Generalised maps and combinatorial maps

> GE01004:

3D modelling of the built environment
https://3d.bk.tudelft.nl/courses/geo1004

3D geoinformation
Department of Urbanism
Faculty of Architecture and the Built Environment
Delft University of Technology

So far... (3D through b-rep)

So far... (3D through b-rep)

So far... (3D through b-rep)

Links between 3D elements?

Drawbacks of b-rep

- Difficult to store:
- Holes (2D and 3D)
- Non-manifolds
- Multiple volumes

Back to Jordan-Brouwer theorem

- In 2D, the Jordan curve theorem says: a closed curve separates the plane into two parts: an interior surface and an exterior surface
- In nD, the Jordan-Brouwer theorem, which in 3D says: a closed surface separates 3D space into two parts: an interior volume and an exterior volume.

Back to Jordan-Brouwer theorem

- Holes: one more exterior per hole (both 2D and 3D)
- Non-2-manifold around point: one more interior per point
- Multiple volumes: one more interior per extra volume

What are g-maps / c-maps?

- In short:
- c-maps: generalisation of half-edge to nD
- g-maps: c-maps split into two to avoid oriented edges

Why g-maps / c-maps?

- In short:
- Possibility to store links between nD elements (including 3D)
- With g-maps: no orientation issues during construction

Small background

Simplex

Simplex

Simplex properties

- An n-simplex in n-dimensional space:
- is bounded by $n+1$ ($n-1$)-simplices
- can have $n+1$ adjacent n-simplices, each of which shares a ($n-1$)-simplex on their common boundary
\rightarrow Two adjacent n-simplices share all their vertices except for one

Cells

- 0-cell: vertex
- 1-cell: edge
- 2-cell: polygon
- 3-cell: polyhedron

Barycentric triangulation

Building g-maps / c-maps

- $n \mathrm{D}$ c-maps (n-c-maps): barycentric triangulation n-cells from 2-cells
- $n \mathrm{D}$ g-maps (n-g-maps): barycentric triangulation of n-cells from 1-cells
- ... where
- n-simplices are called darts and have vertices that are linked to elements of a certain dimension, and
- only 0-cells have a location in space.

Building g-maps / c-maps

Building g-maps / c-maps

Intuitive meaning of a dart

- Informally:
- a generalised map dart is a unique combination of a cell of every dimension: vertex, edge, face, volume, ...
- a combinatorial map dart is a unique combination of a cell of every dimension from one upwards: edge, face, volume, ...
- Why informal? only true for a specific linear embedding

Building g-maps / c-maps

C-maps: orientation

Building g-maps / c-maps

Building g-maps / c-maps

Traversing darts

- From the properties of simplices: a dart d in an n D combinatorial/generalised map has $n+1$ adjacent darts, each of which shares all but one of the vertices of d.
\rightarrow Informally: Two adjacent darts share all of their cells except for one. e.g. if they differ in their edge, they share their vertex, face, volume, etc.

Traversing darts

- The link from an i-dimensional vertex of a dart d to the (other) i-dimensional vertex of its adjacent neighbour is called:
- α_{i} in a generalised map
- β_{i} in a combinatorial map
- Informally, it means switching the i-cell of d for the i-cell of its neighbour

Traversing darts

- for all i, α_{i} is an involution
- for $\beta>1, \beta_{i}$ is also an involution
- but for for $\beta=1, \beta_{i}$ is a permutation

(c-map)
 (g-map)

Storage

- In a generalised map, a list of darts of the form:
- $d=\left[\left[\alpha_{0}(d), \alpha_{1}(d), \alpha_{2}(d), \ldots\right]\right.$,

$$
\left.\left[a_{0}, a_{1}, a_{2}, \ldots\right]\right]
$$

- where each α is a link (ID, pointer) to another dart, and
- In a combinatorial map, a list of darts of the form:
- $d=\left[\left[\beta_{1}, \beta_{2}, ..\right]\right.$,

$$
\left[a_{0}, a_{1}, a_{2}, . . .\right]
$$

- where each β is a link (ID, pointer) to another dart, and
- each a is an optional link to a data structure with the attributes for the i-cell of d, including the coordinates in a_{0}.

In practice? CGAL

Simpler representation

Involutions and permutations

Orbits

Sewing

What to do next?

1. Today:

- Continue with Homework 2 (generalisation of a 3D city model)
- Study for midterm exam (Lessons 1.1-4.1)
- Go to geo1004 website and study today's lesson (3D book Chapter 8)

2. Wednesday: midterm exam (1st hour) and help with lessons or Hw 2 (2nd hour)
3. Thursday: help session with Dimitris

https://3d.bk.tudelft.nl/courses/geo1004

3D geoinformation

