Voxels and voxelisation

GEO1004: 3D modelling of the built environment

https://3d.bk.tudelft.nl/courses/geo1004

3D geoinformation

Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

Voxels: 3D pixels

Voxel models

- Simplicity: simple storage, simple processing methods, simple to use in applications
- Robustness: many issues solved automatically or at least more easily, few degenerate cases
- Speed: easy to do parallel processing by processing voxels independently

Why?

- Visibly: some datasets (e.g. most geolog GRASS and ArcGIS)
- But mostly invisibly: simulations, navigation of the second second

Plus related fields: games (e.g. Minecrational and manufacturing

Visibly: some datasets (e.g. most geological data) and software (e.g. voxel layers in

But mostly invisibly: simulations, navigation, DL models, optimisation, computer

Plus related fields: games (e.g. Minecraft), medical imaging (CT/MRI scans), 3D printing

Nomenclature

• 2D:

• pixel

• image / 2D raster

• (2D) rasterisation

• voxel

• voxel model / 3D raster

• voxelisation / 3D rasterisation

- 1. Define domain (origin and orientation / axes)
- 2. Define resolution / voxel size

- 1. Define domain (origin and orientation / axes)
- 2. Define resolution / voxel size

Usual (dense) encoding

- Define order for storage / traversal (first x 0...i, then y 0...j, then z 0...k) 1.
- values, etc.
 - [..., false, true, true, false, ...]
 - [..., 1, 1, 3, 3, 1, ...]
 - [..., 3.45, 3.56, 3.78, 3.99, ...]

2. Following the order: specify what is in each voxel, e.g. occupied or not, object IDs, field

• List of entries containing for each voxel:

location (along x, y, z)

contents

• e.g. (x, y, z, ID) = ..., [100, 105, 0, 3], [101, 105, 0, 3], ...

Sparse encoding

What encoding is better?

- Varying sizes, e.g.
 - different size along z dimension
 - smaller size around an area of interest
- Differently shaped cells, e.g. octahedra O

Variations

Hierarchical subdivisions

Hierarchical subdivisions

- Octrees: evenly along every axis
- Bintrees: evenly along alternating axes
- k-d trees: using a value along alternating axes

Voxelisation

Voxelisation of fields

Voxelisation of fields

- Nearest neighbour
- IDW
- Linear in tetrahedra
- Natural neighbour
- Kriging
- etc.

Voxels to points

Ο

 \mathbf{O}

- - - 0

Voxelisation of objects

Starting with 2D: rasterisation

In 2D: what is the difference?

In 2D: what is the difference?

8-connected

2D targets

4-connectivity

2D targets

4-connectivity

Targets for points

Targets for areas

		•	
	•		•
•		•	•
	•	•	•
		•	•

Targets for areas

	•		
		•	
	•/		•
	•	•	•
	•	•	•
		•	•
			•

Duality of targets in 2D

- To detect:
 - points (OD) -> squares (2D)
 - lines (1D) -> line segments (1D)
 - areas (2D) -> centre points (0D)

- To detect:
 - points (OD) -> cubes (3D)
 - lines (1D) -> surfaces (2D)
 - surfaces (2D) -> line segments (1D)
 - volumes (3D) -> centre points (0D)

Duality of targets in 3D

Connectivity in 3D

Voxelising points

Voxelising lines

Voxelising lines

Voxelising surfaces

Voxelising surfaces

Voxelising volumes?

In detail: voxelising lines / surfaces

- Same case!
- Can be computed as line segment triangle intersection
- Possible with max 4 orientation tests,
 e.g. with signed volume:

$$\frac{\overrightarrow{(a-d)(b-d)}\times\overrightarrow{(c-d)}}{6}$$

• origin

V₀

V.

 V_2

origin

V₀

V1

V₂

 V_1

V₂

origin

 V_2

What to do next?

1. Today:

- Continue with Homework 1 (due May 12)
- Go to geo1004 website and study today's lesson (3D book Chapter 4)
- If you have extra time: study Monday's lesson (3D book Chapter 9)
- Monday: val3dity demos, then help with lessons or Hw 1 2.

https://3d.bk.tudelft.nl/courses/geo1004

3D geoinformation

Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

