
GEO1004:
3D modelling of the built environment

https://3d.bk.tudelft.nl/courses/geo1004

Lesson dtvd3d: some extras



2 Voronoi cells

�� � Tetrahedralisations and �D Voronoi diagrams

Figure �.�: Two Voronoi cells adjacent
to each other in R3, they share the grey
face.

Figure �.�: The Voronoi cell for the red
vertex, the red edges are the Delaunay
edges that are dual to the Voronoi facets.

Figure �.�: The DT of a set of points in
the plane.

Figure �.�: A Delaunay tetrahedron has
an empty circumsphere.

polygon. Two Voronoi cells, V? and V@ , lie on the opposite sides of the
perpendicular bisector separating the points ? and @.

In R3, VD(() is a three-dimensional cell complex. The Voronoi cell of
a point ? is formed by the intersection of all the half-spaces (three-
dimensional planes) between ? and the other points in (. Drawing a
picture of the three-dimensional case is not easy, thus Figure �.� shows
two adjacent Voronoi cells (which are convex polyhedra), and Figure �.�
one cell with its incident Delaunay edges.

The VD has many properties, and most of them are valid in any dimen-
sions. Note that most of these properties are valid only when the set ( of
points is in general position, that is when for example in three dimensions
no five points are cospherical, and no four points are collinear. Details
concerning the possible degeneracies are given in Section �.�.�. What
follows is a list of the most relevant properties:

Size: if ( has = points, then VD(() has exactly = Voronoi cells since there
is a one-to-one mapping between the points and the cells.

Voronoi vertices: in R3, a Voronoi vertex is equidistant from (3 + 1)
points. In R3, a Voronoi vertex is at the centre of a sphere defined
by � points in (.

Voronoi edges: in R3, a Voronoi edge is equidistant from 3 points.
Voronoi faces: in R3, a Voronoi face is equidistant from (3 � 1) points.

Hence, in R3, it is the bisector plane perpendicular to the line
segment joining two points.

Convex hull: let ( be a set of points in R3, and ? one of its points. V? is
unbounded if ? bounds conv((). Otherwise, V? is the convex hull
of its Voronoi vertices.

�.� The Delaunay tetrahedralisation

The Delaunay triangulation of a set ( of points in R3 is a simplicial
complex where each 3-simplex �, formed by 3 + 1 vertices in (, has an
empty circumball (a ball is said to be empty when no points are in its
interior).

For R3, it is called the Delaunay tetrahedralisation: the space is tessellation
into non-overlapping tetrahedra having an empty circumsphere (as shown
in Figure �.�).

�.�.� Duality between the DT and the VD

The VD and the DT are dual to each other, and that in any dimensions.
This means they represent the same thing but from a different point-of-
view, and one structure can always be extracted from the other. Consider
a graph embedded in R3 as a 3-dimensional cell complex. The mappings
between the elements of a cell complex in R3 are as follows: let ⇠ be a
:-cell, the dual cell of ⇠ in R3 is denoted by ⇠

8 and is a (3 � :)-cell.

The duality between the VD and the DT in R3 are thus as follows:

I a Delaunay vertex ? becomes a Voronoi cell (Figure �.�a);
I a Delaunay edge � becomes a Voronoi face (Figure �.�b);
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� How does it work in practice?

Even more than in 2D, the duality between the convex hull in d + 1-dimension and the DT in
d-dimension is in practice exploited. Indeed, one can construct the convex hull of a set of points
projected to 4D to obtain the DT in 3D. One popular and widely used implementation is Qhull
(http://www.qhull.org/).

Figure 7: Step-by-step insertion, with flips, of a single point in a DT in two dimensions.

3.1 Generalisation of the flip-based incremental insertion algorithm

The algorithm described here is a generalisation to 3D of the flip-based incremental insertion algorithm
used for 2D DT.

Most steps can be generalised in a direct way. Figure 7 shows the steps from the 2D algorithm (as seen
in GEO1015), which are conceptually the same for the 3D generalisation of the algorithm (and it is more
difficult to draw these steps in 3D). The algorithm is described in Algorithm 1.

As is the case with the two-dimensional algorithm, the point p is first inserted in T with a flip (flip14
in the case here), and the new tetrahedra created must be tested to make sure they are Delaunay. The
sequence of flips needed is controlled by a stack containing all the tetrahedra that have not been tested
yet. The stack starts with the four resulting tetrahedra of the flip14, and each time a flip is performed,
the new tetrahedra created are added to the stack. The algorithms stops when all the tetrahedra incident
to p are Delaunay, which also means that the stack is empty.

