Applications of 3D modelling of the built environment

> GE01004:

3D modelling of the built environment

3D geoinformation
Department of Urbanism
Faculty of Architecture and the Built Environment Delft University of Technology

Other applications

- Visualisation (eg for gaming, tourism, navigation, etc)
- Energy demand estimation (and potential for retrofitting)
- Computational fluid dynamics (eg for wind speeds, air quality, effects on buildings, etc)
- Shadow casting (eg for building permits, visibility analysis, improving energy demand/ solar potential calculations, etc)

Some MSc Geomatics theses

- Motivation: create (rough) indoor geometry from widely available outdoor geometry
- Definition of a CityGML LOD2 with interiors (LOD2+)
- Compute interior geometry from exterior geometry + number of storeys
- Compute net internal area

LOD2+

Exterior in LOD2	Interior in LOD2+
Buildings bodies are prisms	Storeys within building bodies are prisms
Simple roof shapes	Attic storey shapes corresponding to roof shapes
Thematically classified boundary surfaces	Thematically classified boundary surfaces
No openings in the exterior geometry	No openings in the indoor geometry

Indication of storeys

Indication of storeys

Wall thickness

Type	year y	storeys x	$t_{\text {ext }}$ [cm]	$t_{\text {shared }}$ [cm]
Non-stacked	$y<1970$	$x \leq 2$	27	11
		$x \geq 3$	27	12
	$1970 \leq y \leq 1985$	$x=2$	27	10
		$x=3$	28	12
		$x=4$	27	9
	$y>1985$	$x=2$	28	13
		$x=3$	30	12
		$x=4$	25	12
Stacked	$y<1970$	$x \leq 5$	29	12
		$5<x \leq 10$	38	11
		$x>10$	25	9
	$1970 \leq y \leq 1985$	$x \leq 5$	28	11
		$5<x \leq 10$	26	11
		$x>10$	29	12
	$y>1985$	$x \leq 5$	30	12
		$5<x \leq 10$	38	13
		$x>10$	35	15
Other types	$y<1970$	$x=1$	14	14
		$x \geq 2$	31	11
	$1970 \leq y \leq 1985$	$x=1$	14	14
		$x \geq 2$	30	10
	$y>1985$	$x=1$	14	14
		$x \geq 2$	36	13

Boolean set intersection

Classifying surfaces

Results

Results

Results

Net internal area (stacked)

■ Number of buildings - Cumulative \%

Net internal area (non-stacked)

- Motivation: update 3D city models from designed BIM models (including potentially interiors)
- Fill gaps using Minkowski sum to increase size of elements
- Merge elements using Boolean set union
- Reclassify surfaces

Automatic generation of CityGML LoD3 building models from IFC models

MSc thesis in Geomatics
by Sjors Donkers

December 2013
TUDelft Department of GIS Technology OTB Research Institute for the Built Environment

Goal

3DCM vs BIM

Methodology (semantics)

Methodology (geometry)

(d) result

(e) erosion

(f) final result

Results

Results

Results

Issues

- Motivation: repair 3D models so that they can be used in applications
- Voxelisation
- Reconstruction of mesh
- Obtain semantics and export

Fixing 3D models

Methodology

Voxelisation

Voxelisation: overshoo†

Voxelisation: gap

| \circ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Voxelisation: shooting rays

Majority counting: overshoot \dagger

Majority counting: gap

Marching cubes

Dual contouring

Dual contouring

Dual contouring

Dual contouring

Full process

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

(a) The original polygonal model

(c) Dual Contouring result

(b) Marching Cubes result

(d) Pressing result

Results

Results

Artefacts

Results

- Motivation: improving the accuracy of the location of personal weather stations for urban heat island research
- Generate potential locations
- Evaluate them through skyview + solar modelling

