
3D modelling of the built environment

Ken Arroyo Ohori Hugo Ledoux Ravi Peters

v0.9.2



© 2020–2024 Ken Arroyo Ohori, Hugo Ledoux, and Ravi Peters

c b This work is available under a Creative Commons Attribution 4.0 International

License. For license details, see http://creativecommons.org/licenses/by/4.0/

v0.9 — for 2024 course

Download latest version
The latest version of this book can be downloaded in PDF at

https://github.com/tudelft3d/3dbook/releases

Source code
The source code, in LAT

E
X, is openly available at

https://github.com/tudelft3d/3dbook

Errors? Feedback?
Please report errors at

https://github.com/tudelft3d/3dbook/issues

Colophon
This book was typeset with LAT

E
X using the kaobook class (https://github.com/fmaro

tta/kaobook).

http://creativecommons.org/licenses/by/4.0/
https://github.com/tudelft3d/3dbook/releases
https://github.com/tudelft3d/3dbook
https://github.com/tudelft3d/3dbook/issues
https://github.com/fmarotta/kaobook
https://github.com/fmarotta/kaobook


Preface

This book is the bundle of lecture notes written for the course 3D modelling of the built
environment (GEO1004), which is part of the MSc in Geomatics at the Delft University

of Technology. Each chapter corresponds to a lesson of the course, and each lesson is

accompanied by a short video introducing the key ideas and/or explaining some parts of

the lessons. This book, the videos and other materials are freely available online on the

website of the course:

https://3d.bk.tudelft.nl/courses/geo1004/

Contents The book describes the main ways in which the built environment is modelled

in three dimensions, covering material from low-level data structures for generic 3D data

to high-level semantic data models for cities.

Who is this book for? The book is written for students in Geomatics at the MSc level,

but we believe it can be also used at the BSc level. The main prerequisites are GIS and

programming.

Acknowledgements. We would like to thank Francesca Noardo, who contributed

significant parts of the BIM chapter. Also thank you to all the students who helped us by

pointing out errors and typos, especially Zhaiyu Chen and Bingshiuan Tsai.
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The 3D modelling of the built environment involves the creation, manip-

ulation and use of 3D digital representations of the real world, including

buildings, terrains and infrastructure. There are many approaches that

can be taken with these representations, resulting in a huge variety of

methods, each of them modelling things in a different way with different

applications in mind.

When implemented in practice into a complete solution to a problem,

these representations are not completely different from one another either.

Instead, they usually involve a unique mix of established techniques

devised to represent shapes, connectivity and attributes. The possible

combinations of techniques means that the end result can differ greatly,

but good solutions tend to strike a balance between their capabilities

(eg enough flexibility to model many types of objects), their simplicity

(eg using a consistent structure to allow for automated processing using

simple rules) and how well they target the application they’re used in.

In addition, the solutions that become widespread in practice also rely

on many practical aspects, such as having good software support and

widely available data.

All of the above means that the representations used for 3D modelling

of the built environment are interconnected and have many common

elements. Nevertheless, we have tried to split them into mostly inde-

pendent chapters—each covering a different representation in detail.

The book starts from simple, generic and fundamental 3D modelling

representations. Then, it moves towards more complex ones that use

others as building blocks and have more clearly defined applications

within the built environment realm. We focus mostly on the technical

characteristics of each but also try to cover the most important practical

aspects. The book ends with chapters that tie the content to the creation of

complex data sets through building reconstruction and to the application

of the topics seen in the chapters.

In this introductory chapter, we discuss the most important concepts

that underlie the rest of the book and that should help the reader to

tie the different chapters together. These notions can be considered as a

sort of glossary of the main ideas behind the 3D modelling of the built

environment.

1.1 Common conceptualisations of the 3D
modelling process

The 3D modelling process is quite complex, and is therefore usually

described as more of a sequence of simpler processes that happen on

multiple levels. There are two common different conceptualisations for

this in practice: a system of hierarchical abstractions that starts from

the concrete real world and increasingly abstracts it into elements for
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Figure 1.1: Some typical applications of

3D city models (Biljecki et al., 2015).
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1. Introduction

A 3D city model is a representation of an urban environment with a three-dimensional geometry of
common urban objects and structures, with buildings as the most prominent feature [1–4]. A typical
3D city model is derived from various acquisition techniques, for instance, photogrammetry and laser
scanning [5–8], extrusion from 2D footprints [9,10], synthetic aperture radar [11–15], architectural
models and drawings [16–18], handheld devices [19,20], procedural modelling [21–26], and volunteered
geoinformation [27–29]. Seemingly, visualisation dominated the early uses of 3D city models. However,
as the technology developed, 3D city models have become valuable for several purposes beyond
visualisation, and are utilised in a large number of domains [30–35] (Figure 1). Such diversity and
the increasing number of applications render it difficult to keep track of the utilisation possibilities of
3D city models. It appears that, despite the near-ubiquitousness of 3D city models, a comprehensive
inventory of 3D applications does not exist (examples of previous efforts are presented in Section 2).
Because each 3D application requires its own specific 3D data, a comprehensive inventory can help
linking the requirements to specific applications. Contributing to these efforts, as we do in this paper,
helps identifying the requirements emerging across domains to generate 3D data that is fit-for-purpose.
Such an inventory also provides a reference for user testing, thus contributes to identifying the eventual
understanding of the models’ fitness-for-use.

Figure 1. 3D city models may be applied in a multitude of application domains for
environmental simulations and decision support.

In Section 3 we present the methodology of our survey, and discuss barriers we encountered. It is
important to note that throughout this manuscript, we focus on the state of the art regarding the utilisation
of 3D city models; however, we also use the terms 3D GIS and 3D geoinformation when the context

hierarchical abstractions

geoinformation chain

a computer representation; or a series of steps that mimics the typical

geoinformation process from measurements or acquisition, through one

or more processing steps and ending with applications.

1.1.1 Hierarchical abstractions

One of the most useful concepts behind the 3D modelling of the built

environment is that it is done through a series of abstractions of the real

world, each working at a different abstraction level. For instance, a typical

high-level abstraction could divide the world into discrete objects (eg indi-

vidual buildings or plots of land), whereas a lower-level abstraction could

divide each surface of a wall into triangles (ie meshing) while satisfying

certain characteristics (eg minimum angles). Each abstraction is thus

an engineered partial solution to a complex modelling problem, which

comes with its own technical choices, advantages and disadvantages,

and applications for which it is suitable (or not).

For example, a 3D city model can be stored in a .jsonfile where its entities

are structured according to the CityJSON data model, with geometries

represented as solids, and where each semantic surface is a triangulated

mesh. Alternatively, we can have a classified point cloud of the same city

stored in an indexed series of .las files representing tiles. Out of these

two representations, the point cloud can be easily used as base elevation

data or for many visualisation-based operations with comparatively little

processing, but even simple spatial analysis operations (eg counting the

number of buildings or computing their volume) can be very complex.

On the other hand, the 3D city model could be used for complex spatial

analysis operations (eg wind and solar radiance simulations; Figure 1.1),

but some objects that are present in the real-world (eg trees and fences)

might be lost in the model or present only as artefacts.

1.1.2 Geoinformation processing

From a practical perspective, a common way to consider how space is

structured is based on the usual steps in the geoinformation chain (or

pipeline). This considers that one starts from the acquisition of data,

either through traditional measurements (using anything from a tape
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Euclidean geometry

Figure 1.2: Since there is exactly one line

that passes through any pair of points,

two points can be used to describe a line

in Euclidean geometry.

Cartesian geometry

Figure 1.3: A point in 3D described

by an ordered list of three coordinates

(𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧).

measure to a total station) or using a variety of sensing technologies,

including active methods using the reflections of electromagnetic waves

(eg all forms of lidar and radar) and vibrations (eg underwater echo

sounding and seismic methods), as well as passive methods (eg digital

images using any spectrum).

These ‘raw’ measurements are then used to create simple primitives (eg

the points in a point cloud or the plane equation of a wall), and these

are then further processed and assembled to create more complex 3D

objects.

For instance, a typical process can go from a set of lidar full waveforms

to a point cloud by deciding on appropriate return power thresholds,

then to a series of meshes by reconstructing surfaces and fitting planes,

and finally to a 3D city model with semantic surfaces by classifying and

assembling the surfaces into 3D objects. In every step of such a process,

there is certain amount of information loss, but (ideally) the information

that remains is more structured and meaningful.

1.2 Geometry, topology and semantics

Within the context of the built environment, 3D modelling is usually

split into three different modelling components: geometry (modelling of

shape), topology (modelling of connectivity) and semantics (modelling of

qualitative or quantitative values). These terms, as well as others covered

in this section, are mostly derived from different branches of mathematics,

but it is worth noting that their application within the geoinformation

domain can differ substantially from their original mathematical meaning.

For instance, within geoinformation, it is common to refer to individual

objects with a geometric description simply as geometries, or to the

interplay between different overlapping objects as a topology.

1.2.1 Geometry: Euclidean, Cartesian and point set

When we model objects mathematically, we often rely on abstract geomet-

ric shapes, such as point, lines and planes. The simplest mathematical

descriptions for these are based on Euclidean geometry. Euclidean geome-

try starts from a small set of geometric axioms considered to be intuitively

obvious (Figure 1.2). Using these axioms, it is possible to construct more

complex objects (eg a triangle covering the area between three points)

and to define properties, such as relative distances, angles and areas.

However, objects in Euclidean geometry do not have an absolute position

in space.

Where this notion is required, analytic or Cartesian geometry adds the

concept of coordinates to the objects of Euclidean geometry, which

makes it possible to uniquely describe the absolute location of a point

(Figure 1.3), the length of a line or the angle between two lines. This

analytic description also makes it possible using algebra to compute the

exact value of some properties, such as the distance between two points

(as described by their coordinates).
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point set geometry

explicit geometry

implicit geometry

Pure analytical solutions can be however tricky (eg points placed at

irrational values), so some other definitions used for modelling objects

rely on point set geometry. This method uses the mathematical definitions

of sets and of operations between sets to define objects as sets of (often

infinitely many) points. For instance, we can say that a sphere is a point

set where the distance to a given point (ie the centre) is equal to a value,

or to define an object as the intersection between two other objects.

Within the context of the built environment, all of these types of geometric

descriptions are used to define 3D objects. Euclidean geometry is what is

most often used to describe geometric primitives, Cartesian geometry

is usually used to append coordinates to points or equations to more

complex shapes, and point set geometry is the basis for the representations

that are based on implicit geometries.

1.2.2 Explicit and implicit geometry

Another distinction with respect to geometry is between explicit and

implicit geometries. This separation is related to the notion of explicit
and implicit functions or equations in mathematics. The exact definitions

are a bit tricky, as a simple approximation, explicit functions between

variables can express one variable in terms of the others, whereas implicit

functions cannot, or at least cannot do so easily. Instead, they tend to be

defined more indirectly using additional variables or based on conditions

that all variables need to jointly comply with.

Within the context of 2D/3D modelling, explicit representations of geometry
are those that are more direct, usually using more straightforward

descriptions of point coordinates or the equations typically used to

describe shapes, eg lines, planes or polygons. Complex objects are usually

described explicitly using a large number of simple primitives.

Meanwhile, implicit representations are those that rely on more indirect

descriptions, such as sequences of operations or complex functions, which

often rely on non-spatial parameters (ie not 𝑥, 𝑦 or 𝑧). Usually, some

complex objects can be described implicitly using only a few primitives.

Many more advanced geoinformation processing methods rely on the

specific properties of a certain type of implicit geometries.

However, since many methods and software rely on explicit geometries,

obtaining explicit geometries from implicit ones is a common task. It

can be quite difficult in practice, often involving difficult calculations or

leading to problems of discretisation or loss of precision.

1.2.3 Topology: graphs and algebraic topology

The concepts from different branches of geometry are useful to describe

the overall shape of objects, but in practice we often need to add con-

cepts of topology as well. For instance, this is often used to describe

relationships between objects, such as adjacency or connectivity. In the

3D modelling of the built environment, topology is especially important

because the standard approach to model complex objects is to divide

them into small elements, and thus we also need to describe how these

elements are connected.
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In its simplest form, topology often takes the form of a graph, where the

elements are vertices that are connected by (directed) edges. Vertices often

correspond to geometric points and edges to geometric line segments,

but this is not always the case. For instance, in a dual representation,

vertices can correspond to polygons and the edges connecting them can

correspond to the connections between adjacent polygons.

Algebraic topology takes the concept of a graph further by allowing us

to use higher-dimensional objects (eg faces and volumes), which will

be used to describe simplices and cells in some of the data models that

we will discuss later in the course. It also makes it possible to describe

objects based on sets, as well as to create operations that modify these

sets.

1.3 Objects and fields

From a theoretical GIS standpoint, the typical way to conceptualise space

recognises two ways of looking at the world: objects and fields. The objects

view considers that space is empty and is populated by discrete objects. In

order to represent this view, objects are therefore modelled individually

(eg a building modelled as a set of surfaces), although it is worth noting

that these objects can be smaller or bigger depending on the level of detail

involved. For instance, a building information model can model every

individual brick, fire suppression sprinkler or layer of insulation in a wall

as separate objects with high detail; whereas national or city-wide models

can aggregate or generalise multiple buildings into simple rectangular

city blocks.

By contrast, the fields view considers that there are certain attributes that

fill regions of space and have a changing value as one moves through it.

The typical examples are physical characteristics, such as the elevation of

a terrain, the temperature or the wind speed. Since we generally cannot

know or store the values of fields in every possible location, of which there

might be infinitely many, the standard approach is to mathematically

model an approximation (eg elevation modelled as an interpolated set of

points).

The representation of both objects and fields in a computer faces many

common problems. Foremost, objects and fields are both continuous,

and, by contrast, computers are discrete machines. They must therefore

be acquired in a discrete way, eg measuring fields through samples

or measurements from sensors, or acquiring the geometry of objects

through a limited number of measured or remotely sensed points.

This discrete acquissition process is affected by the acquisition tools

and techniques, and is made more complex because we seldom have

direct access to the whole object of interest, either due to physical or

cost limitations. For example, to collect field samples in the ground,

we must dig holes or use other devices (eg ultrasound penetrating

the ground); underwater samples are collected by instruments moved

vertically under a boat, or by automated vehicles; and samples of the

atmosphere are collected by devices attached to balloons or airplanes.

Similarly, buildings and infrastructure can be acquired through images

captured from a limited number of pictures from a few angles, using
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cameras with a limited resolution and often resulting in parts that are

not sensed clearly or missing altogether.

Then, it is necessary to reconstruct objects or fields from these limited

samples using different discrete techniques.

1.4 Data models and data structures

A data model is a high-level formalised way to structure information,

generally using a set of abstract classes, relationships between them, and

attributes to store information about them. In the context of geomatics,

these classes are often spatial representations of real-world objects. Some

aspects that are typically defined by a data model include the kind of

discretisation of space that is used (eg a grid) and the formal mathematical

bases of the model (eg describing the basic elements of a data model as

tuples). Certain data models also include formalised operations that can

be performed on their defined classes.

Data models are deliberately ambiguous and far from a computer rep-

resentation, and so implementing them involves various engineering

decisions and can be tricky. Moreover, without some specific encoding

rules, different people will make different engineering decisions and thus

likely implement a data model very differently.

The typical examples of data models used in (older) geomatics literature

are the raster and vector data models. These examples are historically

accurate because they are clear-cut high-level descriptions that can each

be implemented in a variety of ways. For instance, rasters can be encoded

by traversing them in a given order and listing the values in each cell one

by one (known as exhaustive enumeration), by splitting it into successive

halves of a uniform value using a 𝑘-d tree, or by compressing it using a

Wavelet transform (eg in JPEG 2000 images).

However, it is worth noting that nowadays the term data model is most

often used to refer to highly complex abstractions of the real world

that are suitable for a particular domain. These can include a mixture

of geometric, topological and semantic components. Data models are

often available in the form of a schema—a descriptive document that

specifies the data model in a formal manner. Schemas are often described

using UML models (eg CityGML; Figure 1.4), although using a computer-

processable language (eg JSON schema in CityJSON, EXPRESS in IFC,

XSD in CityGML) is generally better since it allows processing the schema,

such as for validation.

A data structure is a low-level description that specifies how to implement

a data model, or occasionally a combination of multiple data models.

Data structures are defined with little to no ambiguity, specifying features

such as what sort of storage should be used for a given primitive (eg an

array or a linked list). As opposed to a data model, creating a computer

implementation of a data structure is thus relatively straightforward, and

different people implementing the same data structure will end up with

very similar implementations.

Data structures can be specified using the same methods as data models,

eg UML models, but more explicit descriptions are also possible. For
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8 Spatial model 

Spatial properties of CityGML features are represented by objects of GML3‟s geometry model. This model is 
based on the standard ISO 19107 „Spatial Schema‟ (Herring 2001), representing 3D geometry according to the 
well-known Boundary Representation (B-Rep, cf. Foley et al. 1995). CityGML actually uses only a subset of the 
GML3 geometry package, defining a profile of GML3. This subset is depicted in Fig. 8 and Fig. 9. Furthermore, 
GML3‟s explicit Boundary Representation is extended by scene graph concepts, which allow the representation 
of the geometry of features with the same shape implicitly and thus more space efficiently (chapter 8.2). 

8.1 Geometric-topological model 

The geometry model of GML 3 consists of primitives, which may be combined to form complexes, composite 
geometries or aggregates. For each dimension, there is a geometrical primitive: a zero-dimensional object is a 
Point, a one-dimensional a _Curve, a two-dimensional a _Surface, and a three-dimensional a _Solid (Fig. 8). 
Each geometry can have its own coordinate reference system. A solid is bounded by surfaces and a surface by 
curves. In CityGML, a curve is restricted to be a straight line, thus only the GML3 class LineString is used. 
Surfaces in CityGML are represented by Polygons, which define a planar geometry, i.e. the boundary and all 
interior points are required to be located in one single plane.  
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gml::_GeometricPrimitive

<<Geometry>>
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+position : gml::DirectPosition [1]

<<Geometry>>
gml::Point

<<Geometry>>
gml::CompositeSolid

<<Geometry>>
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gml::Triangle+stopLines : gml::LineStringSegment [0..*]

+breakLines : gml::LineStringSegment [0..*]
+maxLength : gml::LengthType [1]
+controlPoint : gml::posList [1]

<<Geometry>>
gml::TIN

<<Geometry>>
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+orientation : gml::SignType [0..1]
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<<Geometry>>
gml::LinearRing

<<Geometry>>
gml::Surface

<<Geometry>>
gml::_SurfacePatch

<<Geometry>>
gml::_Geometry

<<Geometry>>
gml::Rectangle

exterior

patches

1

1..*

*

exterior

trianglePatches

1

1

*

*

1

interior

exterior

0..1

*

0..*

1

interior

exterior

curveMember
0..1

1

*

1..*

*

*

baseSurface

1

solidMember

0..2

*

surfaceMember1..*

*

1..*

Visual Paradigm for UML Community Edition [not for commercial use] Visual Paradigm for UML Community Edition [not for commercial use] 

 
Fig. 8: UML diagram of CityGML‟s geometry model (subset and profile of GML3): Primitives and Composites. 

Combined geometries can be aggregates, complexes or composites of primitives (see illustration in Fig. 10). In 
an Aggregate, the spatial relationship between components is not restricted. They may be disjoint, overlapping, 
touching, or disconnected. GML3 provides a special aggregate for each dimension, a MultiPoint, a MultiCurve, a 
MultiSurface or a MultiSolid (see Fig. 9). In contrast to aggregates, a Complex is topologically structured: its 
parts must be disjoint, must not overlap and are allowed to touch, at most, at their boundaries or share parts of 
their boundaries. A Composite is a special complex provided by GML3. It can only contain elements of the same 
dimension. Its elements must be disjoint as well, but they must be topologically connected along their bounda-
ries. A Composite can be a CompositeSolid, a CompositeSurface, or CompositeCurve. (cf. Fig. 8).  

Figure 1.4: The geometry classes used in the CityGML 2.0 standard (OGC, 2012).

Figure 1.5: The half-edge data structure

can store sets of polygons based on ele-

ments known as half-edges, which rep-

resent an edge within a face. A half-edge

𝑒 is related to two vertices (the origin

and the destination) and one face, and is

linked to its next half-edge (on the same

face) and its twin half-edge (on the adja-

cent face).

 https://3d.bk.tudelft.nl/ken/e

n/thesis/math.html

example, database tuples or table definitions in SQL can be used when

a database implementation is expected, or snippets of source code

(generally in the style of the C programming language) can be used when

it is expected to be used in memory.

Following a typical example, if we assume that we are implementing

a standard vector data model with polygons, we could choose to do

so using a half-edge data structure (Figure 1.5). Note that the low-level

definition of a half-edge pretty much defines the structure of its computer

implementation.

1.5 Exercises

1. Do the levels of the hierarchy in the ‘hierarchical abstractions’

model correspond to the steps in the ‘geoinformation chain’?

