
the whole scene with fine structural details. The wall dataset
is challenging since a large portion of several of the input
pictures consists of running water, and the corresponding
image regions have successfully been detected as outliers,
while accurate surface details have been recovered for the
rigid wall structure. Finally, Fig. 10 illustrates our results
on crowded scene datasets. Our algorithm reconstructs the
background building from the brussels dataset, despite peo-
ple occluding various parts of the scene. The steps-2 dataset
is an artificially generated example, where we have manu-
ally painted a red cartoonish human in each image of steps
images. To further test the robustness of our algorithm
against outliers, the steps-3 dataset has been created from
steps-2 by copying its images but replacing the fifth one
with the third, without changing camera parameters. This
is a particularly challenging example, since the whole fifth
image must be detected as an outlier. We have successfully
reconstructed the details of both despite these outliers. Note

6Rendered views of the reconstructions and all the quantitative evalua-
tions can be found at http://vision.middlebury.edu/mview/.
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Figure 7. Sample results on object datasets: From left to right and top to bottom: temple, dino, skull, polynesian, face, face-2, and body datasets. In each
case, one of the input image is shown, along with two views of texture-mapped reconstructed patches and shaded polygonal surfaces.

that the convex hull of the reconstructed patches’ centers is
used for the surface initialization except for the city-hall and
brussels, for which the union of hemispheres is used.

The bottleneck of our multi-view stereo matching al-
gorithm is the patch expansion step, whose running time
varies from about 20 minutes, for small datasets such as
temple and dino, to up to a few hours for datasets con-
sisting of high-resolution images, such as polynesian and
city-hall. The running times of polygonal surface extrac-
tion also range from 30 minutes to a few hours depending
on the size of datasets. This is comparable to many varia-
tional methods [20], despite the fact that our algorithm does
not involve any large optimization problem. This is due
to several factors: First, unlike algorithms using voxels or
discretized depth labels, our method solves a fully contin-
uous optimization problem, thus does not suffer from dis-
cretization errors and can handle high-resolution input im-
ages directly, but trades speed for accuracy. Second, we use
a region-based photometric consistency measure, which is
much slower than a point-based measure, but takes into ac-
count surface orientation during optimization. In turn, this
allows our algorithm to handle gracefully outdoor images
with varying illumination. Again, accuracy and speed are
conflicting requirements. To conclude, let us note that our
future work will be aimed at adding a temporal component

to our reconstruction algorithm, with the aim of achieving
markerless face and body motion capture.
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