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Spatial interpolation (2/2): kriging



What is kriging?



What is kriging?
In short

• Weighted average interpolation method… 

• where the weights are based on the spatial correlation between the points… 

• which is given by a custom geostatistical model for each dataset… 

• which can be created using a variogram.
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�.� Covariance, dissimilarity and the semivariogram ��

(a) dataset (b) variogram cloud

Figure �.�: Starting from (a) a sample dataset, (b) the variogram cloud can be computed. In this case, only �% randomly selected point
pairs were used.
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✏(⌘) = 1
2
(/(G + ⌘) � /(G))2 , (�.��)

where G is a sample point, ⌘ is a vector from G to another sample point
and /(G) is the value of a random variable at G (eg its elevation). Note
that the ‘semi’ in semivariogram comes from the 1/2 in Equation �.��.

When this is done with every possible pair of sample points in a dataset,
or with a representative subset in order to speed up the process as it is
usually done in practice, |⌘ | (ie the magnitude of the vector ⌘) and ✏(⌘)
can be put into a scatter plot to show how the average dissimilarity of a
value changes with the distance between the sample points. The result of
such a plot is what is known as a variogram cloud (Figure �.�).

In this figure, it is possible to see some typical characteristics of a
variogram cloud. Since nearby sample points tend to have similar values,
the dissimilarity tends to increase as the distance between sample points
increases. However, it is worth noting that since the farthest away pairs of
sample points have similar values in this specific dataset, the dissimilarity
also decreases at the highest distances.

Since most of the time there is a wide variation between the dissimilarities
shown at all distances in a variogram cloud, the next step is to average
the dissimilarity of the pairs of sample points based on distance intervals.
Mathematically, a series of averages of dissimilarities ✏8(⌘) can be created
by computing the average dissimilarities for all vectors whose lengths
are within a series of specified intervals (generally known as bins or lags).
Given a set h containing the vectors for a length interval, the average for
its dissimilarity class is computed as:

✏8(h) = 1
2=

X
(I (G + ⌘) � I (G))2 for all ⌘ 2 h (�.��)

where = is the number of sample point pairs in h.

This computation results in much smoother values for the dissimilarity,
and when the results of |⌘ | and ✏8(⌘) are put into a scatter plot (Figure �.�),
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Figure �.�: (a) The experimental variogram is usually described in terms of (b) its parameters.
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the result is what is known as an experimental or empirical variogram.
Experimental variograms are based on a few parameters (Figure �.�b
illustrates these):

I the sill, which is the upper bound of ✏8(⌘);
I the range, which is the value of |⌘ | when it converges;
I the nugget, which is the value of ✏8(⌘) when |⌘ | approaches �.

Note that in order to avoid the unreliable dissimilarities that are common
at large distances between sample points, it is usual practice to only
compute the experimental variogram for distances up to about half of
the size of the region covered by the dataset.

Finally, the last step is to replace the experimental variogram with a
theoretical variogram function that approximates it and which can be more
easily evaluated for further calculations. Depending on the shape of the
variogram, there are various functions that can be used. Some examples
are:

✏exponential(⌘) = B

⇣
1 � 4

�3|⌘ |
A

⌘
+ = (�.��)

✏gaussian(⌘) = B
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✏spherical(⌘) =
(
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⇣
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2A � |⌘ |3
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⌘
+ = if |⌘ |  A

B + = if |⌘ | > A

(�.��)

where B is the sill, set to roughly the value of ✏8(⌘) when ✏8(⌘) is flat; A
is the range, roughly the minimum value of |⌘ | where ✏8(⌘) is flat, and
= is the nugget, which is the starting value of ✏8(⌘). Figure �.� shows
the result of fitting the three example theoretical variogram functions,
exponential, Gaussian and spherical. Note how the Gaussian function
appears to be a better fit in this case.