2. What is noisier: the ‘raw’ measurements in the early steps of the

geoinformation chain, or the more processed products of the last

steps.

3. Give an example of a field that is not a natural physical characteristic.

4. Consider whether a point cloud is a data model or a data structure.

If it is a data model, what sort of data structure could be used to

represent it?

5. What is the relationship between the ‘hierarchical abstractions’

model and the concepts of data models and data structures?

1.6 Notes and comments

Chapter 2 of Ken’s PhD thesis describes all the mathematical notions

https://3d.bk.tudelft.nl/ken/en/thesis/math.html
https://3d.bk.tudelft.nl/ken/en/thesis/math.html
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 https://3d.bk.tudelft.nl/ken/e

n/thesis/modelling-background.ht

ml#se:spatial-modelling

from this chapter in a bit more detail. Section 3.1 lists many data models

and data structures with references to the original papers where they

came from.

Couclelis (1992) is the original source that clearly formalised the difference

between objects and fields. Goodchild (1992) links objects and fields to

specific computer models that are suitable for them.

Mäntylä (1988) has an excellent overview of different 3D representations.

Some other good standard alternatives are Requicha (1980), Hoffmann

(1992), and Foley et al. (1995). A newer book freely accessible from the

campus is Salomon (2011).

https://3d.bk.tudelft.nl/ken/en/thesis/modelling-background.html#se:spatial-modelling
https://3d.bk.tudelft.nl/ken/en/thesis/modelling-background.html#se:spatial-modelling
https://3d.bk.tudelft.nl/ken/en/thesis/modelling-background.html#se:spatial-modelling
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In the first chapter, we discussed how 3D modelling is done through a

series of abstractions of the real world. One of the chief reasons to do

so is to decrease the complexity of what needs to be modelled at each

step, with the aim to successively break complex problems into simpler

problems until they can be (more easily) solved.

Boundary representation works using this principle. Rather than modelling

a 3D object through a volumetric representation, it instead models the

object implicitly by representing the 2D surface that bounds it (Figure 2.1).

In this way, it is possible to use one of the many data structures that are

used to represent 2D meshes, which are significantly simpler than the

data structures used to directly represent arbitrary volumes.

However, it is very important to note that representing certain 3D objects

using boundary representation with the most common 2D mesh data

structures can cause some issues. The main culprits are non-manifold
objects, which have properties that make representing them ambiguous,

as well as objects with holes, which need to be stored using certain

techniques. External data structures might also be needed to keep track

of disconnected set of objects, since it might not be possible to have access

to them otherwise.

2.1 What is boundary representation?

Boundary representation, also known as b-rep or surface modelling, is a

method that involves representing an 𝑛-dimensional object through its

(𝑛 − 1)-dimensional boundary. Most of the time this term is used in

the context of 3D modelling, where the aim is to represent a 3D object

implicitly through its 2D boundary. That being said, boundary repre-

sentation is also common in 2D as well, where we sometimes represent

polygons based on the line segments that bound them, and it is the main

method used in 1D, where most of the time we represent line segments

based on the two points that bound them (Figure 2.2a)—as opposed to

representing them based on something like a line equation. Boundary

representation can thus be used several times when representing a single

3D model: to represent a 3D volume as a set of 2D surfaces, each 2D

surface as a set of 1D line segments or curves, and each 1D line segment as

a pair of 0D points—or often 2D polygonal surfaces directly as sequences

of 0D points (Figure 2.2b).

Boundary representation works because of what is known in 2D as the

Jordan curve theorem, which states that a closed curve separates the

plane into two parts: an interior surface and an exterior surface. In practical

terms, this means that if you draw a closed curve (ie a loop) on a sheet of

paper, the curve separates the sheet into two parts—an interior one that is

bounded on the outside by the curve, and an exterior one that is bounded

on the outside by the edges of the sheet (ie its outer boundary) and on

the inside by the curve (ie as an inner boundary). In higher dimensions,
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Figure 2.2: Boundary representation as

applied to: (a) 1D line segments rep-

resented implicitly through their two

bounding points, and (b) a polygon rep-

resented by implying that it is bounded

by a set of line segments, which are them-

selves bounded by consecutive pairs of

points in a sequence of points (plus the

last and the first).

!"!#
(a) (b)

Jordan-Brouwer theorem

hole

cavity

disconnected graph

this principle is known as the Jordan-Brouwer theorem, which in 3D

says that a closed surface separates 3D space into two parts: an interior

volume and an exterior volume.

For our purposes, what the above theorems mean is that if we have a

comprehensive method to represent a 2D surface, we can also use it to

implicitly represent many 3D volumes with minimal modifications. The

specifics of these modifications depend on the data structure that we are

using, but it often is as simple as adding an extra coordinate for each

point (ie (𝑥, 𝑦) becoming (𝑥, 𝑦, 𝑧)).

2.2 Dealing with exceptions

As hinted in the last paragraph, there are however some 3D volumes that

are tricky to store using boundary representation: objects with holes and

non-manifolds.

2.2.1 Objects with holes

Objects with 3D holes (ie cavities) are the most obvious problematic objects,

since just like the paper sheet example described previously, they are

bounded by one outer surface and possibly several inner surfaces (one

per cavity). Less obviously, objects with 2D faces with holes can have

exactly the same problem with certain data structures (Figure 2.3a), since

a surface can be bounded by an outer ring and possibly multiple inner

rings.

Both of these cases are problematic for the same reasons. In the simplest

case, it can be because of a data structure is only built to store one

ring/surface (eg a single list of vertices for a ring). However, the most

common issue is that even when multiple rings/surfaces can be stored,

the structures representing holes can end up separated from the rest of

Figure 2.3: Two different techniques to

handle holes in (a) a volume with 2D

faces with holes: (b) splitting the volume

into two parts and (c) using a bridge

edge.

(a) (b) (c)
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the data structure, resulting in a disconnected graph. In other words, it

might be impossible to navigate from the outer boundary of an object to

its inner boundaries and vice versa.

While holes can cause problems when modelling objects using boundary

representation, these are relatively easy to solve. The three most common

approaches are:

1. splitting volumes into multiple parts in such a manner that the

2D or 3D holes lie between different objects (Figure 2.3b), then

somehow semantically marking that the parts belong to the same

object (eg by using the same attribute id);

2. storing holes just like other (filled) objects, marking them as holes

semantically (eg with a special attribute or id), and then storing a

list of holes for each object as a sort of attribute, from which they

can then be easily accessed;

3. using one bridge edge per hole, which are special edges that join

each inner boundary to the outer boundary (Figure 2.3c). The end

result of this approach is that objects are only bounded by a single

outer boundary, which wraps around the original outer boundary

and all of the former inner boundaries. Bridge edges might also be

marked semantically as such, although it is possible to tell that an

edge is a bridge edge because it is surrounded on all sides by the

same 2D/3D object.

2.2.2 Non-manifolds

In addition to the above mentioned objects with holes, the other kind

of objects that are tricky to store using boundary representation are

non-manifolds. However, in order to precisely describe what these are, we

need to introduce some concepts from topology, which will allow us to

describe them in terms of topological characteristics.

Mathematically, a homeomorphism is a continuous function that also has a

continuous inverse. This is a sort of equivalence relation (=) in topology,

and so it can be used to tell that two objects are topologically equivalent

or homeomorphic. In informal terms, applying a homeomorphism is

like continuously deforming an object (without making holes in it or

glueing different parts of it). If an object can be transformed to another

through this process, they are said to be homeomorphic (Figure 2.4).

Homeomorphisms are important because of one key characteristic: they

preserve all topological properties. This means that they can be used to

relate an arbitrary object to a simpler well-known one, which then has

known topological properties (eg Euclidean 2D space or a sphere).

A manifold is a shape that is homeomorphic to the Euclidean space of

a certain dimension, ie a point in 0D, a line in 1D, a plane in 2D or 3D

space in 3D. An intuitive way to think about this is that a manifold locally

resembles Euclidean space, even if globally it does not. For example, a

line and a circle are both 1-manifolds, while a plane, a sphere and a torus

are all 2-manifolds. Meanwhile, non-manifolds are shapes where you

can find at least one point where this condition is not true (Figure 2.5a

and 2.6). In geomatics, when people refer to a non-manifold, they are

usually referring to a non-2-manifold in the context of modelling a 3D

object using boundary representation.
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Figure 2.4: A typical joke about topology

says that (a) a coffee mug and (b) a donut

are homeomorphic.

(a) (b)

Figure 2.5: (a) The 1D boundary around a

polygon is a non-1-manifold because the

space around a vertex (highlighted in a

red circle) is not homeomorphic to a line.

(b) & (c) However, the polygon can still

be represented using a loop of oriented

edges by creating a duplicate vertex at

that location (shown as two half disks),

but there are two ways in which this can

be done. Note that these are not equally

desirable as (c) results in a disconnected

structure (just like a hole).

(a) (b) (c)

Figure 2.6: The 2D surface around this

volume is a non-2-manifold because it is

not homeomorphic to a plane.

Based on these definitions, we can now better describe exactly which 3D

objects can be stored using boundary representation without problems:

those that are bounded by exactly one 2-manifold surface. The intuitive

logic that explains this is: 2D space is (by definition) a 2-manifold surface,

which means that we are able to store objects that are bounded by a

surface that is homeomorphic to it. Another intuitive way to think about

this is to consider a counterexample in terms of the Jordan curve theorem:

if we draw a closed loop that crosses itself (eg the number 8), which is

clearly a non-manifold, we will end up with more than one interior part

(or possibly an ambiguous situation).

While the obvious solution might be to disallow non-manifold objects,

they are common in practice, and so we need to have methods to deal

with them, even if these methods might introduce additional complexity

to boundary representation. In order to overcome this problem, there are

two approaches that are typically used:

1. splitting non-manifold objects into multiple manifold parts, then

marking the parts as belonging to the same object using semantics;

2. creating duplicate elements at the same location (Figure 2.5b

and 2.5c). In 2D this usually involves duplicate vertices, whereas

in 3D this might involve duplicate edges as well.

2.3 Topological concepts

In addition to holes and manifolds, there are other topological concepts

that are commonly used when characterising objects in 3D modelling.

These are not directly related to the present chapter, but we will make a

small tangent to introduce them here.



2.4 Data structures for 2D meshes 13

(a) (b) (c)
Figure 2.7: Surfaces with: (a) genus 1, (b)

genus 2, (c) genus 3. From Wikimedia

Commons.

Figure 2.8: A Möbius strip is a one-sided

surface, equivalent to glueing a paper

strip with a single 180
◦

twist, and it is the

most typical example of a non-orientable

surface. Note however that this is only

true when it is modelled without thick-

ness. From Wikimedia Commons.

genus

orientability

The genus of a surface is the maximum number of closed loop cuts we

can make in it without causing it to become disconnected (Figure 2.7).

Note the ‘maximum’ here, since it is always possible to select loops that

cause a surface to become disconnected. Intuitively, it is the number of

‘handles’ it has. A sphere thus has genus 0, whereas a torus (eg the donut

and coffee mug) have genus 1 because we can cut the handle of the object

and still have a connected surface.

A surface is said to be orientable when it is possible to define a normal

vector at every point of the surface in a consistent manner, ie without

sudden reversals of the vector direction when moving long the surface.

Since real-world objects are always orientable (Figure 2.8), this might

seem like a non-issue in practice. However, real-world objects are always

volumetric—no matter how thin they are—but when these are modelled,

they are often modelled as surfaces (ie without thickness), which makes

it possible to have unorientable surfaces.

2.4 Data structures for 2D meshes

Moving back to the storage of 3D models using boundary representation,

there are a large number of 2D mesh data structures that can be used

for this purpose. However, there are three broad approaches: (i) data

structures using triangles as base elements; (ii) data structures that use

edges or half-edges as base elements; and (iii) data structures that have

polygons, edges and vertices as base elements. We will show one or two

characteristic examples for each approach, with the understanding that

there are many possible variations of each of them.
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Figure 2.9: A triangle-based data struc-

ture consists of a set of triangles as base

elements, each of which has links to (a)

its three adjacent triangles (as pointers or

ids). Then, the usual approach is to also

have links to (b) its three incident vertices

(as pointers or ids), which can stored as

separate elements with (c) their coordi-

nates. Alternatively, it is also possible to

store the vertex coordinates directly in

the triangles, but this means that the co-

ordinates are stored many times—once

in every triangle that is incident to it.

(a) (b) (c)

triangle mesh

Figure 2.10: A triangle strip is eas-

ily defined as a list of vertices

(𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 , 𝑔, ℎ). Every triangle is

formed by three consecutive vertices in

the list.

2.4.1 Triangle-based structures

The first typical approach relies on a surface being triangulated, ie being

split entirely into triangles, so that you have a triangle mesh. This is

often desirable because in a triangle mesh, each triangle is known to have

only up to three adjacent triangles and only up to three incident vertices,

whereas in a polygon it can be any number. Because of this, a triangle-

based data structures (Figure 2.9) can use fixed-length data structures to

store all their elements (eg arrays), which are more efficient.

The typical approach to obtain a triangulation of the surfaces of a 3D

object is to apply the constrained Delaunay triangulation, or simply

an arbitrary constrained triangulation, to each surface (polygon). This

involves transforming the 3D coordinate of the vertices of the surface to a

2D system; this coordinate system is on the plane defined by the surface.

Notice that this assumes that all input surfaces of the b-rep are roughly

planar, if it is not the case then finding a projection that preserves the

topology of the polygon might not be possible.

Since there are specific elements for triangles and vertices, triangle-based

data structures make it easy to store attributes both for triangles and for

vertices. For instance, it is possible to mark all the triangles belonging

to a certain surface semantically through the use of a common attribute,

which could be a pointer or id linking to a surface element. Such a surface

could contain attributes common to all the triangles that represent it.

Surfaces with holes are generally not a problem for triangle-based data

structures. When these are triangulated (using a constrained triangula-

tion), holes become connected to the rest of the structure. If a hole of a

surface contains a different surface, the triangles adjacent to it can simply

link to the triangles representing it. If it does not, the triangles can have a

special link or value corresponding to empty space (eg null). The same

applies for triangles on the edge of the surface

In addition to the basic approach, there are variations that use more

compact representations of triangle-based structures, usually by joining

multiple adjacent triangles that are arranged in a certain way. Examples

of these are triangle strips (Figure 2.10) and triangle fans/stars (triangles

that are all incident to a certain vertex).

2.4.2 Edge-based structures

When we want to allow for polygons in a surface, the most common

approach is to use data structures where the base elements are either
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quad-edge data structure

quad

half-edge data structure

DCEL

half-edge

edges or half-edges. Let us look at one example of each.

The quad-edge data structure uses edges as base elements. Each edge

then stores what is known as a quad (Figure 2.11) and links to one or

both of its incident vertices. Note that these quads are named as such

because they store four piece of information and are unrelated to quads

(ie quadrilaterals) in computer graphics.

In a common easy implementation of the quad-edge data structure, the

edge is first given an arbitrary orientation. In this manner, there are

vertices at the start and end of the edge, which can be used as names to

access them, and there are thus left and right polygons, which means that

the quad links can thus be called something like left-previous, left-next,
right-previous and right-next.

While this approach works fine, it is important to note that there will not

be a consistent orientation between adjacent edges. That is, polygons will

not be defined by an oriented loop of edges going around them. Vertices

can thus have multiple edges pointing away from them and toward them.

As an example of the consequences of this, getting all the vertices of a

polygon is a bit awkward, since for each iteration where we arrive at

an edge, we need to check the orientation of the edge and program a

different logic for each orientation.

The alternative is to split each edge into two linked half-edges with

opposite orientations. This approach is called the half-edge data structure,
of which are many variations in practice, such as the doubly connected

edge list (DCEL). In the DCEL (Figure 2.12), half-edges are the base

element, but there are also elements for vertices and faces. Vertices store

their coordinates and a link to one face-edge starting from it, whereas

faces store a link to a half-edge on its outer boundary. If holes are

present, faces also typically store one link to a half-edge on each of its

inner boundaries. Note however that since a face can have any number

of holes, this means that a variable-length data structure (eg a linked

list) will need to be used. Vertices, half-edges and faces can each also

contain fields for attributes. Storing attributes for edges will thus result

in duplicate information (or additional edge objects that are linked to

both half-edges).

In general, half-edge data structures are more verbose than edge-based

data structures. However, they make navigating through the structure

much easier. For instance, obtaining all the vertices of a polygon in order

in the DCEL simply involves finding a half-edge in the polygon, and

Figure 2.11: In the quad-edge data struc-

ture, an edge stores a quad, which con-

tains four records pointing to other quads

corresponding to the previous and next

oriented edges for the polygons on both

of its sides.
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Figure 2.12: (a) Three adjacent polygons

are represented using (b) the DCEL. In

the DCEL, a half-edge 𝑒 is linked to two

vertices (called the origin and the destina-
tion) and to the face that it is incident to,

and is linked to its next half-edge (on the

same face) and its twin half-edge (on the

adjacent face).

(a) (b)

Figure 2.13: In the incidence graph, (a)

faces have a list with links to the edges

that bound them, (b) edges have links to

the two vertices that bound them, and

(c) vertices contain their coordinates.

(a) (b) (c)

incidence graph

isosurface

level set

then iteratively following the next links until we get back to the original

half-edge.

2.4.3 Incidence graphs

The last approach that is common in practice is the incidence graph. It is

a simple data structure where 𝑖-dimensional elements are linked to the

(𝑖 − 1)-dimensional elements that bound it (Figure 2.13). This approach

makes it easy to store attributes for faces, edges and vertices without

redundancy. However, it needs variable-length data structures to store

the edges that bound each face. Because of this, it is commonly used

where this limitation is not a problem (eg in text files), but it is avoided

when efficiency is more important and where variable-length fields are a

problem (eg in databases).

2.5 Boundary representation and fields:
isosurfaces

Throughout most of this chapter, we have focussed on modelling objects

using boundary representation, and indeed it is rare to find this term

linked to fields. However, it is worth noting that there is a clear equivalence

between 3D objects represented by their 2D boundary and 3D fields (ie

trivariate fields) represented using a set of isosurfaces. In fact, the same

kinds of techniques and data structures are often used in both cases.

Given a trivariate field 𝑓 (𝑥, 𝑦, 𝑧) = 𝑎, an isosurface is the set of points in

space where 𝑓 (𝑥, 𝑦, 𝑧) = 𝑎0, where 𝑎0 is a constant. Isosurfaces, also called

level sets, are the three-dimensional analogous concept to isolines (also

called contour lines), which have been traditionally used to represent the
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(a) (b) (c)

Figure 2.14: An oceanographic dataset where each point has the temperature of the water, and three isosurfaces extracted (for a value of

respectively 2.0, 2.5 and 3.5) from this dataset.

elevation in topographic maps. Figure 2.14 shows one concrete example.

2.6 Exercises

1. Why can we represent a 2D polygon directly as a sequence of 0D

points (ie skipping line segments entirely) but we cannot do the

same in 3D?

2. Exactly where is the surface of Figure 2.6 not homeomorphic to a

plane?

3. Splitting objects is a simple solution to deal with both holes and

non-manifolds. However, in terms of semantics it is often not

desirable. Why is that?

4. In a triangle fan or star, we need to store vertices in a specific order.

Why is that?

5. How can you obtain all the edges incident to a vertex in order (ie as

you rotate around the vertex) using the quad-edge data structure?

How about for the DCEL? Which is easier?

2.7 Notes and comments

The original place where the Jordan curve theorem is introduced is Jordan

(1887), which is an old French textbook on calculus and differential

equations. The generalisation to higher dimensions was apparently

done by Lebesgue (1911) and Brouwer (1911), although this is somewhat

contentious (van Dalen, 2013, Ch. 5).

If you want to see how the coffee mug and the donut from Figure 2.4 are

homeomorphic, watch this video: https://www.youtube.com/watch?

v=9NlqYr6-TpA.

A nice description of a star-based data structure is available in Blandford

et al. (2005), or in 3D in Ledoux and Meĳers (2013).

The quad-edge data structure was originally described in Guibas and

Stolfi (1985). The first data structure of that type is likely the winged-edge

data structure Baumgart (1975).

https://www.youtube.com/watch?v=9NlqYr6-TpA
https://www.youtube.com/watch?v=9NlqYr6-TpA
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As for half-edge data structure, the first example is likely the 2D combina-

tional map (Edmonds, 1960). The DCEL is originally described in Muller

and Preparata (1978), but you can find nicer descriptions in Worboys and

Duckham (2004) or de Berg et al. (2008).
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The Delaunay triangulation (DT) and the Voronoi diagram (VD) are

fundamental data structures when dealing with spatial datasets, many

computer scientists and mathematicians consider the VD as being the

most fundamental spatial structure (or spatial model) because it is very

simple, and yet is so powerful that it helps in solving many theoretical

problems, as well as many real-world applications.

The DT and the VD are most often presented, described, and used, in two

dimensions, but their concepts can be generalised to higher dimensions.

We describe in this chapter the concepts in ℝ3
, and also discuss the

𝑛-dimensional cases when appropriate.