TU Delft

Delf University of Technology

Air temperature $\left({ }^{\circ} \mathrm{C}\right)$

Urban heat island

Traditional weather stations

Personal weather stations

Crowdsourced weather data

Behaviour

Potential locations

Potential locations

Potential locations

Skyview computation

Analysis

Results

Experiment

Experiment

- Motivation: automate some (simple) building permit checks using a 3DCM
- Formalisation of regulations
- Store necessary data in CityJSON extension
- Automate some checks (car + bicycle parking)

Automatic building permits checks
by means of 3D city models

Jialun Wu

 2021

Formalisation of regulations

```
For residential buildings:
BUH40 = Count BU (function."home")
AND (A(BU) 40 m2)
BUH40-65 = Count BU (function."home")
AND (40 A(BU) }65\textrm{m}2
BUH65-85 = Count BU (function."home")
AND (65 A(BU) }85\textrm{m}2
BUH85 = Count BU (function."home")
AND (85 m2 A(BU))
Rules (must be true)
IF BU(function) = "home"THEN
MinNPP=(BUH40*2) + (BUH40-65*3)
+ (BUH65-85*4) + (BUH85*5)
NewParkings \geqsum(MinNPP) + sum((MinMQPP/parkingArea))
```


New attributes to store

	Information	Explanation	Sources	name in sources
7^{*} Attributes	id	Bag id of building	BAG	identificatie
	+function	Function of buildings included in codelist	BAG	NR_XXX (different functions)
	+groundHeight	Elevation above sea level at the ground level	3D BAG	ground-0.00
	measuredHeight	Elevation above sea level at rooflevel	3D BAG	roof-0.75
	+zone	Zone where the building is located	Digital map	zone
	+height_valid	Indicate the height is valid	3D BAG	height_valid
	+total_area	Gross floor area (GFA) of building	BAG	Calculation results on different attributs
+Geometry	type	geometry type of buildings	BAG	type
	coordinates	a lists contain [x,y,z] 3D coordinates	BAG	coordinates

CityJSON extension

CityJSON extension

```
"68": {
    "type": "Building",
    "toplevel": true,
    "attributes": {
    "+height_valid": 1,
    "+non_residential": 1,
    "+groundHeight": 0,
    "measuredHeight": 28.0,
    "+total_area": 1371.5687999999998,
    "+discount_factor": 0.95,
    "+min_bicycle_parking_spaces": 117,
    "+min_car_parking_spaces": 78,
    "+function": "catering I"
```


Generating required info

Programming checks

```
N_40 = int(f['properties ']['N_40'])
N_40_65 = int(f['properties']['N_40_65'])
N_65_85 = int(f['properties']['N_65_85'])
N_85_120 = int(f['properties']['N_85_120'])
N_120 = int(f['properties']['N_120'])
if f['properties']['zone'] == 'A':
    oneb['attributes']['+min_car_parking_spaces'] = int(
    N_40 * 0.1 + N_40_65 * 0.4 + N_65_85 * 0.6 + N_85_120 * 1 +
    N_120 * 1.2)
if f['properties']['zone'] == 'B':
    oneb['attributes']['+min_car_parking_spaces'] = int(
    N_40 * 0.1 + N_40_65 * 0.5 + N_65_85 * 0.8 + N_85_120 * 1 +
    N_120 * 1.2)
if f['properties']['zone'] == 'C':
    oneb['attributes']['+min_car_parking_spaces'] = int(
    N_40 * 0.1 + N_40_65 * 0.6 + N_65_85 * 1.4 + N_85_120 * 1.6
    + N_120 * 1.8)
```


Results: tool

के Minimum Bicycle and Car Parking Spaces for New Buildings

IMPVT (Buffer map)

IMPVT (new buildings)

Output

Calculate the minimum bicycle and car parking spaces for new bui1dings

For parameters:
Input: Select the layer which contains buffer map for discount, new building data.

Output: Select path to store the output CityJSON results.

