10.

11.

12.

Setup Clion and create a new project in the same way you do in PyCharm.

[OPTIONAL] In the New Project window, select C++17 or C++20 as the language standard to
be able to take advantage of the newer and more-user friendly features of the language.
Once the project has been launched, click on the drop-down menu with the word “Debug”
in the top taskbar and select Edit CMake Profiles...

On the settings menu that appears in a new window, click on the plus button in the Profiles
section (Fig. 4.1). The Release profile should be added to the project automatically (Fig.
4.2). Once done, click on the blue OK button on the bottom left corner of the window. A
highlighted folder named “cmake-build-release” should be visible in the project overview
(Fig. 4.3).

Click on the three-dot button in the vertical sidebar on the left side of the screen and select
Vcpkg (Fig. 5.1).

On the menu that appears at the bottom of the screen (Fig. 5.1), click on the plus button,
select the “Add vcpkg integration to existing CMake profiles” in case it is not already
enabled, and make sure that both Debug and Release profile have been selected (Fig. 5.2).
Once done, click on the blue OK button on the bottom left corner of the window.

Once the spawned processes have finished (i.e., when the blue progress bar on the bottom
right of the screen disappears), you should see a “Clone and bootstrap successful
message” on the bottom left side of the screen, next to the vcpkg icon, and the icon next to
the name of your vcpkg installation will have turned from gray to orange (Fig. 7.1).

Click on the name of your vcpkg installation and search for “cgal” on the search bar that
appears to its right. Select the package name and click on ”Install” (Fig. 8.1). Make sure that
the triplet option has been set to “Let vcpkg decide”.

[WARNING] This process will take some time. Make sure that you have a stable internet
connection throughout and that your PC does not go to sleep or turn off.

Once the spawned processes have finished (i.e., when the blue progress bar on the bottom
right of the screen disappears), you should see an “Install successful. Installed packages:
CGAL” on the bottom left side of the screen, next to the vcpkg, along with a prompt to add
CGAL to CMakelLists.txt, which you can think of as a configuration or manifest file for your
project. For instance, this is which version of C++ you’re using and which are your library
dependencies.

[WARNING] Do not use the prompt!

Once CGAL has been installed, the menu you used to install it should mention which triplet
is present in your system, along with the library version (Fig. 10.1).

Select Edit CMake Profiles... (Step 3), and *for each* profile, click on the Cache variables
drop-down menu and replace CVPKG_TARGET_TRIPLET with the triplet from Step 10 (Fig.
11.1). Once done, click on the blue OK button on the bottom left corner of the window.
Open CMakelists.txt and append the following commands to the file:

find_package(CGAL CONFIG REQUIRED)
target_link_libraries(<project_name> PRIVATE CGAL::CGAL)

13.

14.

where <project_name> is the name of your project as you defined it and appears next to the
profiles drop-down menu, the project overview, as well as the second line of CMakeLists.txt
(Fig 12.1).

Once done, press the circled button on the top right of Fig. 12.1 to reload your CMake
changes. You can also do this be pressing Ctrl+Shift+O. The project should now rebuild for
both profiles. The release build should compile without errors, whereas in the debug build,
CGAL will complain about potential performance issues. This is expected behavior (Fig.
13.1a-b).

[NOTE] You may get a CMake warning about an unused, manually specified variable. This is
fine to ignore (Fig. 13.1b).

Copy and paste this example into main.cpp and make sure it compiles and runs in both
release and debug.

Settings

Appearance & Behavior
Keymap
Editor

Plugins

Version Control

v Build, Execution, Deployment

Toolchains

CMake

Compilation Database
Meson

Custom Build Targets
Makefile

Build Tools

Debugger

Python Debugger
Python Interpreter
Deployment

Console

Coverage

Devicetree

Docker

Dynamic Analysis Tools
Embedded Development

Required Plugins

Fig. 4.2

Build, Execution, Deployment » CMake &

Reload CMake project on editing CMakelLists.txt or other CMake configuration files

Profiles

Profile is a named set of build options. For example, create separate profiles for Debug and Release builds and

switch between them when needed.

Debug

Release

¥ Enable profile

Name: Release
Build type: Release
Toolchain: Use default

Generator: Use default

CMake options:

> Cache variables

Build directory:

Build options:

Environment:

Cancel

U untitleds ~ Ve

Project main.cpp
[untitled5 C:AUsers\Dimit\CLionProjectsiuntitieds
cmake-build-debug
cmake-build-rele
CMakeLists.txt
n.cpp
I External Libraries

=® Seratches and Consoles

) untitled5 ~ Version control

Project main.cpp
2 untitiedS

cmake-build-debug

cmake-build-release

2\ CMakelists.txt

n.cpp
b Extemal Libraries

=® Seratches and C

Vepkg Packages Console: vepka

&) Add Vcpkg Repository

Name: vepkg (1)
URL: https://github.com/microsoft/vcpkg
Directory: C:\Users\Dimit\.vcpkg-clion\vcpkg (1)

