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Appendices of terrain book are important!



PC in text files

ASCII

PLY



PC in binary files: LAS

• LASer file format (LAS) 

• most widely used standard for the dissemination 

of point cloud data.  

• designed for datasets that originate from 

(airborne) lidar scanners.  

• classes are fixed (but space for user-defined 

ones):

Format 0

��� A Point cloud file formats

Table A.�: LAS Point Data Record Format �

Field Format Length (bits) Description

X int �� X coordinate
Y int �� Y coordinate
Z int �� Z coordinate
Intensity unsigned int �� The pulse return amplitude
Return number unsigned int � The total pulse return number for a given output

pulse
Number of returns unsigned int � Total number of returns for a given pulse
Scan Direction Flag boolean � Denotes the direction at which the scanner mirror

was travelling at the time of the output pulse. A bit
value of � is a positive scan direction, and a bit value
of � is a negative scan direction (where positive scan
direction is a scan moving from the left side of the
in-track direction to the right side and negative the
opposite).

Edge of Flight Line boolean � Has a value of � only when the point is at the end of
a scan. It is the last point on a given scan line before
it changes direction.

Classification unsigned int � Classification code
Scan Angle Rank int � The angle at which the laser pulse was output from

the scanner including the roll of the aircraft
User Data unsigned int � May be used at the user’s discretion
Point Source ID unsigned int � Indicates the file from which this point originated

Non-zero if this point was copied from another file

Table A.�: The first �� LAS classification
code numbers. More codes exist, but they
are not listed here.

Code Meaning

� never classified
� unclassified
� ground
� low vegetation
� medium vegetation
� high vegetation
� building
� low point (noise)
� reserved
� water

��–�� user-defined

A.� LAS format ���

LAS v�.�-R�� is the latest version

https://github.com/ASPRSorg/LAS

Unused fields take up storage

Scaling factors and offsets are stored in
the LAS header

A.� LAS format

The LASer file format (LAS) is the most widely used standard for the
dissemination of point cloud data. The LAS standard, currently at version
�.�, is maintained by the American Society for Photogrammetry and
Remote Sensing (ASPRS) and, as the name implies, was designed for
datasets that originate from (airborne) lidar scanners. However, in practice
it is also used for other types of point cloud, eg those derived from dense
image matching. LAS files are binary and unlike the PLY format the
fields are prescribed, ie the attributes for each point record are their types
(number of bits) cannot be modified. Table A.� shows the composition of
the simplest record type that is available for LAS files. In the specifications
this is referred to as the “Format �”, and other record types are possible
(Formats � to ��). Other record types can add for instance the RGB colour
information of the point, or the GPS time (the time a point was measured
by the scanner), but all records types include at least the fields shown in
Table A.�. While the LAS standard clearly specifies that all these fields
are required, some of the fields are very specific to lidar acquisition and
they are sometimes ignored in practice, eg if a point cloud originating
from dense matching is stored in the LAS format. It is important to notice
that unused fields will still take up storage space in each record (a default
value is then assigned, such as �.� for floats or � for integers).

CRS. The CRS of the point cloud can be stored in the header of a
LAS file, together with some other general information such as the total
number of points and the bounding box of the point cloud. The X, Y, and
Z fields are stored as ��-bit integers. To convert these values to the actual
coordinates on the ground, they need to be multiplied by a scaling factor
and added to an offset value, ie:

-2>>A38=0C4 = (-A42>A3 ⇤ -B20;4) + -> 5 5 B4C

.2>>A38=0C4 = (.A42>A3 ⇤ .B20;4) + .> 5 5 B4C

/2>>A38=0C4 = (/A42>A3 ⇤ /B20;4) + /> 5 5 B4C

The scaling factors -B20;4 , .B20;4 , /B20;4 and the offsets -> 5 5 B4C , .> 5 5 B4C ,
/> 5 5 B4C are also listed in the header. Notice that the scaling factor deter-
mines the number of decimals that can be stored, eg the factors 0.1, 0.01,
and 0.001 would give us 1, 2, and 3 decimals respectively.