We also discuss how the constrained and conforming DT can be gener-

alised to ℝ3
.

 To read or to watch.

The reader is advised to first read the Chapter Triangulations & Voronoi
diagram in the book Computational modelling of terrains (Ledoux et al.,

2021), where the 2D concepts are introduced.

3.1 The three-dimensional Voronoi Diagram

Let 𝑆 be a set of points in ℝ𝑑
. The Voronoi cell of a point 𝑝 ∈ 𝑆, defined

V𝑝 , is the set of points 𝑥 ∈ ℝ𝑑
that are closer to 𝑝 than to any other point

in 𝑆; that is:

V𝑝 = {𝑥 ∈ ℝ𝑑 | ∥𝑥 − 𝑝∥ ≤ ∥𝑥 − 𝑞∥, ∀ 𝑞 ∈ 𝑆} (3.1)

The union of the Voronoi cells of all generating points 𝑝 ∈ 𝑆 form the

Voronoi diagram of 𝑆, defined VD(𝑆). If 𝑆 contains only two points 𝑝

and 𝑞, then VD(𝑆) is formed by a single hyperplane defined by all the

points 𝑥 ∈ ℝ𝑑
that are equidistant from 𝑝 and 𝑞. This hyperplane is

the perpendicular bisector of the line segment from 𝑝 to 𝑞, and splits

the space into two (open) half-spaces. V𝑝 is formed by the half-space

containing 𝑝, and V𝑞 by the one containing 𝑞.

As shown in Figure 3.1,

when 𝑆 contains more than two points (let us say it contains 𝑛 points),

the Voronoi cell of a given point 𝑝 ∈ 𝑆 is obtained by the intersection of

𝑛 − 1 half-spaces defined by 𝑝 and the other points 𝑞 ∈ 𝑆. That means

that V𝑝 is always convex, in any dimensions. Notice also that every point

𝑥 ∈ ℝ𝑑
has at least one nearest point in 𝑆, which means that VD(𝑆) covers

the entire space.

As shown in Figures 3.2,

the VD of a set 𝑆 of points in ℝ2
is a planar graph, but it can also be

seen as a two-dimensional cell complex where each 2-cell is a (convex)
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Figure 3.3: Two Voronoi cells adjacent

to each other in ℝ3
, they share the grey

face.

Figure 3.4: The Voronoi cell for the red

vertex, the red edges are the Delaunay

edges that are dual to the Voronoi facets.

Figure 3.5: The DT of a set of points in

the plane.

Figure 3.6: A Delaunay tetrahedron has

an empty circumsphere.

polygon. Two Voronoi cells, V𝑝 and V𝑞 , lie on the opposite sides of the

perpendicular bisector separating the points 𝑝 and 𝑞.

In ℝ3
, VD(𝑆) is a three-dimensional cell complex. The Voronoi cell of

a point 𝑝 is formed by the intersection of all the half-spaces (three-

dimensional planes) between 𝑝 and the other points in 𝑆. Drawing a

picture of the three-dimensional case is not easy, thus Figure 3.3 shows

two adjacent Voronoi cells (which are convex polyhedra), and Figure 3.4

one cell with its incident Delaunay edges.

The VD has many properties, and most of them are valid in any dimen-

sions. Note that most of these properties are valid only when the set 𝑆 of

points is in general position, that is when for example in three dimensions

no five points are cospherical, and no four points are collinear. Details

concerning the possible degeneracies are given in Section 3.2.6. What

follows is a list of the most relevant properties:

Size: if 𝑆 has 𝑛 points, then VD(𝑆) has exactly 𝑛 Voronoi cells since there

is a one-to-one mapping between the points and the cells.

Voronoi vertices: in ℝ𝑑
, a Voronoi vertex is equidistant from (𝑑 + 1)

points. In ℝ3
, a Voronoi vertex is at the centre of a sphere defined

by 4 points in 𝑆.

Voronoi edges: in ℝ𝑑
, a Voronoi edge is equidistant from 𝑑 points.

Voronoi faces: in ℝ𝑑
, a Voronoi face is equidistant from (𝑑 − 1) points.

Hence, in ℝ3
, it is the bisector plane perpendicular to the line

segment joining two points.

Convex hull: let 𝑆 be a set of points in ℝ𝑑
, and 𝑝 one of its points. V𝑝 is

unbounded if 𝑝 bounds conv(𝑆). Otherwise, V𝑝 is the convex hull

of its Voronoi vertices.

3.2 The Delaunay tetrahedralisation

The Delaunay triangulation of a set 𝑆 of points in ℝ𝑑
is a simplicial

complex where each 𝑑-simplex 𝜎, formed by 𝑑 + 1 vertices in 𝑆, has an

empty circumball (a ball is said to be empty when no points are in its

interior).

For ℝ3
, it is called the Delaunay tetrahedralisation: the space is tessellation

into non-overlapping tetrahedra having an empty circumsphere (as shown

in Figure 3.6).

3.2.1 Duality between the DT and the VD

The VD and the DT are dual to each other, and that in any dimensions.

This means they represent the same thing but from a different point-of-

view, and one structure can always be extracted from the other. Consider

a graph embedded in ℝ𝑑
as a 𝑑-dimensional cell complex. The mappings

between the elements of a cell complex in ℝ𝑑
are as follows: let 𝐶 be a

𝑘-cell, the dual cell of 𝐶 in ℝ𝑑
is denoted by 𝐶★

and is a (𝑑 − 𝑘)-cell.

The duality between the VD and the DT in ℝ3
are thus as follows:

▶ a Delaunay vertex 𝑝 becomes a Voronoi cell (Figure 3.7a);

▶ a Delaunay edge 𝛼 becomes a Voronoi face (Figure 3.7b);
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(a) (b) (c) (d)

p
κ

α τ
Figure 3.7: Duality in ℝ3

between the

elements of the VD and the DT.

(a) (b) (c)

Figure 3.8: (a) A set of 1000 points randomly distributed in a cube. (b) Its convex hull. (c) The Delaunay tetrahedralisation of the points,

‘sliced’ in the middle and the upper tetrahedra removed (to be able to visualise the interior).

facet

locally Delaunay

▶ a Delaunay triangular face 𝜅 becomes a Voronoi edge (Figure 3.7c);

▶ a Delaunay tetrahedron 𝜏 becomes a Voronoi vertex (Figure 3.7d).

A Voronoi vertex is located at the centre of the sphere circumscribed to its

dual tetrahedron, and two vertices in 𝑆 have a Delaunay edge connecting

them if and only if their two respective dual Voronoi cells are adjacent.

3.2.2 Convex Hull

In any dimensions, the DT of set 𝑆 of points subdivides completely

conv(𝑆), ie the union of all the simplices in DT(𝑆) is conv(𝑆). The boundary

of a convex hull in 3D is formed of a set of triangles. Figure 3.8b shows

an example.

3.2.3 Local Optimality

Let Tbe a triangulation of 𝑆 in ℝ𝑑
. A facet 𝜎 (a (𝑑 − 1)-simplex) is said

to be locally Delaunay if it either:

(i) belongs to only one 𝑑-simplex, and thus bounds conv(𝑆), or

(ii) belongs to two 𝑑-simplices 𝜎𝑎 and 𝜎𝑏 , formed by the vertices of 𝜎 and

respectively the vertices 𝑎 and 𝑏, and 𝑏 is outside of the circumball

of 𝜎𝑎 .

The second case is illustrated in two dimensions in Figure 3.9a. In an

arbitrary triangulation, not every facet that is locally Delaunay is neces-

sarily a facet of DT(𝑆), but local optimality implies globally optimality in

the case of the DT:

Let Tbe a triangulation of a point set 𝑆 inℝ𝑑
. If every facet of

T is locally Delaunay, then T is the Delaunay triangulation

of 𝑆.
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Figure 3.9: (a) A four-sided convex poly-

gon 𝑎𝑏𝑐𝑑 can be triangulated in two dif-

ferent ways, but the empty circumcircle

criterion guarantees that the triangles are

as equilateral as possible. Notice that the

edge 𝑎𝑐 is not locally Delaunay, but 𝑏𝑑 is.

(b) In three dimensions, five vertices can

be triangulated with either two or three

tetrahedra. Although the tetrahedralisa-

tion at the bottom has two nicely shaped

tetrahedra, they are not Delaunay (the

point 𝑑 is inside the sphere 𝑎𝑏𝑐𝑒, which

also implies that 𝑏 is inside the sphere

𝑎𝑐𝑑𝑒). The tetrahedralisation at the top

respects the Delaunay criterion, but con-

tains one very thin tetrahedron spanned

by the points 𝑎, 𝑏, 𝑑 and 𝑒. (a) (b)

a

b

c

d
ea

b

c

d

max-min angle optimality

slivers

This has serious implications as the DT—and its dual—are locally modi-

fiable, ie we can theoretically insert, delete or move a points in 𝑆 without

recomputing DT(𝑆) from scratch.

3.2.4 Angle Optimality

The DT in two dimensions has a very important property that is useful in

applications such as finite element meshing or interpolation: the max-min
angle optimality. Among all the possible triangulations of a set 𝑆 of points

in ℝ2
, DT(𝑆) maximises the minimum angle (max-min property), and

also minimises the maximum circumradii. In other words, it creates

triangles that are as equilateral as possible.

Finding ‘good’ tetrahedra, ie nicely shaped, is however more difficult

than finding good triangles because the max-min property of Delaunay

triangles does not generalise to three dimensions. A DT in ℝ3
can indeed

contain some tetrahedra, called slivers, whose four vertices are almost

coplanar (see Figure 3.9b); these tetrahedra are Delaunay. Note that such

slivers do not have two-dimensional counterparts.

For many applications where the Delaunay tetrahedralisation is used,

eg in the finite element method in engineering or when the tetrahedra

are used to perform interpolation directly, these tetrahedra are bad and

must be removed. Why use the DT in three dimensions then? First, it

should be said that in most cases Delaunay tetrahedra have in general

a more desirable shape than arbitrary tetrahedra, they tend to favour

‘round’ tetrahedra. Second, the VD is not affected by them: Voronoi cells

in three dimensions will still be ‘relatively spherical’ even if the DT has

many slivers. Third, if the VD is used for interpolation, then the VD is

necessary because many GIS operations use the properties of the VD

(see Section 3.4.2), and if only one tetrahedron does not have an empty

circumsphere, then the VD is corrupted.

3.2.5 Lifting on the paraboloid

There exists a close relationship between DTs in ℝ𝑑
and convex polytopes

in ℝ𝑑+1
.
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S

S+

parabolic
lifting

Figure 3.10: The parabolic lifting map for

a set 𝑆 of points ℝ2
.

Let 𝑆 be a set of points in ℝ𝑑
, and let 𝑥1 , 𝑥2 , . . . , 𝑥𝑑 be the coordinates

axes. The parabolic lifting map projects each vertex 𝑣(𝑣𝑥1 , 𝑣𝑥2 , . . . , 𝑣𝑥𝑑)
to a vertex 𝑣+(𝑣𝑥1 , 𝑣𝑥2 , . . . , 𝑣𝑥𝑑 , 𝑣

2

𝑥1
+𝑣2

𝑥2
+· · · +𝑣2

𝑥𝑑
) on the paraboloid of

revolution inℝ𝑑+1
. The set of points thus obtained is denoted 𝑆+. Observe

that, for the two-dimensional case, the paraboloid in three dimensions

defines a surface whose vertical cross sections are parabolas, and whose

horizontal cross sections are circles; the same ideas are valid in higher

dimensions.

The relationship is the following: every facet (a 𝑑-dimensional simplex)

of the lower envelope of conv(𝑆+) projects to a 𝑑-simplex of the Delaunay

triangulation of 𝑆. This is illustrated in Figure 3.10 for the construction of

the DT in ℝ2
.

In short, the construction of the 𝑑-dimensional DT can be transformed

into the construction of the convex hull of the lifted set of points in

(𝑑 + 1) dimensions. In practice, since it is easier to construct convex hulls

(especially in higher dimensions, ie 4+), the DT is often constructed with

this method.

3.2.6 Degeneracies

The previous definitions of the VD and the DT assumed that the set 𝑆

of points is in general position, ie the distribution of points does not

create any ambiguity in the two structures. For the VD/DT in ℝ𝑑
, the

degeneracies, or special cases, occur when 𝑑 + 1 points lie on the same

hyperplane and/or when 𝑑 + 2 points lie on the same ball. For example,

in three dimensions, when five or more points in 𝑆 are cospherical there

is an ambiguity in the definition of DT(𝑆). This implies that DT(𝑆) is not

unique; VD(𝑆) is still unique, but it has different properties.

3.3 Construction of the 3D DT/VD

As is the case in 2D, there exist several algorithms to construct either the

DT or the VD from a set of points in 3D.

Mainly three paradigms of computational geometry can be used for

computing a Delaunay triangulation in two and three dimensions: divide-

and-conquer, sweep plane, and incremental insertion. In two dimensions,

each one of these paradigms yields an optimal algorithm. In three

dimensions, things are a bit more complicated. Divide-and-conquer

algorithms have a worst time complexity of O(𝑛3), although in practice

they are subquadratic. Only incremental insertion algorithms have a

complexity that is worst-case optimal, ie O(𝑛2) since the complexity of

the DT in ℝ3
is quadratic. That is, there are configurations of 𝑛 points

that yield a DT with O(𝑛2) tetrahedra.

And as is the case in 2D, it is often simpler to reconstruct and store the

DT (because they have only 4 vertices and 4 neighbours) and to extract

the VD on-the-fly when needed.

The details of the algorithms are out of scope for this course. We provide

in the following a general idea of how the reconstruction of the DT is

performed in 3D by generalising the algorithm described in GEO1015.
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Algorithm 1: Algorithm to insert one point in a DT

1 Input: A DT(𝑆) T in ℝ3
, and a new point 𝑝 to insert

Output: T𝑝 = T∪ {𝑝}
2 find tetrahedron 𝜏 containing 𝑝
3 insert 𝑝 in 𝜏 by splitting it in to 4 new tetrahedra (flip14)

4 push 4 new tetrahedra on a stack

5 while stack is non-empty do
6 𝜏 = {𝑝, 𝑎, 𝑏, 𝑐} ← pop from stack

7 𝜏𝑎 = {𝑎, 𝑏, 𝑐, 𝑑} ← get adjacent tetrahedron of 𝜏 having the edge

𝑎𝑏𝑐 as a face

8 if 𝑑 is inside circumsphere of 𝜏 then
9 if configuration of 𝜏 and 𝜏𝑎 allows it then

10 flip the tetrahedra 𝜏 and 𝜏𝑎 (flip23 or flip32)

11 push 2 or 3 new tetrahedra on stack

12 else
13 Do nothing

Figure 3.11: Step-by-step insertion, with flips, of a single point in a DT in two dimensions.

flips

2 How does it work in practice?

Even more than in 2D, the duality between the convex hull in 𝑑 + 1-

dimension and the DT in 𝑑-dimension is in practice exploited. Indeed,

one can construct the convex hull of a set of points projected to 4D to

obtain the DT in 3D. One popular and widely used implementation

is Qhull (http://www.qhull.org/).

3.3.1 Generalisation of the flip-based incremental
insertion algorithm

The algorithm described in Algorithm 1 is a generalisation to 3D of the

flip-based incremental insertion algorithm used for 2D DT.

Most steps can be generalised in a direct way. Figure 3.11 shows the

steps from the 2D algorithm, which are conceptually the same for the

3D generalisation of the algorithm (and it is more difficult to draw these

steps in 3D).

As is the case with the two-dimensional algorithm, the point 𝑝 is first

inserted in Twith a flip (flip14 in the case here), and the new tetrahedra

created must be tested to make sure they are Delaunay. The sequence of

flips needed is controlled by a stack containing all the tetrahedra that have

not been tested yet. The stack starts with the four resulting tetrahedra of

the flip14, and each time a flip is performed, the new tetrahedra created

http://www.qhull.org/
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Figure 3.12: The 4 different kinds of flips

in 3D.

are added to the stack. The algorithms stops when all the tetrahedra

incident to 𝑝 are Delaunay, which also means that the stack is empty.

Initialisation: the big tetrahedron. A DT is initialised with a tetrahe-

dron several times larger than the spatial extent of 𝑆. The points in 𝑆 are

therefore always added inside an existing tetrahedron.

Walk/Point location. To find the tetrahedron containing the newly

inserted point 𝑝, the adjacency relationships between the tetrahedra

can be used. With a series of Orient tests one can navigate from one

tetrahedron to the other.

Flips. A flip is a local (topological) operation that modifies the config-

uration of some adjacent tetrahedra. In 2D, for 4 points, a flip (called

flip22), modifies the configuration of 2 adjacent triangles by flipping the

diagonal of the quadrilateral. In 3D, there are 2 kinds of flips: flip23 and

flip32. Consider the set 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} of points in general position in

ℝ3
and its convex hull conv(𝑆). There exist two possible configurations,

as shown in Figure 3.12:

1. the five points of 𝑆 lie on the boundary of conv(𝑆); see Figure 3.12a.

There are exactly two ways to tetrahedralise such a polyhedron:

either with two or three tetrahedra. In the first case, the two

tetrahedra share a triangular face 𝑏𝑐𝑑, and in the latter case the

three tetrahedra all have a common edge 𝑎𝑒.

2. one point 𝑒 of 𝑆 does not lie on the boundary of conv(𝑆), thus

conv(𝑆) forms a tetrahedron; see Figure 3.12b. The only way to

tetrahedralise 𝑆 is with four tetrahedra all incident to 𝑒.

Based on these two configurations, four types of flips in ℝ3
can be

described: flip23, flip32, flip14 and flip41 (the numbers refer to the number

of tetrahedra before and after the flip). When 𝑆 is in the first configuration,

two types of flips are possible: a flip23 is the operation that transforms

one tetrahedralisation of two tetrahedra into another one with three

tetrahedra; and a flip32 is the inverse operation. If 𝑆 is tetrahedralised with

two tetrahedra and the triangular face 𝑏𝑐𝑑 is not locally Delaunay, then a

flip23 will create three tetrahedra whose faces are locally Delaunay.

A flip14 refers to the operation of inserting a vertex inside a tetrahedron,

and splitting it into four tetrahedra; and a flip41 is the inverse operation

that deletes a vertex.

Flips can not always be applied during an insertion, it depends on the

local configuration. For example, in Figure 3.12a, a flip23 is possible on the

two adjacent tetrahedra 𝑎𝑏𝑐𝑑 and 𝑏𝑐𝑑𝑒 if and only if the line 𝑎𝑒 passes

through the triangular face 𝑏𝑐𝑑 (which also means that the union of 𝑎𝑏𝑐𝑑

and 𝑏𝑐𝑑𝑒 is a convex polyhedron). If not, then a flip32 is possible if and

only if there exists in the tetrahedralisation a third tetrahedron adjacent

to both 𝑎𝑏𝑐𝑑 and 𝑏𝑐𝑑𝑒.
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a
b

c

d

σa = bdc

Figure 3.13: The tetrahedron 𝑎𝑏𝑐𝑑 is cor-

rectly oriented since Orient (𝑎, 𝑏, 𝑐, 𝑑)

returns a positive result. The arrow indi-

cates the correct orientation for the face

𝜎𝑎 , so that Orient (𝜎𝑎 , 𝑎) returns a posi-

tive result.

3.3.2 Predicates

The ‘orientation’ of points in three dimensions is somewhat tricky because,

unlike in two dimensions, we can not simply rely on the counter-clockwise

orientation. In three dimensions, the orientation is always relative to

another point of reference, ie given three points we cannot say if a fourth

one is left of right, this depends on the orientation of the three points.

When dealing with a single tetrahedron 𝜏 formed by the four vertices

𝑎, 𝑏, 𝑐 and 𝑑 (as in Figure 3.13), we say that 𝜏 is correctly oriented if

Orient (𝑎, 𝑏, 𝑐, 𝑑) returns a positive value. Notice that if two vertices are

swapped in the order, then the result is the opposite (ie Orient (𝑎, 𝑐, 𝑏, 𝑑)

returns a negative value).

Vertices forming a face in a tetrahedron 𝜏 can also be ordered. As shown

in Figure 3.13, a face 𝜎𝑎 , formed by the vertices 𝑏, 𝑐 and 𝑑, is correctly

oriented if Orient (𝜎𝑎 , 𝑎) gives a positive result—in the case here, Orient

(𝑏, 𝑐, 𝑑, 𝑎) gives a negative result, therefore the correct orientation of 𝜎𝑎

is 𝑐𝑏𝑑. Observe that the face 𝑏𝑐𝑑 is called 𝜎𝑎 because it is ‘mapped’ to

the vertex 𝑎 that is opposite; each of the four faces of a tetrahedron can

be referred to in this way.