~ & Add vcpkg integration to existing CMake profiles
v Debug

v Release

Fig. 5.2

U untitleds ~ Ve

Project main.cpp
2 untitiedS
cmake-build-debug
cmake-build-reles
CMakeLists.txt
n.cpp
I External Libraries

=® Seratches and Consoles

Vepky Packages Gonsole: vepka (1)

S vepka (1)

) untitled5 ~ Version control

Project main.cpp
2 untitiedS

cmake-build-debug

cmake-build-release

2\ CMakelists.txt

n.cpp
b Extemal Libraries

=® Seratches and C

Vepkg ~ Packages Gonsole: vepka (1)

+ o8 8

1§ Q cgal

Name
Installed | Classic Mode

All
© vepka (1) Classic al J Let vepkg decide

The Computational Geometry Algorithms Library (CGAL) is a C++ library that aims to provide easy access to efficient and reliable algorithms in

computational geometry.

Load dependencies.

U untitledS ~

e-build-debu

Settings

Build, Execution, Deployment » CMake &

Appearance & Behavior . - . X L
Reload CMake project on editing CMakelLists.txt or other CMake configuration files
Keymap
Ll Profiles
Plugins
Profile is a named set of build options. For example, create separate profiles for Debug and Release builds and

Version Control switch between them when needed.

v Build, Execution, Deployment
+

Toolchains
CMake Debug

¥ Enable profile

Rel Name: Debug
Compilation Database SRS

Meson Build type: Debug

S S VERERE Toolchain: Use default

Makefile
Build Tools Generator: Use default

Debugger CMake options:

Python Debugger systems\vcpkg.cmake -DVCPKG_TARGET_TRIPLET:STRING=x64-mingw-dynamic

Python Interpreter

Deployment ~ Cache variables

Console Show adva
Coverage iName Value v

Devicetree VCPKG_TARGET_TRIPLET

Beela=T CMAKE_BUILD_TYPE Debug

CMAKE_COLOR_DIAGNOSTICS v ON

CMAKE_GNUtoMS OFF

CMAKE_INSTALL_PREFIX C:/Program Files (x86)/untitled5

Required Plugins CMAKE_MAKE_PROGRAM C:/Users/Dimit/AppData/Local/JetBrains/T

Dynamic Analysis Tools

Embedded Development

OK Cancel

Fig11.1

U untitieds

main

CMake A Debug Release

= T S IR I = = .

Found MPFR: C:/Users/Dimit/.vepkg-clion/vcpkg/installed/x6 ug/lib/libmpfr.dll.a

Found Boost: C:/Users/Dimit/.vcpkg-clion/vcpkg/installed/x64-mingw-dynamic/include (found suitable version "1.84.0",
Boost include dirs: C:/Users/Dimit/.vcpkg-clion/vepkg/installed/xé64-mingw-dynamic/include

Boost libraries:

Performing Test CMAKE_HAVE_LIBC_PTHREAD

Performing Test CMAKE_HAVE_LIBC_PTHREAD - Success

Found Threads: TRUE

Using gcc version 4 or later. Adding -frounding-math

Call Stack (most recent call first):
C:/Users/Dimit/.vcpkg-clion/vepkg/installed/xé4-mingw-dynamic/share/cgal/CGAL_enable_end_of_configuration_hook.cmake:
CMakeLists.txt:DEFERRED

Configuring done (2.2s)
Generating done (0.0s)

Build files have been written to: C:/Users/Dimit/CLionProjects/untitled5/cmake-build-debug

[Finished]

Fig 13.1a

main

CMake Debug & Release

Users\Dimit\AppData\lLocal\JetBrains\Toolbox\apps\CLion\ch-0\233.14015.92\bin\cmake\win\xé64\bin\cmake.exe -[
Visual Leak Detector (VLD) is not found.

Using header-only CBAL

Targeting Ninja

Using C:/Users/Dimit/AppData/Local/JetBrains/Toolbox/apps/CLion/ch-8/233.14015.92/bin/mingw/bin/g++.exe co
Found GMP: C:/Users/Dimit/.vcpkg-clion/vcpkg/installed/xé4-mingw-dynamic/1ib/1ibgmp.dill.a

Found MPFR: C:/Users/Dimit/.vcpkg-clion/vcpkg/installed/xé4-mingw-dynamic/1lib/1libmpfr.dll.a

Found Boost: C:/Users/Dimit/.vcpkg-clion/vcpkg/installed/xé4-mingw-dynamic/include (found suitable version
Boost include dirs: C:/Users/Dimit/.vcpkg-clion/vcpkg/installed/xé64-mingw-dynamic/include

Boost libraries:

Performing Test CMAKE_HAVE_LIBC_PTHREAD

Performing Test CMAKE_HAVE_LIBC_PTHREAD - Success

Found Threads: TRUE

Using gcc version 4 or later. Adding -frounding-math

Configuring done (1.4s)

Generating done (0.03)

-- Build files have been written to: C:/Users/Dimit/CLionProjects/untitled5/cmake-build-release

[Finished]

Fig 13.1b