Initialisation: the big tetrahedron. A DT is initialised with a tetrahedron several times larger than
the spatial extent of S. The points in S are therefore always added inside an existing tetrahedron.

Walk/Point location. To find the tetrahedron containing the newly inserted point p, the adjacency
relationships between the tetrahera can be used. With a series of ORIENT tests one can navigate from
one tetrahedron to the other.

Flips. A flip is a local (topological) operation that modifies the configuration of some adjacent tetra-
hedra. In 2D, for 4 points, a flip (called flip22), modifies the configuration of 2 adjacent triangles by
flipping the diagonal of the quadrilateral. In 3D, there are 2 kinds of flips: flip23 and flip32. Consider
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Algorithm 1: Algorithm to insert one point in a DT

Input: A DT(S) T in R3, and a new point p to insert
Output: T p = T [ {p}

1 find tetrahedron t containing p
2 insert p in t by splitting it in to 4 new tetrahedra (flip14)
3 push 4 new tetrahedra on a stack
4 while stack is non-empty do
5 t = {p, a, b, c} pop from stack
6 ta = {a, b, c, d} get adjacent tetrahedron of t having the edge abc as a face
7 if d is inside circumsphere of t then
8 if configuration of t and ta allows it then
9 flip the tetrahedra t and ta (flip23 or flip32)

10 push 2 or 3 new tetrahedra on stack
11 else
12 Do nothing

Figure 8: The 4 different kinds of flips in 3D.

the set S = {a, b, c, d, e} of points in general position in R3 and its convex hull conv(S). There exist two
possible configurations, as shown in Figure 8:

1. the five points of S lie on the boundary of conv(S); see Figure 8(a). There are exactly two ways
to tetrahedralise such a polyhedron: either with two or three tetrahedra. In the first case, the
two tetrahedra share a triangular face bcd, and in the latter case the three tetrahedra all have a
common edge ae.

2. one point e of S does not lie on the boundary of conv(S), thus conv(S) forms a tetrahedron; see
Figure 8(b). The only way to tetrahedralise S is with four tetrahedra all incident to e.

Based on these two configurations, four types of flips in R3 can be described: flip23, flip32, flip14 and
flip41 (the numbers refer to the number of tetrahedra before and after the flip). When S is in the first
configuration, two types of flips are possible: a flip23 is the operation that transforms one tetrahedral-
isation of two tetrahedra into another one with three tetrahedra; and a flip32 is the inverse operation.
If S is tetrahedralized with two tetrahedra and the triangular face bcd is not locally Delaunay, then a
flip23 will create three tetrahedra whose faces are locally Delaunay.

A flip14 refers to the operation of inserting a vertex inside a tetrahedron, and splitting it into four
tetrahedra; and a flip41 is the inverse operation that deletes a vertex.

Flips can not always be applied during an insertion, it depends on the local configuration. For example,
in Figure 8(a), a flip23 is possible on the two adjacent tetrahedra abcd and bcde if and only if the line ae
passes through the triangular face bcd (which also means that the union of abcd and bcde is a convex
polyhedron). If not, then a flip32 is possible if and only if there exists in the tetrahedralisation a third
tetrahedron adjacent to both abcd and bcde.
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Figure 5: (a) A four-sided convex polygon abcd can be triangulated in two different ways, but the empty
circumcircle criterion guarantees that the triangles are as equilateral as possible. Notice that the edge
ac is not locally Delaunay, but bd is. (b) In three dimensions, five vertices can be triangulated with
either two or three tetrahedra. Although the tetrahedralisation at the bottom has two nicely shaped
tetrahedra, they are not Delaunay (the point d is inside the sphere abce, which also implies that b is
inside the sphere acde). The tetrahedralisation at the top respects the Delaunay criterion, but contains
one very thin tetrahedron spanned by the points a, b, d and e.

This has serious implications as the DT—and its dual—are locally modifiable, ie we can theoretically
insert, delete or move a points in S without recomputing DT(S) from scratch.

2.4 Angle Optimality

The DT in two dimensions has a very important property that is useful in applications such as finite
element meshing or interpolation: the max-min angle optimality. Among all the possible triangulations
of a set S of points in R2, DT(S) maximises the minimum angle (max-min property), and also minimises
the maximum circumradii. In other words, it creates triangles that are as equilateral as possible.

