Constructive solid geometry and Nef polyhedra

GEO1004:
3D modelling of the built environment
https://3d.bk.tudelft.nl/courses/geo1004

3D geoinformation
Department of Urbanism
Faculty of Architecture and the Built Environment Delft University of Technology

3D representations so far...

- Explicit geometries:
- 3D objects through 2D (b-rep + meshes)
- Voxels
- 3D Delaunay tetrahedralisations / Voronoi diagrams

Explicit and implicit geometries

- Explicit: more direct descriptions, e.g. point coordinates or the equations typically used to describe shapes
- Implicit: more indirect descriptions, e.g. sequences of operations or complex functions

Why implicit geoms?

- Compact: complex shapes can be represented by a few functions rather than many primitives in a mesh
- Resolution independence: smooth shapes are always smooth, can be evaluated anywhere
- Convertibility: much easier to convert to explicit geoms than vice versa

Constructive solid geometry

- In short: representing complex shapes as operations on simple shapes
- operations: usually Boolean set ops + possibly some others
- simple shapes: parametric shapes, half-spaces + maybe (some) polyhedra

Background

Sets

- Sets: collections of abstract objects called elements
- $\{1,2,3\}=\{3,2,1\}$
- Elements can be anything: letters, numbers, symbols or other sets
- Defined using \{ and \} in two ways:
- Listing elements: $\{1,2,3\}$
- Specifying rules: $\{x: x$ is a prime number $\}$

Set terms and notation

- Element a is in set $\mathbb{X}: a \in \mathbb{X}$
- Element a is not in set $\mathbb{X}: a \notin \mathbb{X}$
- And (\wedge), or (\vee) and not (\neg)
- Set with no elements: empty set, \{\} or \varnothing
- Set with all elements (within context): universe set or \mathbb{U}

Set operations

- Similar to $=,<, \leq,>$ and \geq :
- $\mathbb{A}=\mathbb{B}$: sets \mathbb{A} and \mathbb{B} have the same elements
- $\mathbb{A} \subseteq \mathbb{B}$: every element in \mathbb{A} is in \mathbb{B}
- $\mathbb{A} \subset \mathbb{B}$: every element in \mathbb{A} is in \mathbb{B} and also \mathbb{B} has at least one more element that is not in A

Boolean set operations

- Union: $\mathbb{A} \cup \mathbb{B}=\{x: x \in \mathbb{A} \vee x \in \mathbb{B}\} \quad$ (elements that are in \mathbb{A} or in \mathbb{B})
- Intersection: $\mathbb{A} \cap \mathbb{B}=\{x: x \in \mathbb{A} \wedge x \in \mathbb{B}\} \quad$ (elements that are in \mathbb{A} and in \mathbb{B})
- Difference: $\mathbb{A}-\mathbb{B}=\{x: x \in \mathbb{A} \wedge x \notin \mathbb{B}\} \quad$ (elements that are in \mathbb{A} but not in \mathbb{B})
- Complement: $\neg \mathbb{A}=\{x: x \in \mathbb{U} \wedge x \notin \mathbb{A}\}$ (elements that are not in \mathbb{A})

Tuples

- Tuples: ordered sequences of elements (unlike sets)
- $(1,2,3) \neq(3,2,1)$
- Defined using (and)
- 2 elements: pair, 3 elements: treble/triplet, n elements: n-tuple

Cartesian product

- Operation to build a set of tuples from sets
- $\mathbb{A} \times \mathbb{B}=\{(a, b): a \in \mathbb{A} \wedge b \in \mathbb{B}\}$
- Set of all possible tuples
- ...where the first element is in \mathbb{A}
- ...and the second element is in \mathbb{B}
- $\mathbb{A}^{2}=\mathbb{A} \times \mathbb{A}, \mathbb{A}^{3}=\mathbb{A} \times \mathbb{A} \times \mathbb{A}$, etc.

Point sets

- Set \mathbb{R} : all real numbers
- Using Cartesian geometry, it's possible to define space:
- $\mathbb{R}=\{x: x \in \mathbb{R}\}: 1 \mathrm{D}$ space (i.e. the line)
- $\mathbb{R}^{2}=\{(x, y): x \in \mathbb{R} \wedge y \in \mathbb{R}\}: 2 \mathrm{D}$ space (i.e. the plane)
- $\mathbb{R} 3=\{(x, y, z): x \in \mathbb{R} \wedge y \in \mathbb{R} \wedge z \in \mathbb{R}\}: 3 \mathrm{D}$ space

Objects as point sets

- Starting from two points p_{1} and p_{2}
- The line L passing through the points is given by $\left\{t p_{1}+(1-t) p_{2}: t \in \mathrm{R}\right\}$
- Similar to weighted average / linear interpolation of points
- Works in any dimension

Objects as point sets

Similar parametric equations for many objects, such as a plane:

$$
P=\left\{\frac{a p_{1}+b p_{2}+c p_{3}}{a+b+c}: a, b, c \in \mathbb{R}\right\}
$$

or half-space:

$$
H \leq\left\{\frac{a p_{1}+b p_{2}+c p_{3}}{a+b+c}: a, b, c \in \mathbb{R}\right\}
$$

Objects as point sets

or a ball of radius r :

$$
B=\left\{(x, y, z):\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}+\left(z-c_{z}\right)^{2} \leq r^{2}\right\}
$$

or a cuboid (box):

$$
C=\left\{(x, y, z): x_{\min } \leq x \leq x_{\max } \wedge y_{\min } \leq y \leq y_{\max } \wedge z_{\min } \leq z \leq z_{\max }\right\}
$$

A CSG engine

- Leaf nodes: primitives defined as point sets
- Non-leaf nodes: Boolean set operations that operate on point sets
- Combined geometries are just evaluations on point sets, e.g. on a voxel grid of arbitrary resolution

Nef polyhedra

- Alternative definition of polyhedra with:
- non-manifolds
- robust Boolean point set operations
- Based on local pyramids
- Operations can be performed at the local pyramid level

Local pyramids

- Intersection of an infinitesimally small circle (2D) or sphere (3D) located at each vertex
- Dimension reduction mechanism in Nef polyhedra (akin to b-rep):
- 2D Polygon as a set of vertices + 1D ranges
- 3D Polyhedron as a set of vertices +
 2D sphere map

Local pyramids

Local pyramids

Hachenberger et al. (2006)

Operations on local pyramids

1. subdivision: compute overlay -> new local pyramids
2. selection: perform operation on local pyramids
3. simplification: remove unnecessary local pyramids

Operations on local pyramids

What to do next?

1. Today:

- Continue with Homework 2 (generalisation of a 3D city model)
- Go to geo1004 website and study today's lesson (3D book Chapter 5)

2. Wednesday: BIM demos and intro to Homework 3, then help with lessons or Homework 2
3. Thursday: help session with me

https://3d.bk.tudelft.nl/courses/geo1004

3D geoinformation

References

- Peter Hachenberger, Lutz Kettner and Kurt Mehlhorn. Boolean operations on 3D selective Nef complexes: Data structure, algorithms, optimized implementation and experiments. Computational Geometry 38 (1-2) pp. 64-99. 2007.

