
1. Setup Clion and create a new project in the same way you do in PyCharm. 
2. [OPTIONAL] In the New Project window, select C++17 or C++20 as the language standard to 

be able to take advantage of the newer and more-user friendly features of the language. 
3. Once the project has been launched, click on the drop-down menu with the word “Debug” 

in the top taskbar and select Edit CMake Profiles… 
4. On the settings menu that appears in a new window, click on the plus button in the Profiles 

section (Fig. 4.1). The Release profile should be added to the project automatically (Fig. 
4.2). Once done, click on the blue OK button on the bottom left corner of the window. A 
highlighted folder named “cmake-build-release” should be visible in the project overview 
(Fig. 4.3). 

5. Click on the three-dot button in the vertical sidebar on the left side of the screen and select 
Vcpkg (Fig. 5.1). 

6. On the menu that appears at the bottom of the screen (Fig. 5.1), click on the plus button, 
select the “Add vcpkg integration to existing CMake profiles” in case it is not already 
enabled, and make sure that both Debug and Release profile have been selected (Fig. 5.2). 
Once done, click on the blue OK button on the bottom left corner of the window. 

7. Once the spawned processes have finished (i.e., when the blue progress bar on the bottom 
right of the screen disappears), you should see a “Clone and bootstrap successful 
message” on the bottom left side of the screen, next to the vcpkg icon, and the icon next to 
the name of your vcpkg installation will have turned from gray to orange (Fig. 7.1). 

8. Click on the name of your vcpkg installation and search for “cgal” on the search bar that 
appears to its right. Select the package name and click on ”Install” (Fig. 8.1). Make sure that 
the triplet option has been set to “Let vcpkg decide”. 

[WARNING] This process will take some time. Make sure that you have a stable internet 
connection throughout and that your PC does not go to sleep or turn off. 

9. Once the spawned processes have finished (i.e., when the blue progress bar on the bottom 
right of the screen disappears), you should see an “Install successful. Installed packages: 
CGAL” on the bottom left side of the screen, next to the vcpkg, along with a prompt to add 
CGAL to CMakeLists.txt, which you can think of as a configuration or manifest file for your 
project. For instance, this is which version of C++ you’re using and which are your library 
dependencies. 
 
[WARNING] Do not use the prompt! 
 

10. Once CGAL has been installed, the menu you used to install it should mention which triplet 
is present in your system, along with the library version (Fig. 10.1). 

11. Select Edit CMake Profiles… (Step 3), and *for each* profile, click on the Cache variables 
drop-down menu and replace CVPKG_TARGET_TRIPLET with the triplet from Step 10 (Fig. 
11.1). Once done, click on the blue OK button on the bottom left corner of the window. 

12. Open CMakeLists.txt and append the following commands to the file: 
 
find_package(CGAL CONFIG REQUIRED) 
target_link_libraries(<project_name> PRIVATE CGAL::CGAL) 



 
where <project_name> is the name of your project as you defined it and appears next to the 
profiles drop-down menu, the project overview, as well as the second line of CMakeLists.txt 
(Fig 12.1). 

13. Once done, press the circled button on the top right of Fig. 12.1 to reload your CMake 
changes. You can also do this be pressing Ctrl+Shift+O. The project should now rebuild for 
both profiles. The release build should compile without errors, whereas in the debug build, 
CGAL will complain about potential performance issues. This is expected behavior (Fig. 
13.1a-b). 

[NOTE] You may get a CMake warning about an unused, manually specified variable. This is 
fine to ignore (Fig. 13.1b). 

14. Copy and paste this example into main.cpp and make sure it compiles and runs in both 
release and debug. 

 

 

Fig. 4.1 

 



 

Fig. 4.2 



 

Fig. 4.3 

 

 

Fig. 5.1 



 

 

Fig. 5.2 

 



 

Fig. 7.1 

 

 

Fig. 8.1 



 

 

Fig. 10.1 



 

Fig 11.1 



 

Fig 12.1 



 

Fig 13.1a 



 

Fig 13.1b 

 


