

Lesson 02 DT + VD

GE01015.2023

Hugo Ledoux

VD is also in 3D and nD (topic of GE01004)

Definition

The Voronoi cell of a point $p \in S$, defined \mathcal{V}_p , is the set of points $x \in \mathbb{R}^2$ that are closer to p than to any other point in S; that is:

$$\mathcal{V}_p = \{x \in \mathbb{R}^2 \mid ||x - p|| \le ||x - q||, \forall q \in S\}.$$

(b)

One warning: be sure you understand the Big Triangle or Infinity

What if we had lines/polygons? (And not just points)

3 buildings

DT of the vertices of the buildings

Constrained DT

Conforming DT

Constrained DT

Related problem: triangulation of a polygon

If convex it's easy: Fan-shaped triangulation

whole convex hull is triangulated

Related problem: triangulation of a polygon

https://3d.bk.tudelft.nl/courses/geo1015/