Orient determines if a point 𝑝 is over, under or lies on a plane defined

by three points 𝑎, 𝑏 and 𝑐. It returns a positive value when the point 𝑝 is

above the plane defined by 𝑎, 𝑏 and 𝑐; a negative value if 𝑝 is under the

plane; and exactly 0 if 𝑝 is directly on the plane. Orient is consistent with

the left-hand rule: when the ordering of 𝑎, 𝑏 and 𝑐 follows the direction

of rotation of the curled fingers of the left hand, then the thumb points

towards the positive side (the above side of the plane). In other words, if

the three points defining a plane are viewed clockwise from a viewpoint,

then this viewpoint defines the positive side the plane.

Orient can be implemented as the determinant of a matrix:

Orient(𝑎, 𝑏, 𝑐, 𝑝) =

��������
𝑎𝑥 𝑎𝑦 𝑎𝑧 1

𝑏𝑥 𝑏𝑦 𝑏𝑧 1

𝑐𝑥 𝑐𝑦 𝑐𝑧 1

𝑝𝑥 𝑝𝑦 𝑝𝑧 1

�������� (3.2)

The predicate InSphere follows the same idea: a positive value is returned

if 𝑝 is inside the sphere; a negative if 𝑝 is outside; and exactly 0 if 𝑝 is

directly on the sphere. Observe that to obtain these results, the points

𝑎, 𝑏, 𝑐 and 𝑑 in InSphere must be ordered such that Orient (𝑎, 𝑏, 𝑐, 𝑑)

returns a positive value.

It should be noticed that InSphere is derived from the parabolic lifting

map (see Section 3.2.5). It is simply transformed into a four-dimensional

Orient test: 𝑝 is inside (outside) the sphere 𝑎𝑏𝑐𝑑 if and only if 𝑝+ lies

under (above) the hyperplane 𝑎+𝑏+𝑐+𝑑+, and directly on the sphere if

𝑝+ lies on the hyperplane 𝑎+𝑏+𝑐+𝑑+.

InSphere(𝑎, 𝑏, 𝑐, 𝑑, 𝑝) =

����������
𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑎2

𝑥 + 𝑎2

𝑦 + 𝑎2

𝑧 1

𝑏𝑥 𝑏𝑦 𝑏𝑧 𝑏2

𝑥 + 𝑏2

𝑦 + 𝑏2

𝑧 1

𝑐𝑥 𝑐𝑦 𝑐𝑧 𝑐2

𝑥 + 𝑐2

𝑦 + 𝑐2

𝑧 1

𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑2

𝑥 + 𝑑2

𝑦 + 𝑑2

𝑧 1

𝑝𝑥 𝑝𝑦 𝑝𝑧 𝑝2

𝑥 + 𝑝2

𝑦 + 𝑝2

𝑧 1

���������� (3.3)
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3.3.3 Data structure

Instead of storing triangles as the atom, tetrahedra are used, they have 4

pointers to their 4 vertices, and 4 pointers to their 4 adjacent tetrahedra.

All of them must be oriented correctly (as is the case in 2D where they

are all counter-clockwise), as defined above.

3.3.4 Extracting the VD from the DT

Let Tbe the DT of a set 𝑆 of points in ℝ3
. The simplices of the dual D of

Tcan be computed as follows (all the examples refer to Figure 3.7):

▶ Vertex: a single Voronoi vertex is easily extracted—it is located at

the centre of the sphere passing through the four vertices of its

dual tetrahedron 𝜏.

▶ Edge: a Voronoi edge, which is dual to a triangular face 𝜅, is formed

by the two Voronoi vertices dual to the two tetrahedra sharing 𝜅.

▶ Face: a Voronoi face, which is dual to a Delaunay edge 𝛼, is formed

by all the vertices that are dual to the Delaunay tetrahedra incident

to 𝛼. The idea is simply to ‘turn’ around a Delaunay edge and

extract all the Voronoi vertices. These are guaranteed to be coplanar,

and the face is guaranteed to be convex.

▶ Polyhedron: the construction of one Voronoi cell V𝑝 , dual to a

vertex 𝑝, is similar: it is formed by all the Voronoi vertices dual

to the tetrahedra incident to 𝑝. Since a Voronoi cell is convex by

definition, it is possible to collect all the Voronoi vertices and then

compute the convex hull; the retrieval of all the tetrahedra incident

to 𝑝 can be done by performing a breadth-first search-like algorithm

on the graph dual to the tetrahedra. A simpler method consists of

first identifying all the edges incident to 𝑝, and then extracting the

dual face of each edge.

Given T, we must obviously visit all its 3-simplices to be able to extract

D. This means that computing D from Thas a complexity of Θ(𝑛)when

𝑆 contains 𝑛 points.

3.4 Applications of the DT and the VD

3.4.1 Modelling continuous 3D fields (as an alternative to
voxels)

The objects studied in geoscience are often not man-made objects, but

rather the spatial distribution of three-dimensional continuous geograph-

ical phenomena such as the salinity of a body of water, the humidity

of the air, or the percentage of gold in the rock. These are referred to

as fields, and raster structures (voxels or octrees) are the most popular

solutions for modelling them. However, using regular structures has

shortcomings and therefore the VD is a viable alternative.

One advantage is that the VD will adapt to the anisotropic distribution of

the samples collected to study a field, these samples are three-dimensional

points (𝑥, 𝑦, 𝑧) to which an attribute is attached (eg the percentage of a
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(a)

800km

(b)

Figure 3.14: (a) A dataset in geology where samples were collected by drilling a hole in the ground. Each sample has a location in 3D

space (𝑥 − 𝑦 − 𝑧 coordinates) and one or more attributes attached to it. (b) An oceanographic dataset in the Bering Sea in which samples

are distributed along water columns. Each red point represents a (vertical) water column, where samples are collected every 2m, but

water columns are about 35km from each other.

certain mineral in a body of water). In practice, the samples can be very

hard and expensive to collect because of the difficulties encountered and

the technologies involved. To collect samples in the ground we must

dig holes or use other devices (eg ultrasound penetrating the ground);

underwater samples are collected by instruments moved vertically un-

der a boat, or by automated vehicles; and samples of the atmosphere

must be collected by devices attached to balloons or aircraft. As shown

in Figure3.14, samples are often abundant vertically but very sparse

horizontally.

Another advantage is that the VD can be efficiently and robustly recon-

structed, and that based on it the samples can be interpolated to obtain

an estimation of the attribute at any location, see below for details.

Finally, the tessellations of the VD (and the DT) make possible, and even

optimise, several spatial analysis and visualisation operations.

3.4.2 Extracting isosurfaces

Given a set of samples, embedded in three-dimension, to which an

attribute 𝑎 is attached, spatial interpolation permits us to reconstruct the

field that was sampled.

As is the case in 2D, the properties of both the 3DVD and the 3DDT can

be used to estimate the value of an attribute.

In two dimensions, isolines are usually extracted directly from a TIN

or a regular grid. The idea is to compute the intersection between the

level value (eg 200m) and the terrain, represented for instance with a

TIN. Each triangle is scanned and segment lines are extracted to form an

approximation of an isoline. In three dimensions, for a trivariate field,

the same idea can be used to extract surfaces.

Although it is possible to fix the ambiguities, as is the case in two

dimensions, the simplest solution is to subdivide each cell into simplices

(cubes into tetrahedra in 3D). The so-called Marching Tetrahedra algorithm

is very simple: each tetrahedron is tested for the intersection with the

isosurface, and triangular faces are extracted from the tetrahedra by linear
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(a) (b) (c) (d) (e) (f)

Figure 3.15: Potential isosurface (for an

attribute value 𝑣) extracted for one tetra-

hedron. Black vertex means that the at-

tribute of this vertex is below 𝑣; white

vertex means it is above; and grey that it

is equal.

big tetrahedron

Figure 3.16: A PLC representing a solid

(with a genus of 1) and having one dan-

gling left; notice also that one extra edge

is on a polygon. Right: These two poly-

gons do not form a valid PLC because

their intersection is not formed of ver-

tices and edges in the PLC.

interpolation on the edges. The resulting isosurface is guaranteed to be

topologically consistent (ie will not contain holes), except at the border of

the dataset. But again, if a “big tetrahedron” is used where the vertices

are assigned to a value lower than the minimum value of the field, then

all the isosurfaces extracted are guaranteed to be ‘watertight’. The nice

thing about the algorithm is that only three cases for the intersection of

the isosurface and a tetrahedron can arise:

1. the four vertices have a higher (or lower) value. No intersection.

(Figure 3.15a)

2. one vertex has a higher (or lower) value, hence the three others

have a lower (or higher) value. Three intersections are thus defined,

and a triangular face is extracted. (Figure 3.15b)

3. two vertices have a higher (or lower) value and the others have

a lower (or higher) value. Four intersections are thus defined. To

ensure that triangular faces are extracted (better output for graphics

cards), the polygon can be split into two triangles, with an arbitrary

diagonal. (Figure 3.15c)

The only degenerate cases possible are when one or more vertices

have exactly the same value as the isosurface. These cases are handled

very easily, and the intersection is simply assumed to be at the vertices

themselves (see Figure 3.15d/e/f). Notice that the case when three vertices

have exactly the same value, then the complete face of the tetrahedron

must be extracted to ensure topological consistency.

3.5 Constrained tetrahedralisations

As is the case in 2D, given as input a set of points, straight-line segments,

and faces embedded in ℝ3
, two different Delaunay tetrahedralisations

are possible:

▶ conforming Delaunay tetrahedralisation (ConfDT)

▶ constrained Delaunay tetrahedralisation (ConsDT)

Both tetrahedralisations covers the convex hull of P, respect every

polygon (which can be represented by one or more triangles), and include

every segment (which can be one of more edges in the tetrahedralisation)

and vertex.

The typical input of a Delaunay tetrahedralisation program (or algorithm)

is a called piecewise linear complex (PLC). Figure 3.16 shows one example.

A PLC P is a set of linear 𝑑-cells (where 0 ≤ 𝑑 ≤ 3), that satisfy the

following properties:

1. the boundary of a 𝑑-cell in P is a union of cells in P

2. if two distinct cell 𝑓 , 𝑔 ∈ P intersect, their intersection is a union

of cells in P.
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Figure 3.17: These two polygons do not

form a valid PLC because their intersec-

tion is not formed of vertices and edges

in the PLC.

As shown in Figure 3.17, in practice this means that polygons cannot

intersect other polygons (there needs to be a vertex and/or edges), but

there are otherwise no restriction on the shapes that can be represented.

Observe also that a PLC is flexible and allows unconnected (ie ‘floating’)

vertices, edges, and faces (an edge can for instance be inside a polygon).

Dangling edges, such as the one in Figure 3.16, are also allowed. The

domain represented by a PLC does not have to represent a volume, it

can be simply a set of points and surfaces that act as constraints for the

tetrahedralisation.

Tetrahedralisation of a polyhedron. If we use all the polygons bound-

ing a polyhedron as the input PLC, the result is a tetrahedralisation of

a polyhedron. Figure 3.18 shows one example, notice that the volume

modelled by the boundary is tetrahedralised, but that here only some

tetrahedra (in grey) are shown. The surfaces of the b-rep also get meshed

in the same process (each surface is triangulated).

While any polygon in two dimensions can be triangulated, some arbitrary

polyhedra cannot be tetrahedralised without the addition of extra vertices,

the so-called Steiner points. Figure 3.19 shows a simple example, called

the Schönhardt polyhedron after the mathematician who first described

the case.
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Figure 3.18: BK-City LoD2 b-rep tetrahe-

dralised.

Figure 3.19: The Schönhardt polyhedron

is impossible to tetrahedralise without

adding extra vertices inside.

Steiner points

This polyhedron is formed by twisting the top face of a triangular prism

to form a 6-vertex polyhedron having eight triangular faces (each one of

the three quadrilateral faces adjacent to the top face will fold into two

triangles). It is impossible to select four vertices of the polyhedron such

that a tetrahedron is totally contained inside the polyhedron, as none of

the vertices of the bottom face can directly ‘see’ the three vertices of the

top triangular face.

Conforming DT (ConfDT). A ConfDT is a tetrahedralisation where

every tetrahedron has an empty circumsphere, it is thus a ‘real’ Delaunay

tetrahedralisation. This is achieved by adding new extra points to the

input PLC P to ensure that the input constraints are present in the

ConfDT. The extra points are called, as is the case in 2D, Steiner points.

It is known that every 𝑛-vertex PLC has a Steiner tetrahedralisation

with at most O(𝑛2) vertices; notice here that this tetrahedralisation is not
necessarily Delaunay.

Obtaining a ConfDT might require inserting significantly more than this,

when for instance two or more polygons form a very small angle.

In fact, there is no algorithm that can guarantee a polynomial number of

vertices.

Most implementations will insert several new vertices, which are often

unnecessary. Because of this, ConfDT are less used in practice.

Constrained DT (ConsDT). Given a PLC P, the ConsDT is similar

to the Delaunay tetrahedralisation, but the tetrahedra in ConsDT are

not necessarily Delaunay (ie their circumsphere might contain other

points from P). The empty circumsphere for a ConsDT is less strict: a

tetrahedron is Delaunay if its circumsphere contains no other points in

P that are visible from the tetrahedron; the constraints polygons in P act

a visibility blockers.
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Thus, the ConsDT aims at keeping the Delaunay properties, but relaxes

them to be able to respect the constraints (edges and polygons in the

PLC).

However, unlike in 2D where it is known that for a set 𝑆 of points and

straight-line segments there is always a ConsDT possible, in 3D this is

not the case. As explained above, this is linking to the fact that simple

PLC cannot be tetrahedralised at all. As a consequence, the ConsDT of

a PLC in 3D allows extra Steiner vertices to be inserted. The existing

algorithms (and their implementations) that will insert far fewer vertices

in a ConsDT than in a ConfDT. The details of the algorithms are beyond

what is covered in this course.
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2 How does it work in practice?

Implementing a ConsDT that is robust against all input is difficult,

and there exists few reliable libraries. Perhaps the “best” and easiest

to use is TetGen, which is open-source; it is available at http://www.

tetgen.org/. Beware: it expects a perfect input PLC, which is often

not available for 3D geographical datasets that are made available by

municipalities and governments; see Chapter 9.

3.6 Notes and comments

Rajan (1991) shows that the smallest sphere containing a Delaunay

tetrahedron is smaller than the one of any other tetrahedron, ie the

Delaunay criterion favours ‘round’ tetrahedra.

Cignoni et al. (1998) developed an algorithm, called DeWall and based

on the divide-and-conquer paradigm, for constructing the DT in any di-

mensions. Although the worst-time complexity of this algorithm is O(𝑛3)
in three dimensions, they affirm that the speed of their implementation

is comparable to the implementation of known incremental algorithms,

and is sub-quadratic.

The Schönhardt polyhedron was first described in Schönhardt (1928).

The algorithm to construct the 3D DT is adapted from Joe, 1991, and

is conceptually the same as Edelsbrunner and Shah, 1996. See Ledoux

(2007) for an easy explanation of the steps to construct the 3D DT/VD

for a set of points, including the handling of the degeneracies.

Ledoux and Gold (2008) presents an overview of why the VD is a better

alternatives to grids for the modelling of geoscientific fields.

Cheng et al. (2000) and Miller et al. (2002) both describe methods to

remove slivers in Delaunay meshes and to improve the shape of tetrahedra

(so that they can be used for interpolation).

3.7 Exercises

1. A DT contains 32 tetrahedra and we insert a new point 𝑝 that

falls inside one of the tetrahedra. If we insert and update the

tetrahedralisation (for the Delaunay criterion), what is the number

of tetrahedra?

2. If a given vertex 𝑣 in a DT has 18 incident tetrahedra, how many

vertices will its dual Voronoi cell contain?

3. Take a cube and try tetrahedralise it (not necessarily into Delaunay

tetrahedra). How many tetrahedra do you get?

4. If 𝑎 = (1, 1, 2), 𝑏 = (4, 2, 2), 𝑐 = (3, 3, 2), and 𝑑 = (4, 3, 3). Is the

value returned by Orient (𝑎, 𝑏, 𝑐, 𝑑) positive, negative, or 0?

http://www.tetgen.org/
http://www.tetgen.org/
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Voxel models, which are the 3D equivalent of 2D rasters, are a common

way to store 3D models of the built environment using a regular 3D

grid (Figure 4.1). Much like rasters in 2D, they have inherent limits in

precision based on the grid size that is used and can easily grow to very

large sizes in terms of memory, especially with a small grid size and

when compression is not used.

At the same time, voxel models are easy to use and understand, and

algorithms to process them are typically much simpler than those using

other representations, which also makes them more reliable, robust and

easy to parallelise. They also work well for both objects (by storing which

objects are present in each voxel) and fields (by storing the field value in

each voxel). These characteristics make voxels an important and widely

used representation to process 3D information in general.

(a)

(b)

Figure 4.1: (a) A mesh model of a house

with surrounding terrain and trees and

(b) a corresponding voxel model with the

same elements.

4.1 Exhaustive enumeration models

Voxels might appear to be quite a unique data model in terms of 3D

representations, but they are actually only the most used among a type

of related representations, which are together usually referred to as

exhaustive enumeration. The specifics of these data models differ, but in
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voxel domain

voxel cells

general they represent objects by:

1. defining the shape of a domain in which the objects to be repre-

sented fit, or alternatively in which the region of interest of a field

fits, eg a bounding box defined by their minimum and maximum

coordinates along each axis;

2. dividing the domain using a structure of many cells, usually

following a regular or semi-regular pattern that can be defined

programmatically (as opposed to explicitly representing the shape

of each individual cell), eg a grid defined by the number of cells

along each axis;

3. specifying a well-defined order passing once through each cell

of the subdivision, usually also programmatically (as opposed

to explicitly numbering each cell), eg the order and direction of

iteration of the axes in a grid;

4. labelling each cell with values that indicate the object(s) that are

in it, or in the case of fields, the values of variable(s) at that location.

The values can then be encoded linearly using the order defined in

the previous step.

We can thus say that what is represented in an exhaustive enumeration

is usually composed of four elements: (i) a set of rules defining the shape

of a domain, (ii) a set of rules on how to divide the domain into cells, (iii)

a set of rules that define an order of the cells, and (iv) an encoded linear

representation that represents objects or values for all cells. However, out

of these four elements, the first three are sets of rules that are generally

very simple, and thus they are stored encoded in a minimal way or not

at all (ie only implied by the context). For instance, the rules might be

part of the specification of a particular data format.

Based on these standard characteristics, we can see that exhaustive

enumeration representations use space differently from other data models.

In most geometric representations, much (or most) of the space and

complexity of a data structure is devoted to creating a custom structure

that individually describes the shape of the objects being represented.

By contrast, in exhaustive enumeration, objects’ shapes are instead

approximated using simple rules on a predefined structure, and the vast

majority of the space is thus devoted to specifying which objects are

present in which cells (or the values of a field in each cell).

That being said, the statements described above—which in the steps

correspond to the actions that are done for a standard regular 3D grid with

voxels—can all differ substantially. By analysing different possibilities

at each step, it is easy to see how the approach can be adapted and

extended to form other types of representations. For instance, consider

the following example, which is arbitrarily chosen to be completely

different from a typical voxel grid.

We can start by describing a space using an alternative method, eg a b-rep

representation of a domain with an arbitrarily complex shape. Cells could

then be specified using a constrained Delaunay tetrahedralisation of the

domain (using predefined rules for the addition of Steiner points). The

order of the cells could be specified based on the lexicographical order

of the vertices of each tetrahedron. Finally, the values of each tetrahedral

cell are then encoded linearly as in a grid.
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sparse voxel model

While the previous example is perfectly possible, it is worth noting

that exhaustive enumeration schemes are well-liked largely because of

their simplicity, which means that simpler representations are usually

preferred. Using a complex representation where the geometry is not

trivial to compute on the fly (eg a CDT) thus defeats many of the

advantages of the exhaustive enumeration approach.

Most examples that are found in practice are thus relatively minor

variations of voxel grids. For instance, cells can have varying sizes

according to their place in the grid (eg when more details are desired

in a particular region), the domains of grids can be stretched in some

directions (such that the domain is oblique), or the cells can be of different

shapes (eg octahedra).

Among the variations of voxel grids, sparse voxel models are used widely

in practice to describe objects (ie not fields) and are thus worth describing

in more detail here. These representations opt to encode only the voxels

containing something (rather than all voxels in the domain). In order

to do so, they usually specify simple objects consisting of: (i) a voxel

position, eg using integer coordinates for its position along each axis, and

(ii) the voxel’s variables. While this is undoubtedly more space-intensive

per voxel than the standard encode-all approach, it works well for 3D

models consist of largely empty space, which occurs frequently in 3D

city models and where the objects we want to represent do not fit neatly

into a box-shaped domain.

It is also worth pointing out that most variations of voxel models can be

processed with basically the same methods as standard voxel grids.

4.2 Hierarchical subdivision models

In addition to exhaustive enumeration, there are also related data models

where the structure is not entirely predefined, but it is instead defined

hierarchically using space-partitioning trees. The root of the tree thus

refers to a predefined space that will be subdivided, which corresponds

to the entirety of the domain that is represented in an exhaustive enumer-

ation model. Each node then specifies a subset of the space defined by

its parent node, and nodes (usually but not necessarily at the leaf level)

are then labelled to specify the object(s) or value(s) present in the space

represented by it.

