Boundary representation, surfaces and meshes

GEO1004: 3D modelling of the built environment

https://3d.bk.tudelft.nl/courses/geo1004

3D geoinformation

Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

What is boundary representation?

- Also known as b-rep or surface modelling
- Representing an *n*-dimensional object through its (*n* – 1)-dimensional boundary
- Most of the time: a 3D object through its 2D boundary

- Data structures for 2D are easier than data structures for 3D
 - Representing 2D polygons: as simple as a list of (x, y) vertices
 - Implicit assumption: there's a connection between each consecutive vertex and between the last and first

In any dimension

Wikimedia Commons

Why does it work?

- In 2D, the Jordan curve theorem says: a closed curve separates the plane into two parts: an interior surface and an exterior surface
- In *n*D, the Jordan-Brouwer theorem, which in 3D says: a closed surface separates 3D space into two parts: an interior volume and an exterior volume.

b-rep in the 3D context

- store 3D objects by storing their 2D boundary
- ... which can be split into a set of **surfaces** (in GIS usually triangles or polygons)
- ... which can be represented using a (2D) **mesh**, i.e. a repetitive arrangement of simpler elements

note: not the same as a 3D mesh (e.g. TEN)

- Every traditional GIS format (Shapefiles, GML, KML, GeoJSON, etc.)
- Most formats for 3D graphics (OBJ, PLY, VRML, COLLADA, gITF, etc.)
- Most implementations in DBs (PostGIS, Spatialite, MySQL, Oracle Spatial, etc.)
- Part of what is internally used in 3D modelling and 3D animation software, CAD and BIM, 3D games and game engines, etc.

Where?

- Three basic approaches:
 - Split into triangles, then use a triangle-based structure
 - Keep as polygons, then use:
 - edge-based structures or
 - incidence graphs

Storing a 2D mesh

- Triangle DS as 3 points, i.e. coordinates of its 3 vertices (no topology)
- Triangle DS pointing to 3 vertex DS (vertex DS has coordinates)
- Triangle DS pointing to: 3 adjacent triangle DS and 3 vertex DS
- Triangle DS pointing to 3 adjacent triangle DS, 3 edge DS and 3 vertex DS

Some examples

Example from CGAL https://doc.cgal.org/latest/TDS_2/index.html

- Triangle strips
- Triangle fans
- Triangle stars

•••

Edge-based structures

left face

cw l edge

right face

origin vertex

ccw r edge

Edge-based structures

Edge-based structures

- Essentially two types:
 - Full edges (e.g. winged edge, quad edge)
 - Half-edges (e.g. DCEL, 2D combinatorial maps)

Example from CGAL https://doc.cgal.org/latest/HalfedgeDS/index.html

- Adjacency/incidence? neighbouring objects
 - Adjacency: same dimension
 - Incidence: different dimension

- Two edges are adjacent if they share an incident vertex
- Two faces are adjacent in they share an incident edge

- Less common but also:
 - Two vertices are adjacent if they share an incident edge
 - Two edges are adjacent if they share an incident face

$(x_0, x_1, ...)$

B-rep in fields: isosurfaces

• Not boundary of object -> boundary of level set 00 CONTRACTOR DATE

Homework 1 intro

What to do next?

- Today: 1.
 - Go to geo1004 website and study today's lesson (3D book Chapter 2)
 - Get started with Homework 1
- Wednesday: 3D Voronoi demos, then help with lessons or Hw 1 2.

https://3d.bk.tudelft.nl/courses/geo1004

3D geoinformation

Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