Finding ‘good’ tetrahedra, ie nicely shaped, is however more difficult than finding good triangles be-
cause the max-min property of Delaunay triangles does not generalise to three dimensions. A DT in
R3 can indeed contain some tetrahedra, called slivers, whose four vertices are almost coplanar (see
Figure 5b); these tetrahedra are Delaunay. Note that such slivers do not have two-dimensional coun-
terparts.

For many applications where the Delaunay tetrahedralisation is used, eg in the finite element method
in engineering or when the tetrahedra are used to perform interpolation directly, these tetrahedra are
bad and must be removed. Why use the DT in three dimensions then? First, it should be said that
in most cases Delaunay tetrahedra have in general a more desirable shape than arbitrary tetrahedra,
they tend to favour ‘round’ tetrahedra. Second, the VD is not affected by them: Voronoi cells in three
dimensions will still be ‘relatively spherical’ even if the DT has many slivers. Third, if the VD is used
for interpolation, then the VD is necessary because many GIS operations use the properties of the VD
(see Section 4.2), and if only one tetrahedron does not have an empty circumsphere, then the VD is
corrupted.

2.5 Lifting on the paraboloid

There exists a close relationship between DTs in Rd and convex polytopes in Rd+1.

Let S be a set of points in Rd, and let x1, x2, . . . , xd be the coordinates axes. The parabolic lifting map
projects each vertex v(vx1, vx2, . . . , vxd) to a vertex v+(vx1, vx2, . . . , vxd, v2

x1 + v2
x2 + · · · + v2

xd) on the
paraboloid of revolution in Rd+1. The set of points thus obtained is denoted S+. Observe that, for
the two-dimensional case, the paraboloid in three dimensions defines a surface whose vertical cross
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S

S+

parabolic
lifting

Figure 6: The parabolic lifting map for a set S of points R2.

sections are parabolas, and whose horizontal cross sections are circles; the same ideas are valid in
higher dimensions.

The relationship is the following: every facet (a d-dimensional simplex) of the lower envelope of
conv(S+) projects to a d-simplex of the Delaunay triangulation of S. This is illustrated in Figure 6
for the construction of the DT in R2.

In short, the construction of the d-dimensional DT can be transformed into the construction of the
convex hull of the lifted set of points in (d + 1) dimensions. In practice, since it is easier to construct
convex hulls (especially in higher dimensions, ie 4+), the DT is often constructed with this method.

2.6 Degeneracies

The previous definitions of the VD and the DT assumed that the set S of points is in general position,
ie the distribution of points does not create any ambiguity in the two structures. For the VD/DT in Rd,
the degeneracies, or special cases, occur when d + 1 points lie on the same hyperplane and/or when
d + 2 points lie on the same ball. For example, in three dimensions, when five or more points in S
are cospherical there is an ambiguity in the definition of DT(S). This implies that DT(S) is not unique;
VD(S) is still unique, but it has different properties.

3 Construction of the 3D DT/VD

As is the case in 2D, there exist several algorithms to construct either the DT or the VD from a set of
points in 3D.

Mainly three paradigms of computational geometry can be used for computing a Delaunay triangu-
lation in two and three dimensions: divide-and-conquer, sweep plane, and incremental insertion. In
two dimensions, each one of these paradigms yields an optimal algorithm. In three dimensions, things
are a bit more complicated. Divide-and-conquer algorithms have a worst time complexity of O(n3),
although in practice they are subquadratic. Only incremental insertion algorithms have a complexity
that is worst-case optimal, ie O(n2) since the complexity of the DT in R3 is quadratic. That is, there are
configurations of n points that yield a DT with O(n2) tetrahedra.

And as is the case in 2D, it is often simpler to reconstruct and store the DT (because they have only 4
vertices and 4 neighbours) and to extract the VD on-the-fly when needed.

The details of the algorithms are out of scope for this course. We provide in the following a general
idea of how the reconstruction of the DT is performed in 3D by generalising the algorithm described in
GEO1015.
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Figure �.��: The tetrahedron 0123 is cor-
rectly oriented since O����� (0 , 1 , 2 , 3)
returns a positive result. The arrow indi-
cates the correct orientation for the face
�0 , so that O����� (�0 , 0) returns a posi-
tive result.