Since different branches of a tree do not need to have the same depth,

hierarchical subdivision models can have different resolutions in different

parts of the model, and can thus adapt to the shape of the objects being

represented. This allows them to act as more compact alternatives to

exhaustive enumeration models in certain cases, usually where there are

large objects that occupy many adjoining cells. Note however that the

tree structure of a hierarchical representation can occupy a significant

amount of space.

Hierarchical subdivisions are also a good way to encode the sparse

models described in the previous section, where large areas of empty

space will be efficiently represented by leaf nodes that are generally close

to the root of the tree.
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octant

voxelisation

interpolation

Voronoi diagram

The most common structures used by hierarchical subdivision models

are:

octrees subdivide space evenly along the 𝑥, 𝑦 and 𝑧 axes into eight

equal-size octants. They are analogous to quadtrees in 2D, which

subdivide space evenly along the 𝑥 and 𝑦 axes into four equal-size

quadrants.

bintrees are similar to octrees, but they subdivide space in halves along

only one axis per node, then switching to a different axis for the

next level of the tree, eg 𝑥, then 𝑦, then 𝑧, then 𝑥 again, etc.

𝑘-d trees are similar to bintrees, but they subdivide space using an arbi-

trary plane per node, which can be defined by a single coordinate

included in the node.

4.3 Conversions to and from voxels

The process through which other data models are converted into voxels

is often called voxelisation. It is analogous to rasterisation in 2D.

4.3.1 Voxelisation of fields

The conversion from scattered points representing a field to a voxel grid

is trivial: simply interpolate at regular locations in three dimensions

(which represent the centre of each voxel) and output the results in the

appropriate format (grids can be stored in many ways). Figure 4.2 shows

the process in two dimensions.

 To read or to watch.

The two chapters about spatial interpolation (Chapters 4 and 5) in

the book Computational modelling of terrains (Ledoux et al., 2021) cover

related concepts and methods in 2D.

All the two-dimensional interpolation methods (weighted-average and

kriging) generalise in theory to three dimensions. However, it is not

obvious that they preserve their properties or are appropriate for geosci-

entific datasets. We describe in the following how they can be, and their

properties.

Nearest neighbour. The method, based on the Voronoi diagram (VD),

generalises in a straightforward manner to 3D. It suffices to build the VD

and to identify inside which cell the interpolation point lies. The VD can

be bypassed if a three-dimensional 𝑘d-tree is used.

Figure 4.2: (a) input sample points. (b)
size/location of output grid. (c) 9 interpo-

lations must be performed (at locations

marked with ◦): at the middle of each cell.

(d) the convex hull of the sample points

show that 2 estimations are outside, thus

no interpolation. (e) the resulting raster. (a) (b) (c) (d) (e)
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Figure 4.3: Barycentric coordinates in

two and three dimensions. 𝐴𝑖 represents

the area of the triangle formed by 𝑥 and

one edge. In 3D, the tetrahedron is sub-

divided into 4 tetrahedra.

Inverse distance weighting (IDW). The generalisation of this method

to three dimensions is straightforward: a searching sphere with a given

radius is used. The same problems with the one-dimensionality of the

method (the value for the search radius) will be even worse because the

search must be performed in one more dimension. The method has too

many problems to be considered has a viable solution for fields as found in

geosciences: the interpolant is not guaranteed to be continuous, especially

when the dataset has an anisotropic distribution, and the criterion has to

be selected carefully by the user. Note that the implementation problems

are also similar to the ones encountered with the previous method, and

an auxiliary data structure must be used to avoid testing all the points in

a dataset.

Linear interpolation in tetrahedra. This is the generalisation of the

popular linear interpolation in TINs where the tetrahedra of the Delaunay

tetrahedralisation (DT) are used. The barycentric coordinates can be used

to linearly interpolate inside a tetrahedron, as shown in Figure 4.3 the

volumes of 4 tetrahedra are used (instead of the area for the 2D case.)

The volume of a 𝑑-simplex 𝜎 is easily computed:

𝑣𝑜𝑙(𝜎) = 1

𝑑 !

����det

(
𝑣0 · · · 𝑣𝑑

1 · · · 1

)���� (4.1)

where 𝑣 𝑖 is a 𝑑-dimensional vector representing the coordinates of a

vertex and det() is the determinant of the matrix.

As explained above, finding tetrahedra having a good shape is not as

easy as in two dimensions, and the presence of slivers yield bad results

for the interpolation process. To be used in practice, the shape of the

tetrahedra is usually improved with techniques involving the insertion

of new points and/or applying flips.

Natural neighbour interpolation. The theory of this method also gen-

eralises in a straightforward manner to 3D. Instead of having stolen areas,

we have stolen volumes between the Voronoi cells. However, although

the concepts behind the method are simple and easy to understand, its

implementation for the 3D case is far from being straightforward. The

main reasons are that it requires the computation of two VDs—one with

and one without the interpolation point—and also the computation of

volumes of Voronoi cells. This involves algorithms for both constructing

a VD and deleting a point from it.

The volume of a 𝑑-dimensional Voronoi cell is computed by decomposing

it into 𝑑-simplices—not necessarily Delaunay simplices—and summing

their volumes. Triangulating a Voronoi cell is easily performed since it is

a convex polyhedron.

kriging. All of the most common kriging varieties generalise to three

dimensions without major changes, including simple kriging and ordi-

nary kriging. In the simplest case, covariance functions, experimental

variograms and fitted functions work exactly the same as in 2D but are

computed using distances in 3D.
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Figure 4.4: The importance measure of

a point can be expressed by its error.

When this error is greater than a given

threshold 𝜖max, the point is kept (𝑝1),

else it is discarded (𝑝2).

p1

p2

error(p1) > εmax

error(p2) < εmax

simplification

However, the vertical direction has a much weaker correlation than

the horizontal directions in many fields, eg temperature, pressure and

humidity. Anisotropy is thus a much more significant factor in 3D and

almost always has to be modelled. A minimal solution is a custom

distance function that scales the vertical direction. A better (but still

simple) solution involves computing multiple experimental variograms:

two (for the horizontal plane 𝑥, 𝑦 and for the vertical direction 𝑧) or three

(for 𝑥, 𝑦 and 𝑧).

4.3.2 Voxelised fields to points or surfaces

The conversion of a voxel to a set of scattered points is not a simple

operation. Given a three-dimensional grid, it is possible to create one

data point at the centre of each voxel. Notice however that potentially a

lot of the neighbouring points will be the same value, and thus a lot of

redundancy is stored.

A better approach to this problem is to consider it as a simplification

problem. Given a set 𝑆 of points in ℝ3
representing a field 𝑓 (where each

point 𝑝 in 𝑆 as an attribute 𝑎 attached to itself), the aim is to find a subset

𝑅 of 𝑆 which will approximate 𝑓 as accurately as possible, using as few

points as possible. The subset 𝑅 will contain the ‘important’ points of

𝑆, ie a point 𝑝 is important when 𝑎 at location 𝑝 can not be accurately

estimated by using the neighbours of 𝑝.

The two algorithms described in the GEO1015 book (Section 8.3) can in

theory be generalised; Figure 4.4 shows the idea for the 1D case. Both

strategies (decimation and refinement) can be implemented.

The error associated with each point 𝑝, denoted error(𝑝), is calculated by

interpolating at location 𝑝 after 𝑝 has been temporarily removed from

the field, and comparing the value obtained with the real attribute 𝑎

of 𝑝, thus error(𝑝) = |𝑎 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛|. As shown in Figure 4.4 for a

one-dimensional case, when the error is more than 𝜖max then the point

must be kept, if it is less then the point can be discarded.

The method for 2D fields in GEO1015 uses linear interpolation in triangles,

that is after 𝑝 has been temporarily deleted from DT(𝑆), the triangulation

is updated and the estimation is obtained with the triangle containing

location 𝑝. However, since mentioned earlier, using the DT in 3D for

interpolation is not advised (because they contain slivers). As an alterna-

tive, one could use for instance the natural neighbour interpolation, and
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Figure 4.5: Ambiguous extraction of an

isoline where the attribute is 8.

Figure 4.6: Rasterising a line to achieve

4-connectivity (left) and 8-connectivity

(right). The algorithm uses line targets

(orange) that are intersected with the

curve.

6-connectivity

each error is calculated by interpolating in the field at the location and

comparing the real and the estimated value.

The principal and most known algorithm for extracting an isosurface

form a voxel dataset is the Marching Cubes. The isosurface is computed

by finding the intersections between the isosurface and each voxel/cube

of the representation. Linear interpolation is used along the edges of

each cube to extract ‘polygonal patches’ of the isosurface. There exist 256

different cases for the intersection of a surface with a cube (considering

that the value of each of the eight vertices of a cube is ‘above’ of ‘under’

the threshold), although if we consider the symmetry in a cube that

comes down to only 15 cases. The major problem with the marching

cubes algorithm is that the isosurface may contain ‘holes’ or ‘cracks’

when a cube is formed by certain configurations of above and under

vertices. The ambiguities are shown in Figure 4.5 for the two-dimensional

case when two vertices are above the threshold, and two under, and they

form a ‘saddle’. The three-dimensional case is similar, with many more

cases possible.

4.3.3 Voxelisation of objects

In many cases, the data being voxelised consists of vector objects, either

as a point cloud or a b-rep mesh. We will thus explain a method to

voxelise 0D, 1D, 2D and 3D vector objects. In principle, it can be applied

to arbitrary curves and surfaces, but in most instances they will be line

segments (or polylines), as well as triangular and polygonal meshes.

Connectivity

When rasterising a curve in 2D, different algorithms aim to obtain a

pixellated curve that is connected according to either 4-connectivity or

8-connectivity (Figure 4.6). These are as follows:

4-connectivity means that pixels are connected to their four horizontally

and vertically adjacent neighbours.

8-connectivity means that pixels are connected their four 4-connected

neighbours and to their four diagonally incident neighbours.

In 3D, the equivalent concepts are 6-connectivity, 18-connectivity and

26-connectivity. These are as follows:
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18-connectivity

26-connectivity

intersection target

6-connectivity thus means that voxels are connected to their six adjacent

neighbours (ie on their left, right, front, back, bottom and top).

18-connectivity means that voxels are connected to their six 6-connected

neighbours and to their twelve incident neighbours that touch

them diagonally along an edge (ie top left, top right, top front, top

back, bottom left, bottom right, bottom front, bottom back, front

left, front right, back left and back right).

26-connectivity means that voxels are connected to their eighteen 18-

connected neighbours and to their eight incident neighbours that

touch them diagonally along a vertex (ie top front left, top front

right, top back left, top back right, bottom front left, bottom front

right, bottom back left and bottom back right).

An alternative way to think about these connectivities is that they are

defined based on the dimensionality of the common boundary of the

pixels or voxels. 6-connectivity means that two neighbouring voxels have a

common 2D face. 18-connectivity means that they have at least a common

1D edge (which covers having a common 2D face). 26-connectivity means

that they have at least a common 0D vertex (which covers having a

common 1D edge or 2D face).

18-connectivity is an interesting concept that shows that there is a consis-

tent logic for every dimension, but it is not really used in practice. We

will thus not discuss it further.

Intersections with targets (2D)

In the example from Figure 4.6, the pixellated curve is obtained by

calculating intersections between the original 1D curve and a set of

intersection targets that are 1D line segments. For 4-connectivity, the

targets consist of the four line segments that bound every pixel. For 8-

connectivity, the targets are line segments that bisect the pixel horizontally

and vertically and their midpoints. The intersections with the targets

give us a set of points, and the pixels in which these points are tell us the

pixels that are part of the pixellated curve. When a point lies on an edge

between two pixels or a vertex between four pixels, we consider that all

of the pixels are part of the curve.

In order to understand the logic of the targets, it is important to consider

two aspects: (i) where the intersections will lie and (ii) whether they

will detect lines when they do not cross the midpoint of a pixel. For 4-

connectivity, the targets simply detect when a line exits the pixel through

the left, right, bottom or top edges on the boundary of the pixel. Since

all intersections will be between pixels, the 2 or 4 pixels incident to the

points will be part of the pixellated curve. For 8-connectivity, the targets

detect when they pass through the middle of the pixel either vertically

or horizontally, which happens in the interior of the pixel. Crucially, note

that they might do not detect when a line cuts through a corner of the

pixel without crossing its middle vertically or horizontally.

Having covered the rasterisation of a 1D curve, let us discuss the two

other cases: rasterising 0D points and 2D areas. Since vector points

are not connected, they do not need to be connected when rasterised

either. Since areas are always connected, they should also be connected
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when rasterised. Connectivity is thus not an issue, which makes their

rasterisation simpler.

An important observation for this method is that we used 1D targets to

rasterise a 1D curve. In order to rasterise a set of 0D points, we would use

intersections with 2D targets, of which the optimal choice would consist

of the whole area of each 2D pixel. In order to rasterise a set of 2D areas,

we would use intersections with 0D targets, of which the obvious choice

is the midpoint of a pixel (although others are possible). It is possible to

see a duality property here: in order to rasterise 𝑖-dimensional objects,

we use (2 − 𝑖)-dimensional targets.

Intersections with targets (3D)

At this point, we should point out that the method described in the

previous section is not the absolute fastest or the most common to

rasterise objects in 2D. However, it is a method with good performance

with a logic that works perfectly in 3D, which is the reason why we will

now explain how it works for voxelisation.

Let us start backwards, with the equivalent duality property for voxelisa-

tion, which states that we can use (3 − 𝑖)-dimensional targets to voxelise

𝑖-dimensional objects. Using this formula directly, we can discuss the

most obvious cases first: voxelising 0D points and 3D volumes, in which

connectivity also does not matter.

In order to voxelise 0D points (eg a point cloud), we can thus simply

use 3D targets that consist of the whole voxel (Figure 4.7). That is, we

can compute for each point which voxel it is in, or for each voxel the

points that are in it. This is a trivial operation using ranges of 𝑥, 𝑦 and 𝑧

coordinates.

Similar to the previous case, in order to voxelise 3D volumes, we can

use a 0D target with the midpoint of the voxel. The exact form of this

operation depends on the input data. For instance, if we have tetrahedra

as input, it would be a point in tetrahedron operation, which could be done

using barycentric coordinates.

Now, let us discuss the more challenging cases: 1D and 2D objects. As

with 1D curves in rasterisation, connectivity is important for these, so we

will give targets that can be used in order to achieve 6-connectivity and

26-connectivity for each.

In order to voxelise 1D curves with 6-connectivity (Figure 4.8), we could

detect when these pass through the top, bottom, left, right, front or back

faces of the voxel using 2D targets (Figure 4.9a). For 26-connectivity, we

could detect when these pass through the middle of the voxel using three

bisecting faces (Figure 4.9b).

Now, in order to voxelise 2D surfaces (Figure 4.10) with 6-connectivity,

we can use 1D targets that detect when we pass through any of the 12

edges on the boundary of the voxel (Figure 4.11a). For 26-connectivity,

we can use 1D targets that detect when we pass through the middle of

the voxel (Figure 4.11b).
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Figure 4.7: A point cloud (a) before and

(b) after voxelisation. AHN data from

Rotterdam.

(a)

(b)

Figure 4.8: A set of lines (a) before and (b)

after voxelisation. OpenStreetMap data

from Istanbul.

(a)

(b)
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(a) (b)

Figure 4.9: Intersection targets (blue) for

1D curves for (a) 6-connectivity and (b)

26-connectivity.

Figure 4.10: Voxelising a surface

(a) (b)

Figure 4.11: Intersection targets (black

lines) for 2D surfaces for (a) 6-

connectivity and (b) 26-connectivity.
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4.4 Exercises

1. Converting samples points to voxels require totally different algo-

rithm if the samples point represent a field or an object. Discuss

why.

2. Can you devise a formula to compare the space occupied by:

a) encoding all voxels in a grid linearly

b) using a sparse encoding with individual voxels

c) using an octree

3. Can you think of cases where the rasterisation targets for 1D lines

do not work? Hint: think of short curves.

4. What kind of connectivity is used in the example of Figure 4.8?

4.5 Notes and comments

Voxels are widely used in areas other than geographic information.

For instance, both medical magnetic resonance (MRI) and computer

tomography (CT) scans produce voxel models. Physical simulations also

use voxels since many calculations are easy to do using regular grid

structures, eg finite-element analysis. Games sometimes use voxels as

well, both for calculations and to render graphics. It is worth noting that

many of the techniques developed in these fields are just as applicable to

geographic information as well.

4D grids using 3D+time are also sometimes used, both in geographic

information and elsewhere. Some of the earliest papers to mention this

are: Mason et al. (1994), who implemented a system using a 4D grid of

ocean temperatures with support for interpolation and generalisation

operations, and Bernard et al. (1998), who implemented a 4D grid of

atmospheric variables (eg temperature, wind or pollution), which can be

used for simulations.

Lorensen and Cline (1987) first describe the Marching Cubes algorithm

to extract isosurfaces from voxels. Although Wilhems and Gelder (1990)

describe various methods to fix the ambiguities, as is the case in two

dimensions, the simplest solution is to subdivide the cubes into tetrahe-

dra.

A common use of the representations covered here, especially voxel grids

and octrees, is spatial indexing. Cells can thus be used to store other

kinds of data, eg ids of objects, memory addresses with data, or a subset

of a point cloud.

The original paper describing quadtrees is Finkel and Bentley (1974),

whereas that for octrees is Meagher (1980). Bintrees (Samet and Tamminen,

1985) are an alternative that split dimensions alternately rather than all

at once. If you are curious about more types of trees used in hierarhical

subdivisions, have a look at the section titled ‘Spatial data partitioning

trees’ in this Wikipedia template: https://en.wikipedia.org/wiki/Te

mplate:CS_trees.

The voxelisation algorithm covered here is described by Laine (2013),

although it might be easier to understand the implementation described

https://en.wikipedia.org/wiki/Template:CS_trees
https://en.wikipedia.org/wiki/Template:CS_trees
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in Nourian et al. (2016). Alternative targets to the ones described in this

chapter are shown in both papers.
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Until this chapter, we have only discussed data models that represent

3D geometries very explicitly. In other words, we have been specifying

objects’ shape through simple elements that have a direct geometric

interpretation. For instance, a tetrahedron’s shape can be known by

looking only at the coordinates of its four vertices, and a polyhedron’s

shape by looking at the set of its bounding polygons (which have a

shape that is easily obtained from a list of vertices). Even in a compact

representation of a voxel grid, the geometry of a single voxel can be

easily known based on a few simple parameters, such as: the absolute

location and orientation of the voxel grid, the cell spacing along each

axis, the order of the voxels in a linear encoding of the grid, and an index

to identify the voxel in this encoding.

Since the elements in explicit representations can be interpreted easily,

these kinds of explicit representations are usually the easiest for comput-

ers to process. However, they also have disadvantages: since objects are

often composed of many small elements, they can be very inefficient with

space and can also make it difficult for people to define objects (either

manually or automatically by writing software). For instance, defining

a shape that approximates a sphere using only polygons will require

many small polygons to obtain a decent approximation, and defining the

polygons to use (and their vertex coordinates) is not trivial.

The alternative to the explicit approach is thus to use more implicit repre-

sentations, in which objects are represented as sequences of operations on
geometric primitives. Thus, the exact shape of the objects being represented

is only known after performing the geometric operations, which can be

rather complex. However, the indirect approach makes it possible to use

primitives that are better suited to a certain task, primitives that are easier

to define, or simply fewer primitives overall.

5.1 What is constructive solid geometry?

Constructive solid geometry (CSG) is a general approach that combines

many of techniques that are typically used with implicit representations,

including primitive instancing, half-space intersections and Boolean set

operations. Most other data models that use implicit representations can

thus be considered as variations of CSG, usually with more restrictions

on the operations that can be performed or the primitives that can be

used.

CSG represents objects as hierarchies of Boolean set operations on other

objects (Figure 5.1). A CSG object is thus a tree, where each non-leaf node

is a Boolean set operation on its children, and where the leaves are math-

ematical definitions of point sets, usually describing very simple objects.

In theory, arbitrary point sets can be used, although implementations

usually limit them to some of the following:
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Figure 5.1: A CSG object represented

as a tree of Boolean set operations on a

sphere, a cube and three cylinders. From

Wikimedia Commons.

Figure 5.2: A plane separates 3D space

into two parts on either side of it. A

plane and a direction can thus be used

to specify the geometry of one of these

halves, which forms an unbounded space

on all directions except one.

primitive instancing

half-space

set theory

set

universe set

element of a set

Primitive instancing defines simple solids parametrically, such as a

sphere based on a radius and the coordinates of its centre;

Arbitrary polyhedra defined using mesh data structures and boundary

representation; and

Half-spaces (Figure 5.2) defined using a plane equation and a direction.

