Generalised maps and combinatorial maps

https://3d.bk.tudelft.nl/courses/geo1004

GEO1004: 3D modelling of the built environment

3D geoinformation

Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

3D object

b-rep (2D boundary)

So far... (3D through b-rep)

2D data structure

So far... (3D through b-rep)

links between OD-2D elements

Links between 3D elements?

Drawbacks of b-rep approach

- Difficult to store:
 - Multiple volumes
 - Holes (2D and 3D)
 - Non-manifolds

Back to Jordan-Brouwer theorem

- In 2D, the Jordan curve theorem says: a closed curve separates the plane into two parts: an interior surface and an exterior surface
- In *n*D, the Jordan-Brouwer theorem, which in 3D says: a closed surface separates 3D space into two parts: an interior volume and an exterior volume.

Back to Jordan-Brouwer theorem (3D)

- Problems:
 - Holes: one more exterior per hole
 - Multiple volumes: one more interior per extra volume
 - Non-2-manifold: possibly one more interior per point in non-manifold part (depending on orientation)
- Note: can be fixed with bridges or by using a particular orientation

... but still links between 3D objects are missing

What are g-maps / c-maps?

- In short, *n*D data structures, that is data structures that can store:
 - objects of any dimension
 - and the topological relationships between them
- c-maps: generalisation of half-edge to *n*D -> 2D c-maps is half-edge
- g-maps: c-maps where each element is split into two to avoid oriented edges

Why g-maps / c-maps?

- In short:
 - Possibility to store links between nD elements (including 3D)
 - objects)

With g-maps: no orientation issues (e.g. in construction or with dangling/invalid

Small background

- An *n*-simplex in *n*-dimensional space:
 - is bounded by n+1(n-1)-simplices
 - common boundary

 \rightarrow Two adjacent *n*-simplices share all their vertices except for one

Simplex properties

• can have n+1 adjacent n-simplices, each of which shares a (n-1)-simplex on their

- 0-cell: vertex
- 1-cell: edge

•••

- 2-cell: polygon
- 3-cell: polyhedron

Cells

Barycentric triangulation

Wikimedia Commons

Building g-maps / c-maps

- *n*D c-maps (*n*-c-maps): barycentric triangulation *n*-cells from 2-cells
- *n*D g-maps (*n*-g-maps): barycentric triangulation of *n*-cells from 1-cells

- *n*-simplices are called **darts** and have we dimension, and
- when only 0-cells have a location in space it is known as a linear cell complex.

• *n*-simplices are called **darts** and have vertices that are linked to elements of a certain

when only O-cells have a location in space and linear geometries are assumed between them,

Building g-maps / c-maps

combinatorial map

(c-map)

(g-map)

Intuitive meaning of a dart

- Informally:
 - a generalised map dart is a unique control edge, face, volume, ...
 - a combinatorial map dart is a unique one upwards: edge, face, volume, ...

a generalised map dart is a unique combination of a cell of every dimension: vertex,

• a combinatorial map dart is a unique combination of a cell of every dimension from

Intuitive meaning of a dart

- Why informal? only given certain conditions, e.g.
 - linear embeddings (i.e. polygons, not curved surfaces)
 - no bridge edges

C-maps: orientation

Building g-maps / c-maps

Building g-maps / c-maps

Traversing darts

• From the properties of simplices: a dart *d* in an *n*D combinatorial/generalised map has *n*+1 adjacent darts, each of which shares all but one of the vertices of *d*.

→ Informally: Two adjacent darts share all of their cells except for one. e.g. if they differ in their edge, they share their vertex, face, volume, etc.

Traversing darts

- its adjacent neighbour is called:
 - α_i in a generalised map
 - β_i in a combinatorial map
- Informally, it means switching the *i*-cell of d for the *i*-cell of its neighbour

The link from an i-dimensional vertex of a dart d to the (other) i-dimensional vertex of

Traversing darts

- for all i, α_i is an involution
- for $\beta > 1$, β_i is also an involution
- but for for $\beta = 1$, β_i is a permutation

combinatorial map

(c-map)

C-maps vs. half-edge

•
$$\beta_1 = \text{next}$$

•
$$\beta_1^{-1} = \text{prev}$$

• $\beta_2 = twin$

- In a generalised map, a list of darts of the form:
 - $d = [[\alpha_0(d), \alpha_1(d), \alpha_2(d), ...]],$

[a₀, a₁, a₂, ...]]

- where each α is a link (ID, pointer) to another dart, and

Storage

• In a combinatorial map, a list of darts of the form:

•
$$d = [[\beta_1^{-1}, \beta_1, \beta_2, ...]],$$

[a₀, a₁, a₂, ...]]

• where each β is a link (ID, pointer) to another dart, and

each a is an optional link to a data structure with the attributes for the *i*-cell of *d*, including the coordinates in a_0 .

In practice? CGAL

https://doc.cgal.org/latest/Generalized_map/index.html#Chapter_Generalized_Maps

https://doc.cgal.org/latest/Combinatorial_map/index.html#Chapter_Combinatorial_Maps https://doc.cgal.org/latest/Linear_cell_complex/index.html#Chapter_Linear_Cell_Complex

Simpler representation

Dart as vertex-edge-face-...

Involutions and permutations

 α_{0}

How to build more complex cmaps / gmaps?

Orbits

Sewing (3D)

- edges or surfaces
- Storing non-manifolds with chains of maps

Variations

• More complex embeddings for non-linear geometries, e.g. storing control points in

What to do next?

1. Today:

- Continue with Homework 3
- Go to geo1004 website and study today's lesson (3D book Chapter 8)
- 2. Monday: public holiday
- Next Wednesday: final lecture on applications of 3D modelling 3.

https://3d.bk.tudelft.nl/courses/geo1004

3D geoinformation

Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

