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Generalised maps and combinatorial maps



So far… (3D through b-rep)

Figure �.�: A cube can be represented
implicitly based on the six square faces
that bound it.
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In the first chapter, we discussed how �D modelling is done through a
series of abstractions of the real world. One of the chief reasons to do
so is to decrease the complexity of what needs to be modelled at each
step, with the aim to successively break complex problems into simpler
problems until they can be (more easily) solved.

Boundary representation works using this principle. Rather than modelling
a �D object through a volumetric representation, it instead models the
object implicitly by representing the �D surface that bounds it (Figure �.�).
In this way, it is possible to use one of the many data structures that are
used to represent �D meshes, which are significantly simpler than the
data structures used to directly represent arbitrary volumes.

However, it is very important to note that representing certain �D objects
using boundary representation with the most common �D mesh data
structures can cause some issues. The main culprits are non-manifold
objects, which have properties that make representing them ambiguous,
as well as objects with holes, which need to be stored using certain
techniques. External data structures might also be needed to keep track
of disconnected set of objects, since it might not be possible to have access
to them otherwise.

�.� What is boundary representation?

Boundary representation, also known as b-rep or surface modelling, is a
method that involves representing an =-dimensional object through its
(= � 1)-dimensional boundary. Most of the time this term is used in
the context of �D modelling, where the aim is to represent a �D object
implicitly through its �D boundary. That being said, boundary repre-
sentation is also common in �D as well, where we sometimes represent
polygons based on the line segments that bound them, and it is the main
method used in �D, where most of the time we represent line segments
based on the two points that bound them (Figure �.�a)—as opposed to
representing them based on something like a line equation. Boundary
representation can thus be used several times when representing a single
�D model: to represent a �D volume as a set of �D surfaces, each �D
surface as a set of �D line segments or curves, and each �D line segment as
a pair of �D points—or often �D polygonal surfaces directly as sequences
of �D points (Figure �.�b).

Boundary representation works because of what is known in �D as the
Jordan curve theorem, which states that a closed curve separates the
plane into two parts: an interior surface and an exterior surface. In practical
terms, this means that if you draw a closed curve (ie a loop) on a sheet of
paper, the curve separates the sheet into two parts—an interior one that is
bounded on the outside by the curve, and an exterior one that is bounded
on the outside by the edges of the sheet (ie its outer boundary) and on
the inside by the curve (ie as an inner boundary). In higher dimensions,
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So far… (3D through b-rep)
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twin(e)

links between 0D-2D elements



Links between 3D elements?

?



Drawbacks of b-rep approach

• Difficult to store: 

• Multiple volumes 

• Holes (2D and 3D) 

• Non-manifolds



Back to Jordan-Brouwer theorem

• In 2D, the Jordan curve theorem says: a closed curve separates the plane into two 
parts: an interior surface and an exterior surface  

• In 𝑛D, the Jordan-Brouwer theorem, which in 3D says: a closed surface separates 3D 
space into two parts: an interior volume and an exterior volume.



Back to Jordan-Brouwer theorem (3D)

• Problems: 

• Holes: one more exterior per hole  

• Multiple volumes: one more interior per extra volume 

• Non-2-manifold: possibly one more interior per point in non-manifold part 
(depending on orientation) 

• Note: can be fixed with bridges or by using a particular orientation



… but still links between 3D objects 
are missing



What are g-maps / c-maps?

• In short, 𝑛D data structures, that is data structures that can store: 

• objects of any dimension 

• and the topological relationships between them 

• c-maps: generalisation of half-edge to 𝑛D -> 2D c-maps is half-edge 

• g-maps: c-maps where each element is split into two to avoid oriented edges



Why g-maps / c-maps?

