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So far... (3D through b-rep)

-

b-rep

D object
3D objec (2D boundary)

2D data structure



So far... (3D through b-rep)

links between OD-2D elements



L inks between 3D elements?
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Drawbacks of b-rep approach

e Difficult to store:
e Multiple volumes

e Holes (2D and 3D)

e Non-manifolds



Back to Jordan-Brouwer theorem

e |n 2D, the Jordan curve theorem says: a closed curve separates the plane into two
parts: an interior surface and an exterior surface

® |n nD, the Jordan-Brouwer theorem, which in 3D says: a closed surface separates 3D
space into two parts: an interior volume and an exterior volume.



Back to Jordan-Brouwer theorem (3D)

e Problems:
e Holes: one more exterior per hole
e Multiple volumes: one more interior per extra volume

e Non-2-manifold: possibly one more interior per point in non-manifold part
(depending on orientation)

e Note: can be fixed with bridges or by using a particular orientation



... but still links between 3D objects
are missing



What are g-maps / c-maps?

® |n short, nD data structures, that is data structures that can store:

e objects of any dimension

e and the topological relationships between them

® c-maps: generalisation of half-edge to nD -> 2D c-maps is half-edge

® g-maps: c-maps where each element is split into two to avoid oriented edges



Why g-maps / c-maps?

e |n short:

® Possibility to store links between nD elements (including 3D)

e With g-maps: no orientation issues (e.g. in construction or with dangling/invalid
objects)



Small background



Simplex




Simplex

1-simplex
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Simplex properties

® An n-simplex in n-dimensional space:
® s bounded by n+1(n-1)-simplices

® can have n+1adjacent n-simplices, each of which shares a (n-1)-simplex on their
common boundary

-> Two adjacent n-simplices share all their vertices except for one



Cells

O-cell: vertex
1-cell: edge
2-cell: polygon

3-cell: polyhedron



Barycentric triangulation

Wikimedia Commons



Building g-maps / c-maps

nD c-maps (n-c-maps): barycentric triangulation n-cells from 2-cells

nD g-maps (n-g-maps): barycentric triangulation of n-cells from 1-cells

... Where

e n-simplices are called darts and have vertices that are linked to elements of a certain
dimension, and

when only O-cells have a location in space and linear geometries are assumed between them,
it is known as a linear cell complex.



Building g-maps / c-maps




Building g maps / C- maps

combinatorial map generalised map

(c-map) (g-map)



Intuitive meaning of a dart

e [nformally:

® 3 generalised map dart is a unique combination of a cell of every dimension: vertex,
edge, face, volume, ...

e 3 combinatorial map dart is a unique combination of a cell of every dimension from
one upwards: edge, face, volume, ...



Intuitive meaning of a dart
0 0

e Why informal? only given certain
conditions, e.g.

e |inear embeddings (i.e. polygons, not
curved surfaces)

e no bridge edges



C-maps: orientation




Building g-maps / c-maps
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Building g-maps / c-maps
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Traversing darts

®* From the properties of simplices: a dart d in an nD combinatorial/generalised map has
n+1 adjacent darts, each of which shares all but one of the vertices of d.

-> Informally: Two adjacent darts share all of their cells except for one. e.q. if they differ in
their edge, they share their vertex, face, volume, etc.



Traversing darts

e The link from an i-dimensional vertex of a dart d to the (other) i-dimensional vertex of
its adjacent neighbour is called:

® ¢ in a generalised map
® (3;in a combinatorial map

® |nformally, it means switching the i-cell of d for the i-cell of its neighbour



Traversing darts

o foralli, ais an involution
e for 5>1, Biis also an involution

® but for for 5 =1, 5; is a permutation






C-maps vs. half-edge

® ﬁ1 = next

. ,Bl_l = prev

¢ ﬁz = twin




Storage

e In a generalised map, a list of darts * Inacombinatorial map, a list of
of the form: darts of the form:
~ d = [[O(O(d), O(1(d), aZ(d), ], ® d . [[ﬁl_l, ,61, ﬁz, ],
[ao, d1, dy, o] [ao’ a1, ay, i
e where each xtis a link (ID, ® where each ﬁ is a link (ID,
pointer) to another dart, and pointer) to another darf, and

e each ais an optional link to a data structure with the
attributes for the i-cell of d, including the coordinates in ao.



In practice? CGAL

https://doc.cgal.org/latest/Combinatorial map/index.htmil#Chapter Combinatorial Maps

https://doc.cgal.org/latest/Generalized map/index.html#Chapter Generalized Maps

https://doc.cgal.org/latest/Linear cell complex/index.html#Chapter Linear Cell Complex



https://doc.cgal.org/latest/Combinatorial_map/index.html#Chapter_Combinatorial_Maps
https://doc.cgal.org/latest/Generalized_map/index.html#Chapter_Generalized_Maps
https://doc.cgal.org/latest/Linear_cell_complex/index.html#Chapter_Linear_Cell_Complex

Simpler representation

Dart as simplex Dart as vertex-edge-face-...



Involutions and permutations
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How to build more complex cmaps /
gmaps?






Sewing (3D)
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Variations

e More complex embeddings for non-linear geometries, e.g. storing control points in
edges or surfaces

e Storing non-manifolds with chains of maps



What to do next?

1. Today:

e Continue with Homework 3

e Go to geo1004 website and study today’s lesson (3D book Chapter 8)
2. Monday: public holiday

3. Next Wednesday: final lecture on applications of 3D modelling



https://3d.bktudelft.nl/courses/geoc1004

Department of Urbanism
Faculty of Architecture and the Built Environment
Delft University of Technology

'; 3D geoinformation


https://3d.bk.tudelft.nl/courses/geo1004