Many other theoretical variogram functions are possible, eg circular, cubic,
linear, etc. However, the three described above are the most common
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!" ! Spatial interpolation# kriging

(a) Circular (b) Cubic (c) Exponential

(d) Gaussian (e) Linear (bounded) (f) Power (bounded)

(g) Spherical

Figure !.": Some possible theoretical variogram functions

points. First, note that these theoretical functions are often only applied
when |𝐿| > 0, since setting 𝜑(0) = 0 helps to ensure that kriging passes
exactly through the sample points (the exact property as explained in
Section !."). Second, all of the semivariogram-related functions seen in
this section can be converted to covariance functions as well, taking into
account that 𝜑(𝐿) = sill → 𝑀(𝐿). Note that this means that the covariance
is high when |𝐿| is small and it decreases as |𝐿| increases.

!." Simple kriging

Simple kriging is similar to other spatial interpolation methods that
use a weighted average. It starts from the assumption of second-order
stationarity. Moreover, the expectation is also known, and so the general
procedure to perform it is to: (i) subtract it from the sample points to
obtain residuals, (ii) use the residuals to define a function that estimates
the value of the residual term at any location, and (iii) interpolate at the
desired locations using the function added to the expectation.
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Figure �.�: A few of the interpolation methods shown for a �D dataset. (a) Input sample points. (b) Polynomial fitting, and the Runge’s
effect shown. (c) Natural neighbour. (d) Linear interpolation in TIN.

weight == importance

�.�.� Splines: piecewise polynomials

Splines are piecewise polynomials, each piece is connected to its neigh-
bouring piece in a smooth manner: along the edges and at the data points
the function is usually still ⇠1 or ⇠2 (in other words, where � or more
polynomials connect, they have the same values for their tangents).

In practice, for terrain modelling, splines are preferred over one polyno-
mial function because of the reasons mentioned above (mostly Runge’s
effect) and because computing the polynomial for large datasets is very
inefficient. The polynomials used in each piece of the subdivision is
usually of low degree ( 5)

There are several types of splines (and variation of them, such as Bézier),
and most of them are not suited for terrains. The most used spline in
practice seems to be the regularised spline with tension (RST), where the
dataset is decomposed into square pieces of a certain size. The Runge’s
effect (also called overshoots) are eliminated (since the degree is low),
and the tension parameter can be tuned to obtain an interpolant that is
smooth.

�.� Weighted-average methods

The five interpolation methods discussed in this section are weighted-
average methods. These are methods that use a subset of the sample points,
to which a weight (importance) are assigned, to estimate the value of the
dependent variable. The interpolation function 5 of such methods, with
which we obtain an estimation 0̂ of the dependent variable 0, have the
following form:

5 (G) = 0̂ =
P

=

8=1 F8(G) 08P
=

8=1 F8(G)
(�.�)

where 08 is the attributes of each data point ?8 (with respect to the
interpolation location G), and F8(G) is the weight of each ?8 .

A neighbour ?8 here is a sample point that is used to estimate the value
of location G. In the context of terrain modelling, the attribute 0 is the
elevation above/under a given vertical datum.
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Figure �.�: (a) Nearest neighbour: the
estimated value at G is that of the closest
data point. (b) the Voronoi diagram can
be used. (c) Ambiguity because ?1, ?2,
and ?3 are equidistant from G; this causes
discontinuities in the resulting surface.

�.�.� Nearest neighbour interpolation (nn)

Nearest neighbour, or closest neighbour, is a simple interpolation method:
the value of an attribute at location G is simply assumed to be equal to
the attribute of the nearest data point. This data point gets a weight of
exactly �.�.

Given a set ( of data points, if interpolation is performed with this
method at many locations close to each other, the result is the Voronoi
diagram (VD) of ( (see Section �.�), where all the points inside a Voronoi
cell have the same value.

Although the method possesses many of the desirable properties (it is
exact, local and can handle anisotropic data distributions), the recon-
struction of continuous fields can not realistically be done using it since it
fails lamentably properties � and �. The interpolation function is indeed
discontinuous at the border of cells; if the location G is directly on an
edge or vertex of the VD((), then which value should be returned?