• In short: 

• Possibility to store links between 𝑛D elements (including 3D) 

• With g-maps: no orientation issues (e.g. in construction or with dangling/invalid 
objects)



Small background



Simplex



Simplex
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Simplex properties

• An 𝑛-simplex in 𝑛-dimensional space: 

• is bounded by 𝑛+1 (𝑛-1)-simplices 

• can have 𝑛+1 adjacent 𝑛-simplices, each of which shares a (𝑛-1)-simplex on their 
common boundary 

➔ Two adjacent 𝑛-simplices share all their vertices except for one



Cells

• 0-cell: vertex 

• 1-cell: edge 

• 2-cell: polygon 

• 3-cell: polyhedron 

• …



Barycentric triangulation
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Wikimedia Commons



Building g-maps / c-maps
• 𝑛D c-maps (𝑛-c-maps): barycentric triangulation 𝑛-cells from 2-cells 

• 𝑛D g-maps (𝑛-g-maps): barycentric triangulation of 𝑛-cells from 1-cells 

• … where  

• 𝑛-simplices are called darts and have vertices that are linked to elements of a certain 
dimension, and 

• when only 0-cells have a location in space and linear geometries are assumed between them, 
it is known as a linear cell complex.



Building g-maps / c-maps



Building g-maps / c-maps
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Intuitive meaning of a dart

• Informally: 

• a generalised map dart is a unique combination of a cell of every dimension: vertex, 
edge, face, volume, … 

• a combinatorial map dart is a unique combination of a cell of every dimension from 
one upwards: edge, face, volume, …



Intuitive meaning of a dart

• Why informal? only given certain 
conditions, e.g. 

• linear embeddings (i.e. polygons, not 
curved surfaces) 

• no bridge edges
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00 00



C-maps: orientation



Building g-maps / c-maps



Building g-maps / c-maps



Traversing darts

• From the properties of simplices: a dart 𝑑 in an 𝑛D combinatorial/generalised map has 
𝑛+1 adjacent darts, each of which shares all but one of the vertices of 𝑑. 

➔ Informally: Two adjacent darts share all of their cells except for one. e.g. if they differ in 
their edge, they share their vertex, face, volume, etc.



Traversing darts

• The link from an 𝑖-dimensional vertex of a dart 𝑑 to the (other) 𝑖-dimensional vertex of 
its adjacent neighbour is called: 

• 𝛼𝑖 in a generalised map 

• 𝛽𝑖 in a combinatorial map 

• Informally, it means switching the 𝑖-cell of 𝑑 for the 𝑖-cell of its neighbour



Traversing darts

• for all i, 𝛼𝑖 is an involution 

• for 𝛽 > 1, 𝛽𝑖 is also an involution 

• but for for 𝛽 = 1, 𝛽𝑖 is a permutation
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C-maps vs. half-edge

• 𝛽1 = next 

•  = prev 

• 𝛽2 = twin

β−1
1



Storage

• In a generalised map, a list of darts 
of the form: 

• 𝑑 = [[𝛼0(𝑑), 𝛼1(𝑑), 𝛼2(𝑑), …], 

                  [a0, a1, a2, …]] 

• where each 𝛼 is a link (ID, 
pointer) to another dart, and 

• In a combinatorial map, a list of 
darts of the form: 

• 𝑑 = [[ , 𝛽1, 𝛽2, …], 

                  [a0, a1, a2, …]] 

• where each 𝛽 is a link (ID, 
pointer) to another dart, and 

β−1
1

• each a is an optional link to a data structure with the 
attributes for the 𝑖-cell of 𝑑, including the coordinates in a0.



In practice? CGAL

https://doc.cgal.org/latest/Combinatorial_map/index.html#Chapter_Combinatorial_Maps 

https://doc.cgal.org/latest/Generalized_map/index.html#Chapter_Generalized_Maps 

https://doc.cgal.org/latest/Linear_cell_complex/index.html#Chapter_Linear_Cell_Complex

https://doc.cgal.org/latest/Combinatorial_map/index.html#Chapter_Combinatorial_Maps
https://doc.cgal.org/latest/Generalized_map/index.html#Chapter_Generalized_Maps
https://doc.cgal.org/latest/Linear_cell_complex/index.html#Chapter_Linear_Cell_Complex


Simpler representation
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Involutions and permutationsঢ଑ঢ଒ঢଓ ণଓণ଒
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How to build more complex cmaps / 
gmaps?



Orbits

Ѣঢ଑� ঢ଒ѣ
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Sewing (3D)

sew



Variations

• More complex embeddings for non-linear geometries, e.g. storing control points in 
edges or surfaces 

• Storing non-manifolds with chains of maps



What to do next?

1. Today: 

• Continue with Homework 3 

• Go to geo1004 website and study today’s lesson (3D book Chapter 8) 

2. Monday: public holiday 

3. Next Wednesday: final lecture on applications of 3D modelling
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