�.�.� Predicates

The ‘orientation’ of points in three dimensions is somewhat tricky because,
unlike in two dimensions, we can not simply rely on the counter-clockwise
orientation. In three dimensions, the orientation is always relative to
another point of reference, ie given three points we cannot say if a fourth
one is left of right, this depends on the orientation of the three points.
When dealing with a single tetrahedron � formed by the four vertices
0, 1, 2 and 3 (as in Figure �.��), we say that � is correctly oriented if
O����� (0 , 1 , 2 , 3) returns a positive value. Notice that if two vertices are
swapped in the order, then the result is the opposite (ie O����� (0 , 2 , 1 , 3)
returns a negative value).

Vertices forming a face in a tetrahedron � can also be ordered. As shown
in Figure �.��, a face �0 , formed by the vertices 1, 2 and 3, is correctly
oriented if O����� (�0 , 0) gives a positive result—in the case here, O�����
(1 , 2 , 3, 0) gives a negative result, therefore the correct orientation of �0

is 213. Observe that the face 123 is called �0 because it is ‘mapped’ to
the vertex 0 that is opposite; each of the four faces of a tetrahedron can
be referred to in this way.

O����� determines if a point ? is over, under or lies on a plane defined
by three points 0, 1 and 2. It returns a positive value when the point ? is
above the plane defined by 0, 1 and 2; a negative value if ? is under the
plane; and exactly � if ? is directly on the plane. O����� is consistent with
the left-hand rule: when the ordering of 0, 1 and 2 follows the direction
of rotation of the curled fingers of the left hand, then the thumb points
towards the positive side (the above side of the plane). In other words, if
the three points defining a plane are viewed clockwise from a viewpoint,
then this viewpoint defines the positive side the plane.

O����� can be implemented as the determinant of a matrix:

O�����(0 , 1 , 2 , ?) =

��������

0G 0H 0I 1
1G 1H 1I 1
2G 2H 2I 1
?G ?H ?I 1

��������
(�.�)

The predicate I�S����� follows the same idea: a positive value is returned
if ? is inside the sphere; a negative if ? is outside; and exactly � if ? is
directly on the sphere. Observe that to obtain these results, the points
0, 1, 2 and 3 in I�S����� must be ordered such that O����� (0 , 1 , 2 , 3)
returns a positive value.

It should be noticed that I�S����� is derived from the parabolic lifting
map (see Section �.�.�). It is simply transformed into a four-dimensional
O����� test: ? is inside (outside) the sphere 0123 if and only if ?+ lies
under (above) the hyperplane 0
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be referred to in this way.

O����� determines if a point ? is over, under or lies on a plane defined
by three points 0, 1 and 2. It returns a positive value when the point ? is
above the plane defined by 0, 1 and 2; a negative value if ? is under the
plane; and exactly � if ? is directly on the plane. O����� is consistent with
the left-hand rule: when the ordering of 0, 1 and 2 follows the direction
of rotation of the curled fingers of the left hand, then the thumb points
towards the positive side (the above side of the plane). In other words, if
the three points defining a plane are viewed clockwise from a viewpoint,
then this viewpoint defines the positive side the plane.

O����� can be implemented as the determinant of a matrix:

O�����(0 , 1 , 2 , ?) =

��������

0G 0H 0I 1
1G 1H 1I 1
2G 2H 2I 1
?G ?H ?I 1

��������
(�.�)

The predicate I�S����� follows the same idea: a positive value is returned
if ? is inside the sphere; a negative if ? is outside; and exactly � if ? is
directly on the sphere. Observe that to obtain these results, the points
0, 1, 2 and 3 in I�S����� must be ordered such that O����� (0 , 1 , 2 , 3)
returns a positive value.

It should be noticed that I�S����� is derived from the parabolic lifting
map (see Section �.�.�). It is simply transformed into a four-dimensional
O����� test: ? is inside (outside) the sphere 0123 if and only if ?+ lies
under (above) the hyperplane 0

+
1
+
2
+
3
+, and directly on the sphere if

?
+ lies on the hyperplane 0

+
1
+
2
+
3
+.

I�S�����(0 , 1 , 2 , 3, ?) =
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Left-hand rule
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Figure 3: Duality in R3 between the elements of the VD and the DT.

(a) (b) (c)

Figure 4: (a) A set of 1000 points randomly distributed in a cube. (b) Its convex hull. (c) The Delaunay
tetrahedralisation of the points, ‘sliced’ in the middle and the upper tetrahedra removed (to be able
to visualise the interior).

