3D BAG

GE01004: 3D modelling of the built environment

Ravi Peters

06-03-2024

The 3D BAG

3dbag.nl

3D BAG layers: 3 LoDs

A bit of background...

- Developed in 3D geoinformation group
- Prior to v2 we had v1
- Only LoD1.2
- Used by practitioners, much feedback
- Co-developments within several research projects
- Initial request for LoD1.3 models for Noise simulation NL

3DBAG vl

3D BAG in practice

https://docs.3dbag.nl/en/overview/media/

Reconstruction algorithm

Building reconstruction

Open data in the Netherlands

BAG https://www.kadaster.n//baq
up-to-date building polygons + attributes largest extent \rightarrow roofprint + underground positional accuracy 30cm

AHN https://ahn.nl

classified point cloud
positional accuracy $\sim 23 \mathrm{~cm}$ (height and planimetric) $8-15 \mathrm{pts} / \mathrm{m} 2$ for buildings
occlusion and other no-data areas

Overview building reconstruction method

Feature extraction

Feature extraction

Feature extraction

Feature extraction

Detected lines

Line regularisation

Using 2-step hierarchical clustering

1. Based on line orientation
2. Based on euclidean distance within orientation clusters

(a) Detected lines

(c) Distance clustering

(b) Orientation clustering

(d) Regularised lines

Initial roof partition

Still many small faces

Graph-cut optimisation

$$
E(f)=\lambda \cdot \sum_{p \in P} D_{p}\left(f_{p}\right)+(1-\lambda) \cdot \sum_{\{p, q\} \in N} V_{p, q}\left(f_{p}, f_{q}\right)
$$

Graph-cut optimisation

$$
E(f)=\lambda \cdot \sum_{p \in P} D_{p}\left(f_{p}\right)+(1-\lambda) \cdot \sum_{\{p, q\} \in N} V_{p, q}\left(f_{p}, f_{q}\right)
$$

Data term:
Volume between candidate planes and 2.5 D heightfield of point cloud at a face

Maximises data fit

Volume wrt each candidate plane

Graph-cut optimisation

$$
E(f)=\lambda \cdot \sum_{p \in P} D_{p}\left(f_{p}\right)+(1-\lambda) \sum_{\underline{p}, q \in \in \mathbb{N}} V_{p, q}\left(f_{p}, f_{q}\right)
$$

$V_{p, q}\left(f_{p}, f_{q}\right)=\left\{\begin{array}{cc}\text { length }(\operatorname{border}(p, q)) & \text { if } f_{p} \neq f_{q} \\ 0 & \text { if } f_{p}=f_{q}\end{array}\right.$

Final roof partition

Dintersection lines
boundary

Initial roof partition
Final roof partition
(edges between equal plane labels dissolved)

Results: effect of optimisation weights

Image by Ivan Pađen

Extrusion

Special cases, Limitations

Groundparts

In some cases BAG footprint includes groundparts

AHN3 ground and building class

BAG footprint

Reconstruction result: roofplane fitted to groundpart

Groundparts

Reconstruction with groundpart detection

AHN3 ground and building class

BAG footprint

Reconstruction result: groundpart removed from output

Limitation: glass roofs

Green houses: both points on ground and on roof

AHN3
ground and building class

Heightfield

Limitation: glass roofs

AHN3
ground and building class

Heightfield

Spherical surfaces

Are approximated with planar surfaces if sufficient point density

Limitations: occlusion/no-data

Occlusion/no-data

Reconstruction

AHN3 ground and building class

Heightfield

Occlusion in AHN3

Occlusion in AHN4

Occlusion effect on reconstruction

Fuse two point clouds

Data management

How to tile the data?

How to tile the data?

Max 3500 buildings per tile

Data distribution

Tiles

- GeoPackage
- CityJSON
- OBJ (triangulated)

Webservices

- WFS/WMS
- 3DBAG API
(OGC API CityJSON Features)

Downloads for tile number 9-280-556

To keep filesizes manageable the 3DBAG dataset is subdived in tiles. For each tile we offer the data in a number of different file formats. Use the button below to select the tile of interest to see the download options.

Tile number	Format	File	SHA-256	Version
$9-280-556$	CityJSON ©	9-280-556.city.json	See tiles layer in WFS	v2024.02.28
$9-280-556$	OBJ ©	$9-280-556$-obj.zip	See tiles layer in WFS	V2024.02.28
$9-280-556$	GPKG ©	9-280-556.gpkg	See tiles layer in WFS	v2024.02.28

Webservices

These allow you to explore the entire dataset in another software (eg. QGIS) without having to download anything beforehand. Note that only the 2D projection of the models is served via WMS/WFS.

Type	URL
WMS ©	https://data.3dbag.nl/api/BAG3D/wms?request=getcapabilities
WFS ©	https://data.3dbag.nl/api/BAG3D/wfs?request=getcapabilities
3D API (experimental) ©	https://api.3dbag.nl/

Recently added features

3DBAG API

Request directly CityJSON Features by

- Building ID
- Bounding box

Based on CJDB

(2022 geomatics synthesis project)

Party wall areas

We calculate and include:

- area party walls
- area exterior walls
- area floor surfaces
- area roof surfaces
- building volume

Needed for eg. energy label estimation
Sponsored by RVO

Calculation of party walls

Most semantic surfaces already assigned during reconstruction

We just need to split WallSurfaces into party walls and exterior walls.

Calculation of party walls

For each building

1. Find neighbouring buildings
2. Extract all 3D wall polygons
3. Find co-planar polygons through clustering by plane parameters
4. Intersect the co-planar wall polygons from different buildings.
5. Calculate area of intersection

Estimation nr of floors

Based on MSc thesis of Ellie Roy (Geomatics

2022)

- Machine learning method based on Gradient Boosting Regression
- Model trained on groundtruth data from a couple of Dutch municipalities
- Used features collected from various datasets (3DBAG, CBS, ...)
- Accuracy drops for >5 floors
- Available in 3DBAG release v2024.02.28

Thank you!

Ravi Peters
ravi.peters@3dgi.nl

Want to try the reconstruction algorithm yourself?
https://aithub.com/qeoflow3d/geoflow-bundle