The next section is a short summary of the mathematical background

for this chapter, which consists of set theory, Boolean set operations and

their mathematical notation. Feel free to skip it if you are familiar with

them. In the next two sections, we look at how the two main elements

of CSG work in theory: (i) the definition of simple objects as point sets,

and (ii) how these elements can be combined using Boolean point set

operations. The final section covers Nef polyhedra, which are arguably

the best known basis to implement CSG in practice.

5.2 Background: set theory and Boolean set
operations

Set theory is the branch of mathematics that studies sets, which are

collections of abstract objects. These objects can be anything, including

other sets.

Set theory starts by considering the existence of a given domain of objects

from which one may build sets, which is known as the universe set and

denoted as 𝕌. If an object 𝑎 is part of a set 𝕏, it is denoted as 𝑎 ∈ 𝕏, which

is read as ‘𝑎 is an element of 𝕏’. If 𝑎 is not part of a set 𝕏, it is denoted as

𝑎 ∉ 𝕏, which is read as ‘𝑎 is not an element of 𝕏’. By convention, lower

case is usually used for simple elements and upper case for sets.
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treble

There are two common ways to describe the elements in a set, both using

curly braces, ie { and }. One way to do so is to list all the elements of the

set one by one. For instance, the set {1, 2, 3} is the set containing 1, 2 and

3 as elements (and no others). The other way to do so is to specify one or

more rules that the elements of the set need to fulfil. For instance, the set

{𝑥 : 𝑥 is a prime number} consists of all prime numbers. It is read as ‘𝑥,

such that 𝑥 is a prime number’.

The order in which the elements in a set are defined does not matter. That

is, {1, 2, 3} and {3, 2, 1} are the same set. The elements in a set are also

unique, and duplicate items are ignored by convention. That is, {1, 2, 3}
and {1, 2, 3, 2, 1} are also the same set.

A set may contain an infinite number of elements (eg as the prime number

example above), or no elements at all, in which case it is a special set

known as the null set or empty set and denoted as {} or ∅. Other commonly

used sets with a special notation and name are: the natural numbers (ℕ),

the real numbers (ℝ), the rational numbers (ℚ) and the integers (ℤ).

In order to build more complex sets, the concepts and notation from

mathematical logic are used, in particular propositional logic. Propositional

logic works with propositions, which are sentences that are either true or

false, but not both. These propositions might be altered and combined

using various symbols expressing various notions, such as: and (∧), or
(∨), not (¬), implies (⇒), is implied by (⇐), if and only if (⇔), for all (∀) and

exists (∃). These symbols correspond to their names. For instance, 𝑎 ∧ 𝑏

is true only when both 𝑎 and 𝑏 are true, 𝑎 ∨ 𝑏 is true when 𝑎 or 𝑏 are true

(or both), and ¬𝑎 is true when 𝑎 is false.

Using these concepts it is possible to state relationships between sets.

For instance, we can define that 𝔸 and 𝔹 are equal (𝔸 = 𝔹) when an

element is in 𝔸 if and only if it is also in 𝔹, which can be denoted as

∀𝑥 : 𝑥 ∈ 𝔸 ⇔ 𝑥 ∈ 𝔹. A set 𝔸 is called a subset of a set 𝔹 (𝔸 ⊆ 𝔹), or

𝔹 is a superset of 𝔸 (𝔹 ⊇ 𝔸), when if an element is in 𝔸 then it is also

in 𝔹, denoted as ∀𝑥 : 𝑥 ∈ 𝔸 ⇒ 𝑥 ∈ 𝔹. If 𝔸 ⊆ 𝔹 but 𝔸 ≠ 𝔹, ie there is

at least one extra element in 𝔹, then 𝔸 is a proper subset of 𝔹 (𝔸 ⊂ 𝔹),

or alternatively 𝔹 is a proper superset of 𝔸 (𝔹 ⊃ 𝔸). Note that these

relationships are akin to ‘less than’ (<), ‘less or equal than’ (≤), ‘equal to’

(=), ‘greater or equal than’ (≥), and ‘greater than’ (>) for numbers.

It is also possible to use propositional logic to create new sets by defining

certain operations between sets, in particular Boolean set operations, consist-

ing of intersection, union, difference and complement. The intersection

of the sets 𝔸 and 𝔹, denoted as 𝔸∩𝔹, consists of all the elements that are

both in 𝔸 and in 𝔹, ie 𝔸∩𝔹 = {𝑥 : 𝑥 ∈ 𝔸 ∧ 𝑥 ∈ 𝔹}. The union of the sets

𝔸 and 𝔹, denoted as 𝔸 ∪ 𝔹, consists of all the elements that are either in

𝔸 or in 𝔹, ie 𝔸 ∪ 𝔹 = {𝑥 : 𝑥 ∈ 𝔸 ∨ 𝑥 ∈ 𝔹}. The difference between sets

𝔸 and 𝔹, denoted as 𝔸 − 𝔹, consists of all the elements that are in 𝔸

but not in 𝔹, ie 𝔸−𝔹 = {𝑥 : 𝑥 ∈ 𝔸 ∧ 𝑥 ∉ 𝔹}. The complement of a set 𝔸,

denoted as ¬𝔸, consists of all the elements that are in the universe set

but are not in 𝔸, ie ¬𝔸 = {𝑥 : 𝑥 ∈ 𝕌 ∧ 𝑥 ∉ 𝔸}.

Apart from sets, it is also possible to consider tuples of elements, which are

sequences of ordered elements. A tuple containing exactly two elements

is known as a pair, one containing three elements is a treble and one



52 5 Constructive solid geometry and Nef polyhedra

Cartesian product

point set equation of a line

point set equation of a plane

containing 𝑛 elements is an 𝑛-tuple. Tuples are usually denoted using

parenthesis, ie ( and ).

A common operation that generates tuples is the Cartesian product.

The Cartesian product of sets 𝔸 and 𝔹, denoted as 𝔸 × 𝔹, is defined as

{(𝑎, 𝑏) : 𝑎 ∈ 𝔸 ∧ 𝑏 ∈ 𝔹}. In other words, it is a set of pairs, where the first

element of a pair is an element of 𝔸 and the second element of the pair is

an element of 𝔹. This can be generalised to more than two sets, such that

the 𝑛-fold Cartesian product of 𝑛 sets is an 𝑛-tuple. The 𝑛-fold Cartesian

product of a set 𝔸 with itself, ie 𝔸 ×𝔸 × · · ·𝔸, is denoted as 𝔸𝑛
.

5.3 Defining objects using point set geometry

Point set geometry applies the notions of set theory to define the geometry

of objects as sets of points. The usual definition maps 1D space (ie the

line) to the set of real numbers (ie ℝ), and so 2D space (ie the plane) is

ℝ2
and 3D space is ℝ3

.

Individual points in 2D and 3D space can be considered as elements of

ℝ2
and ℝ3

. For instance, we can denote a point 𝑝 in 2D space as 𝑝 ∈ ℝ2

or in 3D space as 𝑝 ∈ ℝ3
. Note that this notation perfectly matches the

way in which points are usually defined based on their coordinates. For

example, by stating 𝑝 = (𝑥, 𝑦, 𝑧) ∈ ℝ3
, we simply mean that 𝑥, 𝑦, 𝑧 ∈ ℝ,

ie that 𝑥, 𝑦 and 𝑧 are arbitrary real numbers.

Based on these definitions, we can then define sets that describe specific

geometric objects. For instance, we can start by considering how any point

𝑝 between two points 𝑝1 and 𝑝2 at different locations can be obtained as

a sort of weighted average of 𝑝1 and 𝑝2, where the relative weight of the

two points tell us that we’re closer to one point than to another. If we put

this into an equation, we get:

𝑝 =
𝑎𝑝1 + 𝑏𝑝2

𝑎 + 𝑏
. (5.1)

Note that we divide everything by 𝑎 + 𝑏 to make sure that the weights

add up to one. Also, note it is possible to use negative weights to get

points that are on the line that passes through 𝑎 and 𝑏 but not between 𝑎

and 𝑏. Expanding on this, the line 𝐿 passing through 𝑝1 and 𝑝2 is defined

by considering all possible values of 𝑎 and 𝑏. That is:

𝐿 =

{
𝑎𝑝1 + 𝑏𝑝2

𝑎 + 𝑏
: 𝑎, 𝑏 ∈ ℝ

}
. (5.2)

In the case of a line, we can get rid of one parameter by substituting

𝑡 = 𝑎/(𝑎+ 𝑏), which would yield 𝐿 =
{
𝑡𝑝1 + (1 − 𝑡)𝑝2 : 𝑡 ∈ ℝ

}
. Note how

at 𝑡 = 0 we get 𝑝2, at 𝑡 = 1 we get 𝑝1, and when 0 < 𝑡 < 1 we get the line

segment between 𝑝1 and 𝑝2. Note also how this definition of a line works

both in 2D and 3D.

Generalising from Equation 5.2, we can also define a similar equation for

a plane 𝑃 from three non-collinear points 𝑝1, 𝑝2 and 𝑝3 as:
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point set equation of a half-space

point set equation of a ball

point set equation of an ellipsoid

point set equation of a cuboid

point set equation of a cylinder

convex decomposition

union

𝑃 =

{
𝑎𝑝1 + 𝑏𝑝2 + 𝑐𝑝3

𝑎 + 𝑏 + 𝑐
: 𝑎, 𝑏, 𝑐 ∈ ℝ

}
. (5.3)

In 3D, if we substitute the equality (=) of the previous equation for

a strict inequality (< or >), we get instead an equation to represent

the half-spaces respectively below and above the plane (such as those

previously shown in Figure 5.2). An equation of this form is typically

stored in the leaves of a CSG tree, eg as the three non-collinear points

in the equation above, or as the coefficients of an equation of the form

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0, plus a direction to specify which half-space to

use.

For the sake of uniformity and ease of processing, many CSG implemen-

tations only use half-spaces. However, several simple axis-aligned 3D

solids also have easy point set definitions that can be used to store them

as primitives based on a few parameters, including:

balls ie the space inside a sphere, which can be defined as (𝑥 − 𝑐𝑥)2 +
(𝑦 − 𝑐𝑦)2 + (𝑧 − 𝑐𝑧)2 < 𝑟2

, where 𝑟 is the radius and 𝑐 = (𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧)
is the centre;

ellipsoid interiors defined as
(𝑥−𝑐𝑥 )2

𝑎2
+ (𝑦−𝑐𝑦 )

2

𝑏2
+ (𝑧−𝑐𝑧 )

2

𝑐2
< 1, where 𝑎, 𝑏

and 𝑐 are half the lengths of each axis, and 𝑐 = (𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧) is the

centre; and

cuboid interiors ie box-shaped objects, which can be defined using

intervals for the minimum and maximum values it has along each

axis, ie 𝑥min < 𝑥 < 𝑥max ∧ 𝑦min < 𝑦 < 𝑦max ∧ 𝑧min < 𝑧 < 𝑧max; and

cylinder interiors by checking whether a point lies within a radius for

two axes, and within an interval for the third.

Other common objects are more general versions of these objects, such

as parallelepipeds, (truncated) cones, etc. As for non-axis aligned sim-

ple solids, they can be supported by special nodes in the CSG tree

that represent geometric transformations by their parameters (rather

than Boolean point set operations), such as translations, rotations and

scaling, or more general ones like affine transformations or arbitrary

transformation matrices by storing their elements one by one.

5.4 Boolean point set operations

In order to create objects other than those directly added to an implemen-

tation (ie half-spaces and possibly some geometric shapes), CSG relies

on Boolean point set operations (Figure 5.3). Arbitrary polyhedra can be

represented in this way by first splitting them into convex parts (which

might require Steiner vertices), and then representing the convex parts

as intersections of half-spaces (one per face). These operations, which are

located in the non-leaf nodes of the CSG tree, combine the geometry of

the point sets described by their children (using the methods described

in the previous section).

Boolean point set operations are based on the Boolean operations on sets,

which are mainly:
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Figure 5.3: Based on (a) two balls 𝔸 and

𝔹, other objects can be defined using

Boolean set operations, such as: (b) the

intersection 𝔸 ∩ 𝔹, (c) the union 𝔸 ∪ 𝔹,

and (d) the difference 𝔸 − 𝔹.

(a) (b)

(c) (d)

intersection

difference

symmetric difference

Nef polyhedra

union of the sets 𝔸 and 𝔹, denoted as 𝔸 ∪ 𝔹, is the set containing the

elements that are in 𝔸 or 𝔹, ie 𝔸 ∪ 𝔹 = {𝑥 : 𝑥 ∈ 𝔸 ∨ 𝑥 ∈ 𝔹};
intersection of the sets𝔸 and𝔹, denoted as𝔸∩𝔹, is the set containing the

elements that are in both 𝔸 and 𝔹, ie 𝔸∩𝔹 = {𝑥 : 𝑥 ∈ 𝔸 ∧ 𝑥 ∈ 𝔹};
set difference of the sets 𝔸 and 𝔹, denoted as 𝔸 − 𝔹 or 𝔸 \ 𝔹, is the

set containing the elements that are in 𝔸 but not in 𝔹, ie 𝔸 − 𝔹 =

{𝑥 : 𝑥 ∈ 𝔸 ∧ 𝑥 ∉ 𝔹};
symmetric difference of the sets 𝔸 and 𝔹, denoted as 𝔸△𝔹, 𝔸 ⊖ 𝔹 or

𝔸 ⊕ 𝔹, is the set containing the elements that are either in 𝔸 or in

𝔹 but not in both, ie 𝔸△𝔹 = {𝑥 : 𝑥 ∈ 𝔸 − 𝔹 ∪ 𝔹 −𝔸}.

The key point about these operations is that they do not need to perform

any geometric computations, since it is possible to tell if an element (ie

point) is in the new point set by just checking whether it is in its children’s

point sets. It is thus trivially easy to do Boolean point set operations on

individual points.

Based on this knowledge, we could build a crude CSG implementation

directly on a point cloud or voxel grid by: (i) for each leaf node, checking

whether each point/voxel meets the point set definition in the node, and

(ii) for each non-leaf node, applying the Boolean set operations on the

point sets represented by its child nodes point by point. However, since

this easy solution is not applicable to other data models, we will look at

a better solution that works better in practice.

5.5 Nef polyhedra

Nef polyhedra, named after Walter Nef, are an alternative representation

of polygons and polyhedra (ie not the usual b-rep meshes) that is based

on the concept of a local pyramid, which is a structure that stores the

neighbourhood information around every vertex (Figure 5.4). Polygons

and polyhedra can be stored as a set of local pyramids and their location

(as a set of 2D/3D coordinates).
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(a) (b)

Figure 5.4: (a) A Nef polygon is repre-

sented indirectly as (b) a set of local pyra-

mids (circles). At every local pyramid,

the polygon (red) becomes an angular

interval. Incident edges become points

at the endpoints of these intervals.

local pyramid

subdivision

5.5.1 Local pyramids

The local pyramid of a vertex contains the intersection of an infinitesimally

small sphere (in 3D) or circle (in 2D) with the volumes, faces and edges

incident to this vertex. An incident volume thus becomes a face, an

incident face becomes an edge, and an incident edge becomes a vertex

on the surface of the local pyramid sphere/circle, essentially lowering

the dimension of every object by one (just like boundary representation

does!).

The key thing to understand here is the following: a 2D/3D object rep-
resented as a set of local pyramids (and their location) can individually be
stored using 1D/2D data structures. This is a process akin to boundary

representation, but it does not have problems with non-manifold objects

(unlike boundary representation).

In practice, computing the local pyramid at a local vertex is also a

relatively simple operation. We will not go through the details here (see

the references in the notes if you are interested), but in 2D, it involves

computing the angle of its neighbouring vertices as you rotate around

the vertex, and marking the intervals between these vertices with the

polygons that you pass through while doing so. In 3D, it is a more

complex operation involving the computation of an arrangement of lines

in a spherical coordinate system, and the location of every neighbouring

vertex is defined by two angles (rather than one).

5.5.2 Computing Boolean point set operations on Nef
polyhedra

Boolean point set operations on Nef polyhedra (and many other geometric

operations) can be computed in three steps: subdivision, selection and

simplification. This is a common scheme used in geometric computing in

general, and we will discuss what each of these involves in this specific

case.

Subdivision involves computing an overlay of the input polyhedra, thus

creating the overall structure where the result will be put (ie the

vertices, edges, faces and volumes).
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Figure 5.5: Various Boolean point set

operations on (a) the Nef polygons 𝐴
(red) and 𝐵 (blue) that can be performed

on (b) their local pyramids.

(a) (b)

selection

simplification

In 2D, this is also a computation of a line arrangement (also known

in GIS as map overlay), where the output is a set of vertices and

edges representing all the input lines of both polygons, but where

edges do not intersect except at their common vertex end points.

Vertices (ie local pyramids) will be located at the position of all

input vertices and at every new intersection between lines.

In 3D, it is a similar operation, but the new vertices (ie local

pyramids) are located at line-polygon intersections as well. These

can be calculated by computing a plane passing through the

polygon and intersecting it with the line.

Selection involves checking whether each face (in 2D) or volume (3D)

should be part of the output or not, marking it as such in the relevant

parts of the local pyramids. This is done by testing whether it is in

the interior or exterior of the input Nef polygons/polyhedra.

Simplification involves removing unnecessary structures in a way that

does not alter the point set that is represented, which is akin to

the dissolving operations common in GIS. This is done by deleting

local pyramids when they do not actually represent a new vertex,

or when are not subdivided.

Figure 5.5 shows an example of how this works in practice in 2D. A 2D

Boolean point set operation starts from two Nef polygons 𝐴 = (𝑔, 𝑏, 𝑓 , 𝑖)
and 𝐵 = (𝑎, 𝑓 , 𝑘, 𝑗, 𝑒 , 𝑐)—each of which is stored as a set of local pyramids

at its corresponding vertices. As shown previously in Figure 5.4, each

of these 2D local pyramids can be stored as a list of 1D intervals, eg at

vertex 𝑎, polygon 𝐵 = [225, 315], where the values are in degrees.

The operation first computes the intersections between the line segments

(as an overlay problem), creating the new vertices 𝑑 and ℎ. The location of

these vertices can be calculated using the equations of the corresponding

lines. The vertices of each polygon and the intersection points between

the line segments yield the local pyramids to be considered.

Then, the local pyramid intervals for both polygons at all of these locations

are computed. For instance, at vertex 𝑎, 𝐴 = ∅ and 𝐵 = [225, 315]. A

Boolean set operation is then computed by applying it to the local

pyramids (ie to the intervals). For instance, at vertex 𝑎, ¬𝐴 = 𝕌 = [0, 360]
and ¬𝐵 = [315, 225] (by inverting the range), 𝐴 ∪ 𝐵 = [225, 315] (by

combining the ranges), 𝐴 ∩ 𝐵 = ∅ (by finding common parts of the

ranges), and 𝐴 − 𝐵 = ∅ (by removing from the ranges of 𝐴 those of 𝐵).

Finally, unnecessary local pyramids can be removed from the output: 𝑓

in 𝐴 ∪ 𝐵; 𝑎, 𝑏, 𝑐, 𝑔, 𝑖, 𝑗 and 𝑘 in 𝐴 ∩ 𝐵; and 𝑎, 𝑐, 𝑗 and 𝑘 in 𝐴 − 𝐵.
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CHAPTER 3. REPRESENTATION SCHEMES

edge−use

opposite edge−use

vertex

sphere map

svertex sed
ge

oriented edge

sphere map

vertex

edge−use

svertex

svertex

svertex

sedge

oriented facet

Figure 3.3: A selective Nef complex: We show one facet with two vertices, their
sphere maps, the connecting edges, and both oriented facets. Shells and volumes
are omitted.

Edge-uses: An edge can have many incident facets (non-manifold situation). We
introduce two oppositely oriented edge-uses for each incident facet; one for
each orientation of the facet. An edge-use points to its corresponding ori-
ented edge and to its oriented facet. We can uniquely identify each edge use
with an shalfedge, or, in the special case, also with an shalfloop.

Facets: We store oriented halffacets as boundary cycles of oriented edge-uses. We
have a distinguished outer boundary cycle and several (or maybe none) inner
boundary cycles representing holes in the facet. Boundary cycles are linked
in one direction. We can access the other traversal direction when we switch
to the oppositely oriented halffacet, i.e., by using the opposite edge-use.

Shells: The volume boundary decomposes into different connected components,
the shells. They consist of a connected set of facets, edges, and vertices
incident to this volume. Facets around an edge form a radial order that is
captured in the radial order of sedges around an svertex in the sphere map.
Using this information, we can traverse a shell completely starting at an ar-
bitrary entry element with a graph search.

Volumes: A volume is defined by a set of shells, one outer shell containing the

22

Figure 5.6: A selective Nef complex. The

standard half-edge structure on 3D space

uses faces (as an oriented facet for each

incident polyhedron), edges (as an edge-

use for each incident oriented facet) and

vertices. The half-edge structure on the

surfaces of the spheres representing local

vertices, known as sphere maps, uses

sfaces (per incident polyhedron but not

shown here), sedges (per incident face)

and svertices (per incident edge). From

Hachenberger (2006).

selective Nef complex

5.5.3 3D Nef polyhedra in practice: selective Nef
complexes

3D Nef polyhedra and Boolean point set operations on them can be

implemented using different data structures, but an excellent open

implementation (see notes) uses a data structure called selective Nef
complexes (Figure 5.6).