Classification. The LAS standard defines several classification codes,
as listed in Table A.�. These codes are to be used as values for the
classification field of a point record, and are intended to indicate the type
of object a point belongs to. Which classes are used strongly depends
on the dataset at hand. The codes 0 and 1 may appear ambiguous, but
there is a clear distinction. To be exact, the code 0 is used for points that
were never subjected to a classification algorithm, whereas the code 1 is
used for points that have been processed by a classification algorithm,
but could not be assigned to a specific class. It is possible to define your
own classes using code ranges that are reserved for that purpose.

��� A Point cloud file formats

Table A.�: LAS Point Data Record Format �

Field Format Length (bits) Description

X int �� X coordinate
Y int �� Y coordinate
Z int �� Z coordinate
Intensity unsigned int �� The pulse return amplitude
Return number unsigned int � The total pulse return number for a given output

pulse
Number of returns unsigned int � Total number of returns for a given pulse
Scan Direction Flag boolean � Denotes the direction at which the scanner mirror

was travelling at the time of the output pulse. A bit
value of � is a positive scan direction, and a bit value
of � is a negative scan direction (where positive scan
direction is a scan moving from the left side of the
in-track direction to the right side and negative the
opposite).

Edge of Flight Line boolean � Has a value of � only when the point is at the end of
a scan. It is the last point on a given scan line before
it changes direction.

Classification unsigned int � Classification code
Scan Angle Rank int � The angle at which the laser pulse was output from

the scanner including the roll of the aircraft
User Data unsigned int � May be used at the user’s discretion
Point Source ID unsigned int � Indicates the file from which this point originated

Non-zero if this point was copied from another file

Table A.�: The first �� LAS classification
code numbers. More codes exist, but they
are not listed here.

Code Meaning

� never classified
� unclassified
� ground
� low vegetation
� medium vegetation
� high vegetation
� building
� low point (noise)
� reserved
� water

��–�� user-defined

https://en.wikipedia.org/wiki/Quantization_(signal_processing)


Compressed LAS == LAZ

• Compression == 10X I’d say: try with AHN4! 

• point records are grouped in blocks of 50,000 records  

• Each block is individually compressed, which makes it possible 

to partially decompress only the needed blocks from a file 

(instead of always needing to decompress the whole file). 

• a greater compression factor can often be achieved after 

spatially sorting the points. 

• Read/write is slower…

Not an official standard!

!= zLAS



AHN4+5 classification

Class 14  

=  

High-volatage  

pylons+cables

Class 1 

 =  

unclassified 

(includes many things!)

Class 26  

=  

bridges, statues, and 

viaducts



You want to download AHN?



Thinning

Processing point clouds ��
��.� Thinning . . . . . . . . . . ���
��.� Outlier detection . . . . . ���
��.� Ground filtering . . . . . ���
��.� Shape detection . . . . . ���
��.� Notes and comments . . ���
��.� Exercises . . . . . . . . . . ���

Point clouds are irregularly spaced sample points (to which attributes
are attached, see Appendix A), that are most often acquired from lidar or
obtained from the dense matching of images. While they are often con-
sidered as a suitable terrain representation, as explained in Section �.�.�,
it should be stressed that they are not since they are �D (eg samples can
represent vertical walls) and they are not continuous surfaces.

This chapter describes algorithms and techniques to process a point cloud
such as it can be used to construct a (�.�D) terrain, or to extract objects
that can be used in applications related to the built environment.

��.� Thinning

A point cloud with fewer points is easier to manage and quicker to
visualise and process. Therefore a point cloud is sometimes thinned,
which simply means that a portion of the points is discarded and not used
for processing. Commonly encountered thinning methods in practice
are:

I random: randomly keep a given percentage of the points, eg ��%.
I nth-point: keep only the =th point in the dataset. For instance, if

= = 100, we would keep the �st, the ���th, the ���th, etc; a dataset
with 100 000 points is reduced to 1000 points. This is the quickest
thinning method.

I nth-point random: if there is some structure in the input points
(eg if generated from a gridded terrain) then nth-point could
create datasets with artefacts. The randomised variation chooses
randomly in the = points one point.

