Name: \qquad

Student ID: \qquad

This mid-term quiz is worth 5% of the final mark for the course.
All questions have equal weight: 1 point.
Answer directly on these pages.
There is only one good answer for multiple choice questions.
This is an open-book exam, only paper is allowed. No computer/phone/etc, a calculator is fine.

The total number of questions is 10 .
You have 30min to do this quiz.

1. (1 point) If a TIN is used to represent a terrain, it is often a Delaunay triangulation. Why is this?
\bigcirc triangles are as topological as possible, good for interpolation
\bigcirc the Delaunay property ensures that features on the terrain (a summit) are preserved
\bigcirc triangles are as equilateral as possible, good for interpolation
\bigcirc the Delaunay property ensures that 3D vertical surfaces are possible, other triangulations cannot handle such cases.
2. (1 point) Given a Delaunay edge ϵ, its dual is:
\bigcirc a Voronoi edge, located parallel to ϵ
O a Voronoi polygon formed of all the dual of the vertices of ϵ
\bigcirc a Voronoi edge perpendicular to ϵ
\bigcirc none of these
3. (1 point) For a given set of elevation points, which one will yield, in most cases, a smoother surfaces (less 'bumpy'):IDW; power=2; search ellipse with radius $1=10 \mathrm{~m}$ and radius $2=5 \mathrm{~m}$IDW; power=2; search circle with radius=10m
4. (1 point) [What is the missing word?] A \qquad tessellation reduces the number of grid cells in a DTM by merging neighbouring grid cells having the same elevation.
5. (1 point) Given a raster of elevation like the one below (left), which one of the following parameters is not necessary to calculate the hillshade (right).the aspect of each cellthe roughness of each cellthe elevation of the sun with respect to each cellthe azimuth of the sun with respect to each cell

6. (1 point) You have access to a Python function to perform the line-of-sight between 2 cells in a gridded DSM: can you also perform a viewshed?yesno
7. (1 point) Is the triangulation on the right a valid constrained Delaunay triangulation of the input on the left?

8. (1 point) Draw the Voronoi diagram for those 10 points:

9. (1 point) How many points from the 10 points above will have a Voronoi cell with an infinite area?
10. (1 point) We know the slope for a given location (x, y) : its gradient (α) is 15° and its aspect (θ) is 80°. Draw 3 (hypothetical) isolines for the area surrounding this location, and identify clearly the elevations for those lines. An estimation and guessing of the surrounding is fine.