A Voronoi vertex is located at the centre of the sphere circumscribed to its dual tetrahedron, and two
vertices in S have a Delaunay edge connecting them if and only if their two respective dual Voronoi
cells are adjacent.

2.2 Convex Hull

In any dimensions, the DT of set S of points subdivides completely conv(S), ie the union of all the
simplices in DT(S) is conv(S). The boundary of a convex hull in 3D is formed of a set of triangles.
Figure 4 shows an example.

2.3 Local Optimality

Let T be a triangulation of S in Rd. A facet s (a (d � 1)-simplex) is said to be locally Delaunay if it
either

(i) belongs to only one d-simplex, and thus bounds conv(S), or

(ii) belongs to two d-simplices sa and sb, formed by the vertices of s and respectively the vertices a
and b, and b is outside of the circumball of sa.

The second case is illustrated in two dimensions in Figure 5a. In an arbitrary triangulation, not ev-
ery facet that is locally Delaunay is necessarily a facet of DT(S), but local optimality implies globally
optimality in the case of the DT:

Let T be a triangulation of a point set S in Rd. If every facet of T is locally Delaunay, then
T is the Delaunay triangulation of S.
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Figure 11: Barycentric coordinates in two and three dimensions. Ai represents the area of the triangle
formed by x and one edge.

(a) (b) (c)

Figure 12: An example of an oceanographic dataset where each point has the temperature of the water,
and three isosurface extracted (for a value of respectively 2.0, 2.5 and 3.5) from this dataset.

where vi is a d-dimensional vector representing the coordinates of a vertex and det is the determinant
of the matrix. Triangulating a Voronoi cell is easily performed since it is a convex polytope.

Linear interpolation in tetrahedra. This is the generalisation of the popular linear interpolation in
TINs where the tetrahedra of the DT are used. The barycentric coordinates can be used to linearly
interpolate inside a tetrahedron, as shown in Figure 11 the volume of 4 tetrahedra is used (instead of
the area for the 2D case.) As explained above, finding tetrahedra having a good shape is not as easy as
in two dimensions, and the presence of slivers yield bad results for the interpolation process. To be used
in practice, the shape of the tetrahedra is usually improved with techniques involving the insertion of
new points and/or applying flips.

4.3 Iso-surfaces

Given a set of samples from a trivariate field f (x, y, z) = a, an isosurface is the set of points in space
where f (x, y, z) = a0, where a0 is a constant. Isosurfaces, also called level sets, are the three-dimensional
analogous concept to isolines (also called contour lines), which have been traditionally used to repre-
sent the elevation in topographic maps. Figure 12 shows one concrete example.

As explained in Lesson 7.1, iso-surfaces can be extracted automatically from the DT.

5 Constrained tetrahedralisations

As is the case in 2D, given as input a set of points, straight-line segments, and faces embedded in R3,
two different Delaunay tetrahedralisations are possible:

• conforming Delaunay tetrahedralisation (ConfDT)

• constrained Delaunay tetrahedralisation (ConsDT)
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(a) (b)

Figure 10: (a) Example of a dataset in geology, where samples were collected by drilling a hole in the
ground. Each sample has a location in 3D space (x � y � z coordinates) and one or more attributes
attached to it. (b) An oceanographic dataset in the Bering Sea in which samples are distributed along
water columns. Each red point represents a (vertical) water column, where samples are collected
every 2m, but water columns are about 35km from each other.

vehicles; and samples of the atmosphere must be collected by devices attached to balloons or aircraft.
As shown in Figure10, samples are often abundant vertically but very sparse horizontally.

Another advantage is that the VD can be efficiently and robustly reconstructed, and that based on it
the samples can be interpolated to obtain an estimation of the attribute at any location, see below for
details.

Finally, the tessellations of the VD (and the DT) make possible, and even optimise, several spatial
analysis and visualisation operations.

4.2 Spatial interpolation

Given a set of samples, embedded in three-dimension, to which an attribute a is attached, spatial inter-
polation permits us to reconstruct the field that was sampled.

While most of the two-dimensional interpolation methods used in GIS intuitively extend to three
dimensions, it is not obvious that they preserve their properties or are appropriate for geoscientific
datasets.

Nearest neighbour. The method, based on the VD, generalises in a straightforward manner to 3D. It
suffices to build the VD and to identify inside which cell the interpolation point lies. The VD can be
bypassed if a three-dimensional kd-tree is used.