I grid: overlay a �D or �D regular grid over the points and keep
< points per grid cell. That can be one of the original points, an
average of those, or the exact centre of the cell. The thinning factor
depends on the chosen cell-size. Notice that the result is often a
point cloud with a homogeneous point density on all surfaces (only
on the horizontal surfaces if a �D grid is used).

See Figure ��.� for a comparison between random thinning and grid
thinning.

From Section �.� you undoubtedly remember that TIN simplification
has a somewhat similar objective: data reduction. However, for a given
number of resulting points, TIN simplification yields a higher quality
end result because it only removes points that are deemed unimportant.
Thinning methods on the other hand do not consider the ‘importance’ of a
point in any way, and might discard a lot of potentially meaningful details.
So why bother with thinning? The answer is that thinning methods are
a lot faster since they do not require something like a computationally
expensive triangulation. Especially in scenarios where the point density
is very high and the available time is limited, thinning can be useful.



Ground filtering This does not use the 

classification, only 

geometry!



Method #1: Ground filtering with TIN (GFTIN)

��� �� Processing point clouds

Figure ��.�: Profile of the point cloud of
an area.

(a) Original point cloud

(b) After ground filtering

(a)

(b) example ground
point

(c) example non-ground
point

Figure ��.�: Geometric properties for a
point ? in the method for ground filtering
based on TIN refinement.

�. for a given �D neighbourhood, the ground points are the ones with
the lowest elevation.

Notice that outliers (especially those under the ground surface) may
break these assumptions and in some cases it may be necessary to first
run an outlier removal algorithm such as one from Section ��.�.

Notice that the resulting bare-earth model may thus have holes where
these non-ground objects used to be. If needed, these holes can be filled
in a subsequent processing step with for example spatial interpolation.

��.�.� Ground filtering with TIN refinement

We will now discuss an effective ground filtering method that is based
on the greedy insertion of ground points into a TIN. Indeed, the same
algorithmic paradigm of iterative TIN refinement from Section �.� is
used. The algorithm consists of three main steps:

�. construction of a rudimentary initial TIN (usually a Delaunay TIN);
�. computation of two geometric properties for each point that is not

already labelled as ground;
�. incremental insertion of points that pass a simple and local ‘ground

test’ based on the computed geometric properties.

The latter two steps are repeated until all remaining points fail the ground
test.

In the first step a rudimentary initial TIN is constructed from a number
of points that have locally the lowest elevation and are spread somewhat
evenly over the data extent. These points are found by superimposing a
�D grid over the data extent and by selecting the lowest point for each
grid cell (similar to grid thinning). The cell-size of the grid should be
chosen such that it is larger than the largest non-ground object (usually a
building). Thus, if the largest building has a footprint of ���mX���m, the
cellsize should be a bit larger, eg 110 m, so that it is guaranteed that each
grid-cell has at least a few ground points. Each point that is inserted into
the TIN is considered to be a ground point.

In the second step, two geometric properties are computed for each point
that is not in the TIN. These properties are based on the relation between
the point ? and the triangle in the current TIN that intersects its vertical
projection. The two properties are illustrated in Figure ��.�a.

The first property, denoted 3, is the perpendicular distance between the
? and the plane spanned by the triangle. The second property, denoted



Method #2: Cloth simulation filter (CSF) 



Method #2: Cloth simulation filter (CSF) ��� �� Processing point clouds

Figure ��.�

Two factors influence the I-value of a particle during the cloth falling
process:

�. external forces: in this case this is the gravity pulling down a
particle;

�. internal forces: the tension in the cloth, which is modelled by the
interactions between a particle and its neighbours.

As particles fall down, some will reach the ground and become unmovable.
These will potentially be neighbours to movable ones, whose elevation
will be controlled by how we define the rigidity of the cloth.