Click OK/Cancel to

- Motivation: use 3DCM for space heating demand calculations
- Develop CityJSON extension with all required information
- Implement space heating models
- Use implementation to improve extension design

Creating a CityJSON + Energy Extension file with
the needed input data for the use case demand
Validation through cjval

Valid CityJSON Energ Extension

Storing new (complex) geometries

New attributes

Net internal area	Exludes internal structural elements Class
Type of use of the building, e.g. residential, mixed-use	
Function	Further description of the class, e.g., health, business
Usage	Whether the building is still in use
Measured height	Height of the building, in m
Relative to terrain	Whether the building is (entirely) above or below the terrain
Roof type	E.g. slanted, single/multiple horizontal
Year of construction	Construction year of the building
Footprint area*	Footprint area, calculated from the LoD0 geometry, in m^{2}
Storeys above ground*	Number of storeys situated above ground level
Storeys below ground	Number of storeys situated below ground level
Building name ${ }^{*}$	Unique name of the building
Is single part	Boolean value to show whether the building has BuildingParts
\# of adjacent buildings	Number of topologically adjacent buildings
LoD2 volume	Building volume, calculated from the LoD2 geometry, in m^{3}
LoD max	Maximum LoD present for the building
Building (pand) ID	Unique ID of the building
List adjacent buildings	Building (pand) ID of topologically adjacent buildings
Surface ID	Unique ID of the BoundarySurface
Parent building ID	Building (pand) ID of the building that the surface belongs to
Surface name	Unique name of the BoundarySurface
Azimuth	Azimuth of the surface, in degrees
Inclination	Inclination of the surface, in degrees
Direction	Direction of the surface
LoD2 area	Surface area, calculated from the LoD2 geometry, in m^{2}
Surface normal	Normal vector of the surface

New attributes

```
"extraAttributes": {
    "Building": {
        "+buildingType": {...},
        "+constructionWeight": {...},
        "+volume": {...},
        "+floorArea": {...},
        "+heightAboveGround": {...}
    }
}
```

```
"Build1": {
    "type": "Building",
    "geometry": [...],
    "attributes": {
        "+buildingType": "singleFamily",
        "+constructionWeight": "heavy",
    }
}
```


New City Objects

```
"extraCityObjects": {
    "+WeatherData": {
        "type": "object",
        "properties": {
        "type": {...},
        "attributes": {
            "type": "object",
            "properties": {
            "weatherDataType": {...},
            "values": {...},
            "position": {...}
            }
```

```
"OutdoorTemperature": \{
    "type": "+WeatherData",
    "attributes": \{
        "weatherDataType": "airTemperature",
            "values": "RegularTimeSeries1",
                                //ID of TimeSeries object
    \}
\},
"RegularTimeSeries1": \{
    "type": "+RegularTimeSeries",
    "attributes": \{
            "values": [2.61, 4.82, 5.91, 9.32,
            14.73, 16.12],
    \}
\}
```


Test data

Results: heating energy demand

- Motivation: unreliable or non-existent information in IFC models
- Automatically create shapes of rooms, storeys and apartments
- Built on IfcOpenShell

Current IfcSpaces

Computing storeys

Computing storeys

Computing rooms

Computing apartments

Results

Results

Results

Recommendations

- GEO5014: Geomatics as support for energy applications
- GE05015: Modelling wind and dispersion in urban environments
- Your own MSc thesis

Sources of images

- [2-6]: Filip Biljecki (paper on application of 3D city models and PhD thesis)
- [9-20]: Roeland Boeters (MSc thesis and related paper)
- [21-29]: Sjors Donker (MSc thesis)
- [30-48]: Damien Mulder (MSc thesis)
- [49, 51-62]: Yixin Xu (MSc thesis)

Sources of images

- [50]: Anna-Maria Ntarladima (MSc thesis)
- [63-70]: Jialun Wu (MSc thesis)
- [71-78]: Özge Tufan (MSc thesis)
- [79-91]: Jasper van der Vaart (MSc thesis)