Natural neighbour interpolation. The theory of this method also generalises in a straightforward
manner to 3D. Instead of having stolen areas, we have stolen volumes. However, although the concepts
behind the method are simple and easy to understand, its implementation for the 3D case is far from
being straightforward. The main reasons are that it requires the computation of two VDs—one with
and one without the interpolation point—and also the computation of volumes of Voronoi cells. This
involves algorithms for both constructing a VD and deleting a point from it.

The volume of a d-dimensional Voronoi cell is computed by decomposing it into d-simplices—not nec-
essarily Delaunay simplices—and summing their volumes. The volume of a d-simplex s is easily com-
puted:

vol(s) =
1
d !

���� det
✓

v0 . . . vd

1 . . . 1

◆���� (4)
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Figure 4.7: (a) The VD of a set of points with an interpolation location x. (b) Natural neighbour coordi-
nates in 2D for x. The shaded polygon is V+

x . (c) The weight for the Laplace interpolant.

where Area(Vpi ) represents the area of Vpi . For any x, the value of wi(x) will always be between 0 and
1: 0 when pi is not a natural neighbour of x, and 1 when x is exactly at the same location as pi. A further
important consideration is that the sum of the areas stolen from each of the k natural neighbours is equal
to Area(V+

x ), in other words:
k

Â
i=1

wi(x) = 1. (4.4)

Therefore, the higher the value of wi(x) is, the stronger is the ‘influence’ of pi on x. The natural neigh-
bour coordinates are influenced by both the distance from x to pi and the spatial distribution of the pi
around x.

Natural neighbour interpolation is based on the natural neighbour coordinates. The points used to
estimate the value of an attribute at location x are the natural neighbours of x, and the weight of each
neighbour is equal to the natural neighbour coordinate of x with respect to this neighbour.

The natural neighbour interpolant possesses all the wished properties from above, except that the first
derivative is undefined at the data points. Its main disadvantage is that its implementation is rather
complex, and obtaining an efficient one is not simple and involves complex manipulation of the VD.
From Section 3.4 we know that one insertion of a single point p in a DT can be done in O(log n), but the
deletion of a point is a more complex operation (outside the scope of this book).

Higher-order function (NNI-c1). The NNI method can be thought of performing linear interpolation,
in the 1D case (where we have one independent variable) then it is equivalent to a linear interpolant
(see Figure 4.8).

It has been modified so that the first derivative is possible everywhere, including at the data points. This
was achieved by modifying the weights so that they are not linear anymore. The gradient of the surface
at each sample point is taken into account, ie for each data point we can estimate the slope (with a linear
function, a plane) and modify the weights; how this is done is out of scope for this course. The resulting
interpolant is C1, and Figure 4.9

4.3.5 Laplace interpolant

The Laplace interpolant, or non-Sibsonian interpolation, is a computationally faster variant of the natu-
ral neighbour interpolation method. It is faster because no (stolen) areas need to be computed, instead
the lengths of the Delaunay and the Voronoi edges are used.
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App#3: visualisation with iso-surfaces �.� Adding constraints ��

(a) (b) (c) (d) (e) (f)

Figure �.��: Potential isosurface (for an
attribute value E) extracted for one tetra-
hedron. Black vertex means that the at-
tribute of this vertex is below E; white
vertex means it is above; and grey that it
is equal.

big tetrahedron

Figure �.��: A PLC representing a solid
(with a genus of �) and having one dan-
gling left; notice also that one extra edge
is on a polygon. Right: These two poly-
gons do not form a valid PLC because
their intersection is not formed of ver-
tices and edges in the PLC.

interpolation on the edges. The resulting isosurface is guaranteed to be
topologically consistent (ie will not contain holes), except at the border of
the dataset. But again, if a “big tetrahedron” is used where the vertices
are assigned to a value lower than the minimum value of the field, then
all the isosurfaces extracted are guaranteed to be ‘watertight’. The nice
thing about the algorithm is that only three cases for the intersection of
the isosurface and a tetrahedron can arise:

�. the four vertices have a higher (or lower) value. No intersection.
(Figure �.��a)

�. one vertex has a higher (or lower) value, hence the three others
have a lower (or higher) value. Three intersections are thus defined,
and a triangular face is extracted. (Figure �.��b)

�. two vertices have a higher (or lower) value and the others have
a lower (or higher) value. Four intersections are thus defined. To
ensure that triangular faces are extracted (better output for graphics
cards), the polygon can be split into two triangles, with an arbitrary
diagonal. (Figure �.��c)

The only degenerate cases possible are when one or more vertices
have exactly the same value as the isosurface. These cases are handled
very easily, and the intersection is simply assumed to be at the vertices
themselves (see Figure �.��d/e/f). Notice that the case when three vertices
have exactly the same value, then the complete face of the tetrahedron
must be extracted to ensure topological consistency.