Selective Nef complexes (SNC) use a combination of two half-edge data

structures:

▶ a standard half-edge data structure on 3D space, which stores each

face of each polyhedron as a cycle of edge-uses connecting vertices;

▶ a half-edge data structure to represent each local pyramid (one per

vertex) as a subdivision on the surface of an (infinitesimally small)

sphere.

Each vertex is linked to its sphere map, where each incident volume

corresponds to a face on its sphere map (sface), each incident face

corresponds to an edge (sedge), and each incident edge corresponds to a

vertex (svertex). These corresponding elements are linked to each other,

which makes it possible to navigate both on the half-edge data structure

in 3D space (eg by going from an edge-use to the next to cycle around a

face) and on the half-edge data structure of a sphere map (eg by going

from one sedge to the next to cycle around an sface).

5.6 Exercises

1. How can you define a cube using:

a) a parametric representation

b) a b-rep data structure

c) an intersection of half-spaces

2. In the line 𝐿 = 𝑎𝑝1 + (1− 𝑎)𝑝2, what is the geometry given by 𝑎 < 0

and 𝑎 > 1?
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3. Compute the ranges for the local pyramids of some other vertices

in Figure 5.5.

4. In which cases is simplification needed in 2D?

5. Imagine the voxel CSG engine briefly mention in Section 5.4. What

would you use for leaf nodes in the CSG tree? How would you

implement Boolean set operations on them?

5.7 Notes and comments

If you need more help with the mathematical background, check the

Wikipedia pages on sets, set algebra.

The earliest description of CSG is likely Requicha and Voelcker (1977,

§12.3) and its properties is Requicha and Tilove (1978). However, it is

more of a culmination of efforts of many people. For instance, Shamos

and Hoey (1976) and Preparata and Muller (1979) show that it is possible

to represent any convex object (of any dimension) as the intersection of a

finite number of half-spaces. In order to see how such a decomposition

can be done, see Chazelle and Dobkin (1979) or Bajaj and Dey (1990).

A nice example of how half-spaces can be stored in practice is Naylor

(1990).

Nef polyhedra were originally described in Nef (1978), although a much

better description including the way they work with Boolean set opera-

tions is available in Bieri and Nef (1988).

For more background on the line arrangement problem, see the relevant

Wikipedia page. For a clear description of how to compute one, see de

Berg et al. (2008, §2) or the user manual of the Arrangements_2 package

of CGAL.

Nef polyhedra as a CSG engine in practice is only possible thanks to

Seel (2001) in 2D and Hachenberger (2006) in 3D. They discuss how

to compute local pyramids in 2D and 3D, as well as Boolean point set

operations on polygons and polyhedra. They are implemented in the

CGAL packages 2D Boolean Operations on Nef Polygons and 3D Boolean

Operations on Nef Polyhedra.

The general scheme to perform geometric operations in three steps

(subdivision, selection and simplification) is discussed by Rossignac and

O’Connor (1989).
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Figure 6.1: A composite curve made from

two line segments and a circular arc.
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The vast majority of geographic information uses only linear geometries

(ie line segments, polygons and polyhedra). When curved geometries

are present, they are usually simple parametric shapes, such as spheres,

cylinders and cones in CSG or circular arcs in certain 2D datasets (Fig-

ure 6.1). Moreover, most data models are designed with linear geometries

in mind.

However, modelling curves and curved surfaces is still highly desirable

in certain circumstances, as they make it possible to model many shapes

a lot more compactly and without losing precision through discretisation.

Most CAD and 3D modelling software thus support curves and curved

surfaces, and BIM models routinely use them internally as well.

There are several methods that can be used to represent general curves

in 2D/3D and curved surfaces in 3D. This chapter covers one of them

that is relatively simple and works well in practice: Bézier curves and

surfaces.

6.1 Background

6.1.1 Types of points

In general, curve and surface modelling is done by specifying the locations

of points, of which there are two kinds (Figure 6.2a):

data points are points that the curve/surface needs to pass through;

and

control points are points that have some influence over the shape of

the curve/surface, but through which the curve/surface does not

necessarily pass. Intuitively, they ‘pull’ the curve in their direction.

Note that in some contexts, they might all be referred to as control points

(eg graphics software), whereas in others (eg interpolation) the distinction

is almost always made. If you have some experience with vector-based

graphic editors (eg Adobe Illustrator, Inkscape or Sketch), you have likely

drawn curves using data points and control points (Figure 6.2b).

(a) (b)

Figure 6.2: (a) The data points (white)

and control points (black) used to draw

a Bézier curve. (b) In Affinity Designer

(shown here) and most other graphics

editors, data points (large circles) are

surrounded by handles with the control

points at their ends (small blue circles)
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Figure 6.3: The parametric curve

𝐶(𝑥, 𝑦) = (cos 𝑡 , sin 𝑡) for the unit cir-

cle (black), its first derivative at 𝑡 = 0

(green), and the second derivative (red).

6.1.2 Types of curves and surfaces

There are three kinds of mathematical representations that are typically

used to represent curves and surfaces. From most restrictive to least

restrictive, these are:

Explicit curves/surfaces are modelled using a function that defines the

value of one coordinate, generally 𝑦 in 2D and 𝑧 in 3D, based on

the other coordinate(s). For instance, 𝑓 (𝑥) = 𝑦 = 𝑥2
can be used

to define a parabola in 2D, and 𝑓 (𝑥, 𝑦) = 𝑧 = 𝑥2 + 𝑦2
to define a

paraboloid in 3D. This makes it impossible to represent vertical

lines in 2D and planes in 3D (without swapping the dependent and

independent variables in the equation), and makes it difficult to

have multiple values per dependent variable, with minor exceptions

such as the use of plus or minus (±), eg 𝑓 (𝑥) = 𝑦 = ±
√

1 − 𝑥2
for a

circle or 𝑓 (𝑥, 𝑦) = 𝑧 = ±
√

1 − 𝑥2 − 𝑦2
for a sphere.

Implicit curves/surfaces are modelled using a single function with all

coordinates as parameters. For instance, 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 = 1

defines a unit circle in 2D and 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 = 1 defines

a unit sphere in 3D. This works fine with vertical lines/planes

and can represent multiple values per dependent variable, but

completely functions have to be built to represent different curves.

Parametric curves/surfaces are modelled using different functions per

coordinate which have independent non-coordinate variables as pa-

rameters. For instance, 𝑓 (𝑡) = (cos 𝑡 , sin 𝑡) with 0 ≤ 𝑡 ≤ 2𝜋 defines

a unit circle in 2D, whereas 𝑓 (𝑡) = (cos𝜃 sin 𝜙, sin𝜃 sin 𝜙, cos 𝜙)
with 0 ≤ 𝜃 ≤ 2𝜋 and 0 ≤ 𝜌 ≤ 𝜋 defines a unit sphere in 3D. This

is the most flexible approach because it allows us to define curves

and surfaces in a general form that works independently of the

coordinates used.

Because of their flexibility, Bézier curves/surfaces and most other curve

modelling methods (eg splines) are based on parametric curves/surfaces.

For the rest of this chapter, we will therefore be working with parametric

curves/surfaces only.

6.1.3 Tangent vectors and other derivatives

If we compute the first derivative of a parametric curve with respect

to its parameter(s) at a given point, we get vector(s) with a direction

that is tangent to the curve and a magnitude that tells us the rate of

change of the parameter(s) at that point. For instance, in the curve

𝐶(𝑥, 𝑦) = (cos 𝑡 , sin 𝑡) with 0 ≤ 𝑡 ≤ 2𝜋 (Figure 6.3), which describes

the unit circle, at 𝑡 = 0 we get the point (1, 0), ie the rightmost point on

the circle using the typical axis directions. The tangent vector is then

𝑑𝐶(𝑥, 𝑦)/𝑑𝑡 = (− sin 𝑡 , cos 𝑡), which at 𝑡 = 0 is (0, 1), ie a unit vector

pointing upwards (which makes sense considering that it draws the circle

in a counter-clockwise direction).

A common analogy to understand this concept is to consider a moving

particle moving in time (hence you will often see 𝑡 used in parametric

functions). The parametric function tells us the position of the particle at

any given time, and the tangent vector tells us the direction and speed of

the particle at that time.
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uniform parametric curve

non-uniform parametric curve

curve segment

surface patch

The second derivative of a parametric curve is a little harder to visualise,

but it is also a vector that tells us the rate of change of the curvature at a

point. In the particle analogy, it is the acceleration of the particle (and

its acceleration direction). In the circle from the previous example, the

second derivative is 𝑑2𝐶(𝑥, 𝑦)/𝑑𝑡2 = (− cos 𝑡 ,− sin 𝑡), which at 𝑡 = 0 is

(−1, 0), ie a unit vector towards the centre of the circle.

6.1.4 Uniform vs. non-uniform

In order to fit a parametric curve through a series of points, we need

to decide the curve equations and the values of the parameters that

should be used. We will discuss the curve equations for Bézier curves

and surfaces later in this chapter, so for the moment let us consider only

two points 𝑝0 and 𝑝1, which are connected by a straight line segment 𝐿.

The parametric equation of the line segment would be given by:

𝐿(𝑡) = (1 − 𝑡)𝑝0 + 𝑡𝑝1, for 0 ≤ 𝑡 ≤ 1. (6.1)

Here, note that 𝑡 = 0 corresponds to 𝑝0 and 𝑡 = 1 corresponds to 𝑝1.

When the equation is parametrised so that the parameter increases by

a fixed amount for every point in a sequence of points, it is said to be a

uniform parametric curve. When this is not the case, it is a non-uniform
parametric curve.

6.1.5 Polynomials, segments and patches

Polynomial functions can be used to directly model entire curves and

surfaces. In 2D, a polynomial of degree one (ie a straight line) is a linear

function of the form 𝑓 (𝑡) = 𝑎𝑡+𝑏 that can be defined so as to pass through

two points, a polynomial of degree two (ie a parabola) is a quadratic

function of the form 𝑓 (𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐 that can be made to pass through

three points, a polynomial of degree three is a cubic function of the form

𝑓 (𝑡) = 𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 that can be made to pass through four points, and

so on. We can therefore use a polynomial of degree 𝑛 to model a curve

passing through 𝑛 + 1 points.

However, high-degree polynomials wobble uncontrollably to pass through

all the points, and a small change in the position of one of the points

can cause large changes all over the curve. It is thus much better to split

curves and surfaces into segments (for curves) and patches (for surfaces)

passing through only a small number of points, and then to join these

segments/patches using low-degree polynomial functions (generally

quadratic or cubic).

In a parametric curve 𝐶(𝑡), specific values of 𝑡 can be used to split the

curve into segments. Most commonly, the data points will be used for this

purpose, which for uniform parametric curves will be at 𝑡 = 0, 1, 2, . . .

(Figure 6.4).

In a parametric surface 𝑆(𝑢, 𝑣), specific values of 𝑢 are curves on the

surface, as are values of 𝑣. Similarly, a set of two curves with fixed 𝑢 and

two curves with fixed 𝑣 will bound a patch, eg 𝑆(𝑢, 0), 𝑆(𝑢, 1), 𝑆(0, 𝑣)
and 𝑆(1, 𝑣) (Figure 6.5).
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Figure 6.4: A composite Bézier curve made from three segments.

Figure 6.5: A Bézier rectangular patch.
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6.1.6 Continuity

In order to describe how segments/patches should be joined, we rely on

the concept of continuity, of which there are two types: geometric and

parametric. Geometric continuity can be defined as follows:

Positional (𝐺0
) continuity means that the boundary of a segment or

patch matches that of its neighbours, ie there are no holes at

common boundaries (Figure 6.6a);

Tangential (𝐺1
) means that the angles of segments or patches match

those of its neighbours at their common boundaries, ie no sharp

edges at common boundaries (Figure 6.6b);

Curvature (𝐺2
) means that the curvature of a segment or patch match

that of its neighbours at their common boundaries, ie no ‘soft’

edges at common boundaries.

Generalising from here, we can say that a curve has 𝐺𝑛
continuity at a

boundary point when the 𝑛-th derivatives have the same direction at

that point. If they have the same magnitude as well, it is also said to have

𝐶𝑛
continuity. Therefore, 𝐶𝑛

continuity implies 𝐺𝑛
continuity.
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(a) (b)
Figure 6.6: Continuity: (a) 𝐺0 and (b) 𝐺1.

𝐺2 continuity is difficult to achieve with

Bézier curves.
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6.2 Bézier curves

Bézier curves are parametric curves that are based on a polynomial

function with one parameter. They are named after Pierre Bézier, who

developed them to model the stylised shapes of cars while working at

Renault in the 1960s. Interestingly enough, they were also independently

developed by Paul de Casteljau at Citroën, likely before Bézier, but it

appears that he was not allowed to publish them. However, De Casteljau’s

algorithm, which is used to evaluate Bézier curves, is named after him.

6.2.1 A single Bézier segment

Given a sequence of points, the Bézier curve starts from the first point

and ends at the last point, whereas the intermediate points are treated

as control points that ‘pull’ the curve in their direction, but always

remaining inside the convex hull of the points. This is known as a Bézier
segment.

The tangent vector at the first point points to the second point, whereas

the tangent vector at the last point points from the next-to-last point to it.

Similar constructions can be made for the higher derivatives, with the

𝑛-th derivative being determined only by 𝑛 + 1 points.

If there are no intermediate points, the result is a linear Bézier curve,

which is equivalent to a straight line between the two endpoints. The most

common forms of Bézier curves are however quadratic Bézier curves

(Figure 6.7), which have one intermediate point, eg 𝑝quadratic = (𝑝0 , 𝑝1 , 𝑝2),
and cubic Bézier curves (Figure 6.8), which have two intermediate points,

eg 𝑝cubic = (𝑝0 , 𝑝1 , 𝑝2 , 𝑝3). Note the tangent vectors in both figures, as

well as how the curves always fit within the convex hull of the points.

A Bézier curve 𝐶 can be formulated as a sort of weighted average of its

points (𝑝𝑖 , . . . , 𝑝𝑛):
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Figure 6.7: Three quadratic Bézier curves

Figure 6.8: Three cubic Bézier curves

Bernstein polynomials

binomial coefficient

Pascal’s triangle

𝐶(𝑡) =
𝑛∑
𝑖=0

𝐵𝑛
𝑖 (𝑡)𝑝𝑖 , for 0 ≤ 𝑡 ≤ 1 (6.2)

where 𝐵𝑛
𝑖

is the weight associated with the point 𝑝𝑖 .

Intuitively, you can imagine that we want this weight to reach a maximum

when we are close to the point and decrease as we move farther from

it. For example, in a quadratic Bézier curve, 𝐵𝑛
0

should start from its

maximum value at 𝑡 = 0 and decrease as 𝑡 increases, 𝐵𝑛
1

should start low,

increase to reach a maximum at 𝑡 = 0.5 and decrease afterwards, and 𝐵𝑛
2

should start from its lowest point and increase to reach its maximum at

𝑡 = 1.

The exact functions used to determine the weights in Bézier curves are

called Bernstein polynomials (Figure 6.9), named after Sergei Natanovich

Bernstein who discovered them in the 1910s. These are given by:

𝐵𝑛
𝑖 (𝑡) =

(
𝑛

𝑖

)
𝑡 𝑖(1 − 𝑡)𝑛−𝑖 , where

(
𝑛

𝑖

)
=

𝑛!

𝑖!(𝑛 − 𝑖)! (6.3)

where 𝑛 is the degree of the Bézier curve, ie 1 for linear, 2 for quadratic, 3

for cubic, etc.

(
𝑛
𝑖

)
is the binomial coefficient, which is equivalent to the 𝑖-th

column of the 𝑛-th row in Pascal’s triangle (Figure 6.10).

Linear Bézier curves (𝑛 = 1) are thus given by:
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Figure 6.9: Weights obtained from the Bernstein polynomials for (a) linear, (b) quadratic and (c) cubic Bézier curves.

1
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Figure 6.10: Pascal’s triangle, where the

numbers are obtained by adding the

numbers in the row above (starting from

a single 1).
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composite Bézier curve

polybezier

beziergon

bezigon

𝐶(𝑡) =
1∑
𝑖=0

𝐵1

𝑖 (𝑡)𝑝𝑖

= (1 − 𝑡)𝑝0 + 𝑡𝑝1, for 0 ≤ 𝑡 ≤ 1. (6.4)

which is equivalent to the parametric equation of the line we discussed

in the background. Quadratic Bézier curves (𝑛 = 2) are given by:

𝐶(𝑡) =
2∑
𝑖=0

𝐵2

𝑖 (𝑡)𝑝𝑖

= (1 − 𝑡)2𝑝0 + 2𝑡(1 − 𝑡)𝑝1 + 𝑡2𝑝2, for 0 ≤ 𝑡 ≤ 1. (6.5)

And cubic Bézier curves (𝑛 = 3) are given by:

𝐶(𝑡) =
3∑
𝑖=0

𝐵3

𝑖
(𝑡)𝑝𝑖

= (1 − 𝑡)3𝑝0 + 3𝑡(1 − 𝑡)2𝑝
1
+ 3𝑡2(1 − 𝑡)𝑝2 + 𝑡3𝑝3, for 0 ≤ 𝑡 ≤ 1. (6.6)

6.2.2 Composite Bézier curves

Now, let us discuss how to join multiple Bézier segments together

smoothly into a composite Bézier curve or a polybezier (accent usually

omitted). When they are joined in a loop, ie joining the last to the first,

it is sometimes called a beziergon or bezigon. Many common vector file

formats use these, including several font formats, PDF files, and SVG

images. Figure 6.2 also shows how these commonly look in software,

where the intermediate control points are shown as ‘handles’ around the

data points.

As we mentioned before, high-degree polynomials are undesirable be-

cause they tend to wobble and are hard to control. It is therefore usually

better to create composite Bézier curves by connecting Bézier segments

made from low-degree Bézier curves using only a few control points,

most often cubics.

Connecting multiple Bézier segments with 𝐺0 or 𝐶0 continuity simply

means that their common endpoint should be the same. That is, if we

have a composite Bézier curve formed by two adjacent Bézier segments,

where the first is defined by the points (𝑝0 , . . . , 𝑝𝑛) and the second is

defined by the points (𝑞0 , . . . , 𝑞𝑛), we need to enforce that 𝑝𝑛 = 𝑞0.

As we previously discussed, the tangent vector of the endpoint of a Bézier

curve is related only to the endpoint and its neighbour. Therefore, 𝐺1

continuity can be achieved by making sure that the common endpoint

and its two neighbours, ie 𝑝𝑛−1 and 𝑞1, are collinear (Figure 6.11). For 𝐶1

continuity, they should also be evenly spaced. 𝐺2 and 𝐶2 continuity is

hard to achieve, so we will not discuss it here.
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(a) (b)

Figure 6.11: Two composite Bézier curves

with: (a) 𝐺1 continuity and (b) 𝐶1 conti-

nuity.

biquadratic Bézier surface

bicubic Bézier surface

6.3 Bézier surfaces

6.3.1 Rectangular Bézier surfaces

Moving on to 3D, the most common implementation of Bézier surfaces

uses rectangular patches, which are made of grids of points. The most

common are biquadratic (3×3; Figure 6.12) and bicubic (4×4; Figure 6.13)

surfaces, which are defined based on square matrices of points, such

as:

𝑝biquadratic =
©­«

𝑝0,0 𝑝0,1 𝑝0,2

𝑝1,0 𝑝1,1 𝑝1,2

𝑝2,0 𝑝2,1 𝑝2,2

ª®¬ , and (6.7)

𝑝bicubic =

©­­­«
𝑝0,0 𝑝0,1 𝑝0,2 𝑝0,3

𝑝1,0 𝑝1,1 𝑝1,2 𝑝1,3

𝑝2,0 𝑝2,1 𝑝2,2 𝑝2,3

𝑝3,0 𝑝3,1 𝑝3,2 𝑝3,3

ª®®®¬ , (6.8)

where only the four corner points are data points and all the others are

control points. Note that the four sides of a Bézier surface are Bézier

curves using the points on the top/bottom/left/right of the matrix.

A rectangular Bézier surface is described as:

𝑆(𝑢, 𝑣) =
𝑛∑
𝑖=0

𝑚∑
𝑗=0

𝐵𝑛
𝑖 (𝑢)𝐵𝑚

𝑗 (𝑣)𝑝𝑖 , 𝑗 , for 0 ≤ 𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1. (6.9)

where 𝑝𝑖 , 𝑗 is a point in an 𝑚 × 𝑛 matrix that defines the data points and

control points used for the patch.

Figure 6.12: A Bézier biquadratic surface

and the points that define it. Note how

the four corners are the only data points

and how the surface is tangent to them.
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Figure 6.13: A Bézier bicubic surface and

the points that define it. Note how the

four corners are the only data points and

how the surface is tangent to them.

composite Bézier surface

Bézier patch

triangular Bézier surface

Bézier triangle

As with composite Bézier curves, composite Bézier surfaces can be created

by joining together multiple rectangular Bézier patches. These follow the

same logic as the composite Bézier curves.