The implementation of the method sounds easy: simply find the closest
data point and assign its value to the interpolation location. The difficulty
lies in finding an efficient way to get the closest data point. The simplest
way consists of measuring the distance for each of the = points in the
dataset, but this yields a O(=) behaviour for each interpolation, which
is too slow for large datasets. To speed up this brute-force algorithm,
auxiliary data structures that will spatially index the points must be used,
see for instance the :d-tree in Section ��.�. This would speed up each
query to O(log =).

�.�.� Inverse distance weighting (IDW)

Inverse distance weighting (IDW)—also called inverse distance to a power,
or distance-based methods—is a family of interpolation methods using
distance(s) to identify the neighbours used, and to assign them weights.
IDW is probably the most known interpolation method and it is widely
used in many disciplines. As shown in Figure �.�a, in two dimensions
it often uses a ‘searching circle’, whose radius is user-defined, to select
the data points ?8 involved in the interpolation at location G. It is also
possible to select for instance the �� or �� closest data points, or do that
according to certain directions (ie you can select for example � data points
in each quadrant; Figure �.�b shows the case where the closest in each
quadrant is used).

The weight F8(G) assigned to each ?8 for a location G is:

F8(G) = |G?8 |�⌘ (�.�)

Figure �.�: (a) IDW interpolation with a
searching circle, and the weight assigned
to each neighbour used in the estimation.
(b) IDW by choosing the closest neigh-
bour in each quadrant. (c) It has (serious)
problems with datasets whose distribu-
tion of samples is anisotropic.
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where 08 is the attributes of each data point ?8 (with respect to the
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A neighbour ?8 here is a sample point that is used to estimate the value
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What is kriging?
Differences with other methods

• Model correlation based on specific characteristics of each dataset 

• Mathematically minimises interpolation error 

• Handles complex data with noise, irregular point spacing or regular patterns
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�.� Geostatistics and the standard geostatistical model ��

stationarity of the mean

⌧8 9 =
cov(/8 , /9)p

var(/8)var(/9)
.

Note that this is essentially just a normalised form of the covariance.

�.� Geostatistics and the standard geostatistical
model

In geostatistics, we apply the concepts covered in the previous section
on general-purpose statistics to consider how they work with spatial
phenomena, where values have a location and are often spatially correlated
(not just correlated).

The model most commonly applied in geostatistics considers that a
random variable /, which represents a spatially correlated property at
a given location, can be decomposed into two related variables: (i) a
non-random spatial trend that can be modelled by the expectation ⇢[/]
(eg using a constant, a polynomial, a spline, etc.); and (ii) a random but
spatially correlated deviation from this trend that is considered as a sort
of adjustment, error or residual term and is here denoted as '. In the
case of elevation, the former would represent the general shape of the
terrain, whereas the latter would represent local differences from it. We
therefore have:

/ = ⇢ [/] + '. (�.�)

The different types of kriging from this chapter model the trend in a
different way but treat the residual term in a similar way. These are:

I simple kriging, where the trend is a known constant that we specify
in the model; and

I ordinary kriging, where the trend is a local mean that we calculate
in the interpolation process.

These will be described in detail later in the chapter. However, in order
to understand how these work and when they can be applied, it is
important to cover some common properties of the two terms of the
standard geostatistical model.

Regarding the expectation/trend, simple kriging relies on the assumption
that the expectation ⇢(/) is the same everywhere, which is known as the
stationarity of the mean. In the case of a terrain, that could mean that a
terrain is uneven with significant peaks and valleys, but that there is not
a general trend across it (eg a clear slope with higher elevations on one
side and lower elevations on the opposite side). Mathematically, we can
express that as:

⇢ [/(G + ⌘)] = ⇢ [/(G)] , (�.�)

residual 

(deviation from trend) 

expectation 

(trend)
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kriging in practice 

(pyinterpolate)



What is pyinterpolate?

• Python library for geostatistics 

• IDW, simple kriging and ordinary kriging among others 

• Various operations on variograms



pyinterpolate.readthedocs.io
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