�.� Constrained tetrahedralisations

As is the case in �D, given as input a set of points, straight-line segments,
and faces embedded in R3, two different Delaunay tetrahedralisations
are possible:

I conforming Delaunay tetrahedralisation (ConfDT)
I constrained Delaunay tetrahedralisation (ConsDT)

Both tetrahedralisations covers the convex hull of P, respect every
polygon (which can be represented by one or more triangles), and include
every segment (which can be one of more edges in the tetrahedralisation)
and vertex.

The typical input of a Delaunay tetrahedralisation program (or algorithm)
is a called piecewise linear complex (PLC). Figure �.�� shows one example.

A PLC P is a set of linear 3-cells (where 0  3  3), that satisfy the
following properties:

�. the boundary of a 3-cell in P is a union of cells in P

�. if two distinct cell 5 , 6 2 P intersect, their intersection is a union
of cells in P.

�.� Adding constraints ��

(a) (b) (c) (d) (e) (f)

Figure �.��: Potential isosurface (for an
attribute value E) extracted for one tetra-
hedron. Black vertex means that the at-
tribute of this vertex is below E; white
vertex means it is above; and grey that it
is equal.

big tetrahedron

Figure �.��: A PLC representing a solid
(with a genus of �) and having one dan-
gling left; notice also that one extra edge
is on a polygon. Right: These two poly-
gons do not form a valid PLC because
their intersection is not formed of ver-
tices and edges in the PLC.

interpolation on the edges. The resulting isosurface is guaranteed to be
topologically consistent (ie will not contain holes), except at the border of
the dataset. But again, if a “big tetrahedron” is used where the vertices
are assigned to a value lower than the minimum value of the field, then
all the isosurfaces extracted are guaranteed to be ‘watertight’. The nice
thing about the algorithm is that only three cases for the intersection of
the isosurface and a tetrahedron can arise:

�. the four vertices have a higher (or lower) value. No intersection.
(Figure �.��a)

�. one vertex has a higher (or lower) value, hence the three others
have a lower (or higher) value. Three intersections are thus defined,
and a triangular face is extracted. (Figure �.��b)

�. two vertices have a higher (or lower) value and the others have
a lower (or higher) value. Four intersections are thus defined. To
ensure that triangular faces are extracted (better output for graphics
cards), the polygon can be split into two triangles, with an arbitrary
diagonal. (Figure �.��c)

The only degenerate cases possible are when one or more vertices
have exactly the same value as the isosurface. These cases are handled
very easily, and the intersection is simply assumed to be at the vertices
themselves (see Figure �.��d/e/f). Notice that the case when three vertices
have exactly the same value, then the complete face of the tetrahedron
must be extracted to ensure topological consistency.

�.� Constrained tetrahedralisations

As is the case in �D, given as input a set of points, straight-line segments,
and faces embedded in R3, two different Delaunay tetrahedralisations
are possible:

I conforming Delaunay tetrahedralisation (ConfDT)
I constrained Delaunay tetrahedralisation (ConsDT)

Both tetrahedralisations covers the convex hull of P, respect every
polygon (which can be represented by one or more triangles), and include
every segment (which can be one of more edges in the tetrahedralisation)
and vertex.

The typical input of a Delaunay tetrahedralisation program (or algorithm)
is a called piecewise linear complex (PLC). Figure �.�� shows one example.

A PLC P is a set of linear 3-cells (where 0  3  3), that satisfy the
following properties:

�. the boundary of a 3-cell in P is a union of cells in P

�. if two distinct cell 5 , 6 2 P intersect, their intersection is a union
of cells in P.



Triangulating a building (or any 3D model)

Two very different  
cases



demo with one building

• MeshLab: https://www.meshlab.net 
• TetGen: http://tetgen.org 
• ParaView: https://www.paraview.org 
• Mapple: https://github.com/LiangliangNan/Easy3D 

https://www.meshlab.net
http://tetgen.org
https://www.paraview.org
https://github.com/LiangliangNan/Easy3D
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