As shown in Figure ��.�, the process is iterative. We first define a cloth
formed of particles, and then for each iteration we calculate the next
I-value of each particle based on the vector of displacement from the
external and internal forces at the previous step. If a particle is movable
(ie it has not reached the ground yet), then the gravity force is applied (a
vector pointing downwards; its magnitude will depend on the momentum
of the particle) and afterwards the internal forces are applied. Notice that
in Figure ��.�, the particle in red at C3 was moved downwards because of
the gravity, but its internal forces are a vector pointing upwards since its
� neighbours (it would be � for a �D case) have higher I-values.

The algorithm is detailed in Algorithm �.

Algorithm �: CSF algorithm
� Input: A set ( of sample points from a point cloud; resolution A of

the cloth grid; tolerance &I<0G to stop the iterations; tolerance
&6A>D=3 to classify points in (

Output: The points in ( are classified as ground/non-ground
� invert (
� initialise the cloth ⇠ at an elevation I0 higher than the highest

elevation
� for all ? 2 ⇠ do
� ?I<8= = lowest possible elevation based on (

� ?I?A4E = I0 + 38B?;024<4=C

� ?I2DA = I0

� while �I > &I<0G do
/* external forces */

� for all ? 2 ⇠ do
�� if ? is movable then
�� tmp = ?I2DA

�� ?I2DA = (?I2DA � ?I?A4E) + ?I2DA

�� ?I?A4E = C<?

/* internal forces, process once each pair 4 of
adjacent particles */

�� for all 4 2 ⇠ do
�� ?0 = 4BC0AC

�� ?1 = 44=3

�� update ?0I2DA and ?1I2DA if they are movable
/* calculate the max �I */

�� for all ? 2 ⇠ do
�� if (?I2DA � ?I?A4E) > �I then
�� �I = (?I2DA � ?I?A4E)

��� �� Processing point clouds

t0

t1

t2
t3

Figure ��.�

Two factors influence the I-value of a particle during the cloth falling
process:

�. external forces: in this case this is the gravity pulling down a
particle;

�. internal forces: the tension in the cloth, which is modelled by the
interactions between a particle and its neighbours.

As particles fall down, some will reach the ground and become unmovable.
These will potentially be neighbours to movable ones, whose elevation
will be controlled by how we define the rigidity of the cloth.

As shown in Figure ��.�, the process is iterative. We first define a cloth
formed of particles, and then for each iteration we calculate the next
I-value of each particle based on the vector of displacement from the
external and internal forces at the previous step. If a particle is movable
(ie it has not reached the ground yet), then the gravity force is applied (a
vector pointing downwards; its magnitude will depend on the momentum
of the particle) and afterwards the internal forces are applied. Notice that
in Figure ��.�, the particle in red at C3 was moved downwards because of
the gravity, but its internal forces are a vector pointing upwards since its
� neighbours (it would be � for a �D case) have higher I-values.

The algorithm is detailed in Algorithm �.

Algorithm �: CSF algorithm
� Input: A set ( of sample points from a point cloud; resolution A of

the cloth grid; tolerance &I<0G to stop the iterations; tolerance
&6A>D=3 to classify points in (

Output: The points in ( are classified as ground/non-ground
� invert (
� initialise the cloth ⇠ at an elevation I0 higher than the highest

elevation
� for all ? 2 ⇠ do
� ?I<8= = lowest possible elevation based on (

� ?I?A4E = I0 + 38B?;024<4=C

� ?I2DA = I0

� while �I > &I<0G do
/* external forces */

� for all ? 2 ⇠ do
�� if ? is movable then
�� tmp = ?I2DA

�� ?I2DA = (?I2DA � ?I?A4E) + ?I2DA

�� ?I?A4E = C<?

/* internal forces, process once each pair 4 of
adjacent particles */

�� for all 4 2 ⇠ do
�� ?0 = 4BC0AC

�� ?1 = 44=3

�� update ?0I2DA and ?1I2DA if they are movable
/* calculate the max �I */

�� for all ? 2 ⇠ do
�� if (?I2DA � ?I?A4E) > �I then
�� �I = (?I2DA � ?I?A4E)



CSF: 2 outputs



https://3d.bk.tudelft.nl/courses/geo1015/


