Lesson dtvd3d: some extras

GEO1004:
 3D modelling of the built environment

https://3d.bk.tudelft.nl/courses/
geo1004

3D geoinformation
Department of Urbanism
Faculty of Architecture and the Built Environment Delft University of Technology

Incremental construction

Figure 7: Step-by-step insertion, with flips, of a single point in a DT in two dimensions.

Incrementation construction

Algorithm 1: Algorithm to insert one point in a DT
Input: $\operatorname{ADT}(S) \mathcal{T}$ in \mathbb{R}^{3}, and a new point p to insert
Output: $\mathcal{T}^{p}=\mathcal{T} \cup\{p\}$
find tetrahedron τ containing p
insert p in τ by splitting it in to 4 new tetrahedra (flip14)
push 4 new tetrahedra on a stack
while stack is non-empty do
$\tau=\{p, a, b, c\} \leftarrow$ pop from stack $\tau_{a}=\{a, b, c, d\} \leftarrow$ get adjacent tetrahedron of τ having the edge $a b c$ as a face if d is inside circumsphere of τ then
if configuration of τ and τ_{a} allows it then
flip the tetrahedra τ and τ_{a} (flip23 or flip32)
push 2 or 3 new tetrahedra on stack
else
Do nothing

Slivers in DT

3D DT == 4D convex hull

Figure 6: The parabolic lifting map for a set S of points \mathbb{R}^{2}.

3D == no "fixed" orientation

3.3.2 Predicates

The 'orientation' of points in three dimensions is somewhat tricky because, unlike in two dimensions, we can not simply rely on the counter-clockwise orientation. In three dimensions, the orientation is always relative to another point of reference, ie given three points we cannot say if a fourth one is left of right, this depends on the orientation of the three points.

Figure 3.13: The tetrahedron $a b c d$ is correctly oriented since Orient (a, b, c, d) returns a positive result. The arrow indicates the correct orientation for the face σ_{a}, so that Orient (σ_{a}, a) returns a positive result.

Orient can be implemented as the determinant of a matrix:

$$
\operatorname{Orient}(a, b, c, p)=\left|\begin{array}{llll}
a_{x} & a_{y} & a_{z} & 1 \tag{3.2}\\
b_{x} & b_{y} & b_{z} & 1 \\
c_{x} & c_{y} & c_{z} & 1 \\
p_{x} & p_{y} & p_{z} & 1
\end{array}\right|
$$

Duality VD <-> DT in 3D

Figure 3: Duality in \mathbb{R}^{3} between the elements of the VD and the DT.

App\#1: 3DVD as alternative to voxels

Figure 10: (a) Example of a dataset in geology, where samples were collected by drilling a hole in the ground. Each sample has a location in 3D space ($x-y-z$ coordinates) and one or more attributes attached to it. (b) An oceanographic dataset in the Bering Sea in which samples are distributed along water columns. Each red point represents a (vertical) water column, where samples are collected every 2 m , but water columns are about 35 km from each other.

App\#2: spatial interpolation

Figure 11: Barycentric coordinates in two and three dimensions. A_{i} represents the area of the triangle formed by x and one edge.

$$
\operatorname{vol}(\sigma)=\frac{1}{d!}\left|\operatorname{det}\left(\begin{array}{ccc}
v^{0} & \ldots & v^{d} \\
1 & \ldots & 1
\end{array}\right)\right|
$$

App\#2: spatial interpolation

(a)

$w_{i}(x)=$ stolenarea

$$
w_{6}(x)=\frac{|e|}{\left|x p_{6}\right|}
$$

(c)

Figure 4.7: (a) The VD of a set of points with an interpolation location x. (b) Natural neighbour coordinates in 2D for x. The shaded polygon is \mathcal{V}_{x}^{+}. (c) The weight for the Laplace interpolant.

App\#3: visualisation with iso-surfaces

Figure 12: An example of an oceanographic dataset where each point has the temperature of the water, and three isosurface extracted (for a value of respectively 2.0, 2.5 and 3.5) from this dataset.
ine has 2 components

Triangulating a building (or any 3D model)

demo with one building

- MeshLab: https://www.meshlab.net
- TetGen: http://tetgen.org
- ParaView: https://www.paraview.org

https://3d.bk.tudelft.nl/courses/ geot004