In order to get 𝐺0 and 𝐶0 continuity, the common points at the boundary

of the two matrices should be the same. That is, if we have a composite

Bézier surface formed by two adjacent Bézier rectangular patches, where

the first is defined by the matrix 𝑝 and the second by the matrix 𝑞, which

are defined as:

𝑝 =
©­­«

𝑝0,0 · · · 𝑝0,𝑛

...
. . .

...

𝑝𝑚,0 · · · 𝑝𝑚,𝑛

ª®®¬ , 𝑞 =
©­­«

𝑞0,0 · · · 𝑞0,𝑛

...
. . .

...

𝑞𝑚,0 · · · 𝑞𝑚,𝑛

ª®®¬ , (6.10)

and they are joined at the curve defined by 𝑝𝑖 ,𝑛 and 𝑞𝑖 ,0, for 0 ≤ 𝑖 ≤ 𝑛,

we simply need to enforce that 𝑝𝑖 ,𝑛 = 𝑞𝑖 ,0.

For 𝐺1 continuity, we need to ensure that the tangent vector at the

common curve has the same direction, which is given by:

𝜕𝑝(𝑢, 𝑣)
𝜕𝑣

����
𝑣=1

= 𝑎
𝜕𝑞(𝑢, 𝑣)

𝜕𝑣

����
𝑣=0

. (6.11)

where 𝑎 can have any positive value. For 𝐶1 continuity, the magnitude of

the vector needs to be the same, which means that 𝑎 = 1 in the previous

equation. Just as with composite Bézier curves, these conditions are

achieved when each point along the common boundary curve and its

neighbours on either side patch. That is, for all 𝑖, 𝑝𝑖 ,𝑛−1, 𝑞𝑖 ,0 and 𝑞𝑖 ,1, are

collinear (for 𝐺1) and also evenly spaced (for 𝐶1).

6.3.2 Triangular Bézier surfaces

Triangular Bézier surfaces, or simply Bézier triangles, are the other

common type of Bézier surface. These are better parametrised in terms

of three barycentric coordinates, which we here denote as 𝑢, 𝑣 and

𝑤 (Figure 6.14). Note however that the three coordinates not linearly

independent, as they always add up to one.

Triangular Bézier surfaces are defined based on triangular arrangements

of points of the form:
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(b)
Figure 6.14: The barycentric coordinates

used to parametrise triangular Bézier

surfaces

Figure 6.15: A Bézier quadratic triangle

and the points that define it. Note how

the three corners are the only data points

and how the triangle is tangent to them.

bivariate Bernstein polynomials

𝑝linear =
𝑝0,1,0

𝑝0,0,1 𝑝1,0,0
, (6.12)

𝑝quadratic =

𝑝0,2,0

𝑝0,1,1 𝑝1,1,0

𝑝0,0,2 𝑝1,0,1 𝑝2,0,0

, (6.13)

𝑝cubic =

𝑝0,3,0

𝑝0,2,1 𝑝1,2,0

𝑝0,1,2 𝑝1,1,1 𝑝2,1,0

𝑝0,0,3 𝑝1,0,2 𝑝2,0,1 𝑝3,0,0

, (6.14)

where the surface is described by:

𝑆(𝑢, 𝑣, 𝑤) =
∑

𝑖+𝑗+𝑘=𝑛
𝑖,𝑗,𝑘≥0

𝐵𝑛
𝑖,𝑗,𝑘
(𝑢, 𝑣, 𝑤)𝑝𝑖 , 𝑗 ,𝑘 , (6.15)

and 𝐵𝑛
𝑖,𝑗,𝑘

are the bivariate Bernstein polynomials, which are given by:

𝐵𝑛
𝑖,𝑗,𝑘
(𝑢, 𝑣, 𝑤) = 𝑛!

𝑖!𝑗!𝑘!

𝑢 𝑖𝑣 𝑗𝑤𝑘
(6.16)

For the first few values of 𝑛, these are:
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Figure 6.16: A Bézier cubic triangle and

the points that define it. Note how the

three corners are the only data points

and how the triangle is tangent to them.

𝐵1

𝑖 , 𝑗 ,𝑘
=

𝑣

𝑤 𝑢
, (6.17)

𝐵2

𝑖 , 𝑗 ,𝑘
=

𝑣2

2𝑣𝑤 2𝑢𝑣

𝑤2
2𝑢𝑤 𝑢2

, (6.18)

𝐵3

𝑖 , 𝑗 ,𝑘
=

𝑣3

3𝑣2𝑤 3𝑢𝑣2

3𝑣𝑤2
6𝑢𝑣𝑤 3𝑢2𝑣

𝑤3
3𝑢𝑤2

3𝑢2𝑤 𝑢3

(6.19)

As with rectangular Bézier surfaces, the points on any of the three edges

of the triangular Bézier surface define a Bézier curve.

In order to create a composite Bézier surface from triangular Bézier

patches, we need to have similar constraints as before. For 𝐺0 and 𝐶0

continuity, the common boundary points should be the same. That is,

if we have a composite Bézier surface formed by two adjacent Bézier

triangular patches, where the first is defined by the matrix 𝑝 and the

second by the matrix 𝑞, which are defined as:

𝑝 =

𝑝0,𝑛,0
...

𝑝𝑛,0,0
...

. . .
𝑝0,0,𝑛

, 𝑞 =

𝑞0,𝑛,0
. . .

... 𝑞𝑛,0,0
...

𝑞0,0,𝑛

, (6.20)

and they are joined at the curve defined by 𝑢 = 0 on both, ie 𝑝0, 𝑗 ,𝑛−𝑗 and

𝑞0, 𝑗 ,𝑛−𝑗 , for all 0 ≤ 𝑗 ≤ 𝑛, we need to enforce that 𝑝0, 𝑗 ,𝑛−𝑗 = 𝑞0, 𝑗 ,𝑛−𝑗 .

For 𝐺1 continuity, it is somewhat more complex than for rectangular

Bézier surfaces. Basically, we need to ensure that along the common

boundary curve, three specific vectors starting at every common point on

the boundary surface except for the last one, ie 𝑝0, 𝑗 ,𝑛−𝑗 , for all 0 ≤ 𝑗 < 𝑛,

should be coplanar. These three vectors are the ones pointing to: (i) the

next point along the common curve (ie 𝑝0, 𝑗 ,𝑛−𝑗 to 𝑝0, 𝑗+1,𝑛−𝑗−1), (ii) the next
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point in the 𝑢 direction in the patch on the left (ie 𝑝0, 𝑗 ,𝑛−𝑗 to 𝑝1, 𝑗 ,𝑛−𝑗−1),

and (iii) the next point in the 𝑢 direction in the patch on the right (ie

𝑞0, 𝑗 ,𝑛−𝑗 to 𝑞1, 𝑗 ,𝑛−𝑗−1).

6.4 Exercises

1. What are the explicit, implicit and parametric equations for a line?

And for a plane? Hint: start from two and three points.

2. Open any graphics editing software that can model curves. What

degree of continuity does it enforce?

3. Derive the weights given by Bernstein polynomials for quartic

(degree four) and quintic (degree five) Bézier curves. At which

values of 𝑡 do they reach a maximum?

4. How would you store the data points and control points for:

a) a composite Bézier curve with cubic segments?

b) a rectangular Bézier patch in a half-edge data structure?

c) a triangular Bézier patch in a triangle-based data structure?

5. Cubic Bézier curves and surfaces are the most commonly used

ones. Why do you think that is? Hint: think of inflection points

6.5 Notes and comments

Salomon (2006) is a nice book covering all aspects of modelling curves

and curved surfaces. Some of the equations described in this chapter are

adapted (and usually simplified) from this book.

Farin (2004) covers the history of how Bézier curves and other curve

modelling approaches were created (with nice historical pictures).

There are nice animations showing a graphical interpretation of Bézier

curves in their Wikipedia article, although the rest of the article is not as

good.

https://en.wikipedia.org/wiki/Bézier_curve#Constructing_Bézier_curves
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The Medial Axis Transform (MAT) is yet another way to represent a 3D

model. It can be considered a dual representation to the b-rep, similar

to how the Voronoi diagram is dual to the Delaunay triangulation.

Contrary to the b-rep, that represents a model by describing explicitly its

boundary surface, the MAT describes a model by its skeleton (compare

Figures 7.1b and 7.1c). Both the MAT and the b-rep contain exactly the

same information and it is possible to convert one to the other without

loss of information.

Compared to other shape representations, this skeleton structure makes

different properties of the model explicit. For example, the MAT allows

us to split a shape into parts simply by looking at the branches of the

skeleton. The resulting shape parts often turn out to be meaningful in

practice. Observe for instance that for the gingerbread man in Figure 7.1,

its arms, legs, torso and head each have one corresponding branch in

its medial axis (compare Figures 7.1a and 7.1c). For DTMs for example,

equally meaningful decompositions into parts can be made, eg the MAT

allows us to decompose a DTM into separate hills, watercourses and

other objects on top the DTM (see Figure 7.4b).
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Figure 7.1: Different ways to represent

the shape of (a) gingerbread man. (b) b-

rep; (c) Interior MAT; (d) b-rep + MAT

with medial balls; (e) b-rep + contours of

equal distance to it + MAT

(a) (b)

JunctionMedial
branch

(c)

(d) (e)

Sometimes the MAT is referred to as me-

dial axis function, stick figure, skeleton

or surface skeleton. Inventor Harry Blum

finally settled on symmetry axis, as he

considered symmetry to be the crucial

role of the MAT (Blum, 1973).

medial balls

feature points

medial branches

junctions

medial atoms

medial structure

7.1 Defining the MAT

The MAT can be computed both for 2D and 3D objects (compare Fig-

ures 7.2a and 7.2b). In both cases there are two equivalent definitions of

the MAT that apply. One is based on the distance transform, and one is

based on medial balls. Both definitions describe how to obtain the MAT

from the boundary, denoted B, of an object (Figure 7.1b). And both can

be applied to both 2D and 3D objects.

Grassfire analogy Imagine that everything is made of grass and that all

the points on B are simultaneously set on fire at time 𝑡 = 0. The

fire spreads evenly to all directions at constant speed. Now, the

MAT is defined as the set of points where the fire front meets itself.

This concept is illustrated in Figure 7.1e, where each contour can

be seen as a fire front at some constant time 𝑡. The medial axis is

drawn where the fire front meets itself.

Medial balls A medial ball is a ball that fits completely inside B and

does not contain any other ball that would fit inside B. The MAT

is defined as the set of points that are the centres of all medial balls

of B (see Figure 7.1d). Notice that each medial ball touches Bon

at least two points, called its feature points.

As illustrated in Figure 7.1c, the MAT can be subdivided into medial
branches and junctions. Junctions are locations where three or more

medial branches coincide. The points of the MAT are called medial atoms,
or simply atoms. Observe that if an atom has exactly two feature points, it

is part of a medial branch, and if it has more than two feature points it lies

on a junction or on the tip of a medial branch. The medial branches, its

junctions and how those are are connected define the medial structure.

For a 2D object, such as in Figure 7.1, the medial branches are curves

and the the junctions are points. However, for a 3D object, the medial
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(a) The MAT for a 2D

box consists of medial

balls (blue) and the me-

dial axis (red).

(b) 3D medial balls of a 3D box

shape.

(c) 3D medial axis of a 3D box

shape.
Figure 7.2: The MAT in 2D and in 3D for

a box shape.

medial sheets

spoke vectors

separation angle

medial bisector

Symbol Description

𝐵(c, 𝑟) medial ball

c medial atom

𝑟 radius

p, q feature points

®sp , ®sq spoke vectors

𝜃 separation angle

®b medial bisector

Figure 7.3: The geometry of a medial

atom.

interior MAT

exterior MAT

branches can also be surfaces (see Figure 7.2c), and the junctions can also

be curves. The branches of the 3D MAT are therefore also called medial
sheets.

7.1.1 Medial geometry

The medial geometry describes how atoms are related to the object

boundary B. It is defined for each medial atom that is part of a medial

sheet. Figure 7.3 illustrates the complete medial geometry of an atom.

The medial ball 𝐵 has the atom c at its center and has a radius 𝑟, ie the

shortest distance from c to B. The medial ball 𝐵 touches the boundary B

at the feature points p and q. The vectors from c to p and q are called the

spoke vectors, denoted ®sp and ®sq. The angle between the spoke vectors is

called the separation angle, denoted 𝜃 and the bisector of the spoke vectors

is called the medial bisector, denoted
®b.

Using the medial geometry we can describe a number of interesting

properties of the MAT.

1. Any atom c is always medial to B, ie it is equidistant to the feature

points of c (hence the name of the MAT).

2. The medial ball 𝐵 is always tangential to B at the feature points.

3. The radius 𝑟 can be used to define the ‘thickness’ of an object, since

it measured the distance to the ‘middle’ of the object where the

MAT is located.

7.1.2 Exterior MAT and the MAT of a DTM

The MAT can be divided into an interior part and an exterior part. So far

we have only looked at the interior MAT, which consists of medial balls

that reside entirely on the inside of an object. However, in many cases it

is also possible to define medial balls that reside entirely on the outside

of an object. That part of the MAT is called the exterior MAT. An object

can only have an exterior MAT if the shape of that object is non-convex,

since for convex object it is not possible to find exterior medial balls with

a finite radius.

The separation between inside and outside is very clear and unambiguous

for a an object with a closed boundary such as the gingerbread man of

Figure 7.1 or for any perfectly manifold boundary. However, for objects
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exteri
or

interi
or

exterior

interior

The earth

(a) The interior and exterior of a DTM.

watercourse

buildingshill

(b) For a terrain the MAT is typically subdivided into open clusters that

correspond to features such as hills, buildings and watercourses in the terrain.

Shown here is a vertical cross section of a DTM. Exterior MAT in light blue,

interior MAT in dark blue.

Figure 7.4: Defining interior and exterior for an open surface such as a terrain.

medial clusters

that are not completely closed this separation is less clear, as there could

be MAT sheets that connect the interior and exterior parts though holes in

the boundary surface. In some cases with an open boundary a reasonable

distinction can still be made. For example for a DTM we can follow

the convention that the ‘ground side’ of the DTM is the interior, and

the ‘sky side’ is the exterior, as follows from Figure 7.4a. Following this

convention, we can still define the interior and exterior MAT of a DTM,

see for instance Figure 7.4b.

7.1.3 Medial clusters

The interior and exterior MAT can consist of multiple disjoint parts

(eg in Figure 7.4b). For closed objects the interior MAT is always one

part, whereas the exterior MAT can be multiple parts depending on

the number of concavities in the object boundary. The disjoint parts are

called medial clusters. Each medial cluster is in fact a set of adjacent sheets

where each adjacency is also a junction between medial sheets.

For objects with open boundaries like DTMs, there can also be multiple

interior medial clusters. In this case one object on the terrain typically

corresponds to one medial cluster (Figure 7.4b). Figure 7.5 also illustrates

how the MAT can thus be used to meaningfully subdivide an object into

parts. For an input that is simply a surface point cloud that happens to

contain several object, we can detect easily these objects by looking at the

medial clusters of its MAT. This effectively decomposes the object into

meaningful sub-objects.



7.1 Defining the MAT 77

(a) Surface points. (b) Medial atoms coloured by medial radius using a repeating

colourmap.

(c) Medial sheet segmentation. (d) Medial cluster segmentation.

(e) Interior medial clusters. (f) Surface points corresponding to interior medial clusters.

Figure 7.5: Decomposing an object into parts using the MAT and its interior medial clusters.



78 7 The Medial Axis Transform

7.2 Computing the MAT

Computing the MAT from the boundary B of an object is typically

done in two steps. During the first step, ie MAT approximation, a noisy

approximation of the MAT is obtained, and during the second step, ie

pruning, the noise is removed.

7.2.1 MAT approximation

The MAT can be approximated in various ways, eg by using voxels and

distance transforms or as a subset of the Voronoi diagram. However, here

we will focus on the so-called shrinking-ball algorithm.

7.2.1.1 The shrinking-ball algorithm

The shrinking-ball algorithm works well for robustly approximating the

MAT of 3D objects that are represented using boundary points, ie point

clouds. It is a simple and fast algorithm that can be made robust to noise

in the boundary points. The shrinking-ball algorithm takes an oriented
point cloud as input, ie a point cloud that includes a normal vector for

each point. It outputs a disjoint set of medial atoms.

The algorithm is based on the observation that the medial atom corre-

sponding to a boundary point p must be positioned somewhere on the

line 𝐿 through the normal ®n of p. This observation is used to restrict

the search space for the medial ball of p to the line 𝐿. As illustrated by

Figure 7.6, the algorithm begins with a very large candidate ball for p
that is centered on 𝐿. At each consecutive iteration, a new candidate ball

is constructed that is smaller than the previous one and closer to the final

medial ball. Every ball is constructed so that it touches p and is centred

on 𝐿. Only the candidate feature point q changes with each iteration. A

new q, denoted qnext, is found by selecting the closest point from the

centre c of the current ball. Using p, ®n, qnext we can compute the centre

of the next ball cnext, at which point we move on to the next iteration.

The algorithm terminates when an empty ball is found, which is the case

when the radius no longer shrinks. Algorithm 2 gives the pseudo-code

for the shrinking-ball algorithm.

(a) Initial ball (b) Second iteration. (c) Third iteration. (d) Fourth iteration.

Figure 7.6: Ball shrinking iterations with the shrinking-ball algorithm. The final iteration yields a medial ball. A legend is given in (b).
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Algorithm 2: The shrinking-ball algorithm.

Input : a KD-tree of the surface point cloud 𝑇,

a surface point p
it’s normal vector ®n, and

the initial ball radius 𝑟𝑖𝑛𝑖𝑡
Output : the medial ball centre c,

the medial ball radius 𝑟
1 𝑟 ← 𝑟𝑖𝑛𝑖𝑡
2 c← the centre of the ball that touches p is centered on ®n with a

radius 𝑟
3 repeat
4 𝑞𝑛𝑒𝑥𝑡 ← the nearest point to c, obtained quickly using 𝑇
5 𝑟𝑛𝑒𝑥𝑡 ← radius of the next ball that touches p and qnext and is

centred on ®n
6 cnext ← centre of the next ball, can be computed with p, ®n, and

𝑟𝑛𝑒𝑥𝑡
7 if 𝑟𝑛𝑒𝑥𝑡 = 𝑟 then
8 break
9 c← cnext

10 𝑟 ← 𝑟𝑛𝑒𝑥𝑡
11 until a break statement is executed

The algorithm is ran for each point in the input point cloud. If the normal

vectors point away from the interior, the interior MAT is computed. And

by flipping the orientation of the normal vector, the exterior MAT can

also be computed. If normals are not available for a point cloud, these

can be estimated using local plane fitting, ie by fitting a plane to the 𝑘

nearest neighbours of each boundary point. The vector perpendicular

to that plane then becomes the estimated normal vector. A KD-tree is

typically used to speed up the nearest neighbour searches, both for

normal estimation and the shrinking-ball algorithm. Figure 7.7 gives an

example result of the shrinking-ball algorithm for a terrain point cloud.

Observe how the MAT describes the valleys (exterior MAT) and ridges

(interior MAT) in the terrain with its skeletal structure.

Notice that the shrinking ball algorithm subdivides the output only in

an interior and exterior part based on the point normals in the input. It is

possible to further segment the MAT into for example medial sheets and

medial clusters. This can be achieved for example with a region-growing

segmentation algorithm that uses properties of the medial geometry (eg

the medial bisector). Figures 7.5c and 7.5d show the result of such a

segmentation.

7.2.2 Pruning

Pruning is the process of retracting or removing unimportant branches

from the MAT. It is often necessary because the MAT is unstable, ie it

is extremely sensitive to small bumps in B. As illustrated in Figures 7.8

and 7.9a, tiny deviations in B can lead to big spurious branches in the

structure of the MAT. This is especially problematic when Bhas some

noise as is the case with the typical DTM. The resulting MAT can become

so distorted by the spurious branches that it becomes hard to distinguish
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Figure 7.7: The MAT approximation (a,c)

of a lidar terrain point cloud (b) obtained

with the shrinking-ball algorithm. Top

view.

(a) Interior MAT. (b) Terrain points (c) Exterior MAT

Figure 7.8: Instability of the MAT.

central MAT sheet

protruding sheets

bumps in surface

(a) Small bumps in the boundary can

cause big spurious branches to appear.

Object boundary drawn in red, MAT

in blue.

(b) Spurious branches can appear in the MAT

due to a small amount of noise in the bound-

ary.

its main medial structure. The main aim of pruning is to remove these

spurious branches.

Most pruning methods are based on properties of the medial geometry.

Based on these properties, an importance measure for each medial atom

is defined, which is then used as a threshold to filter medial atoms. The

resulting (pruned) MAT is usually a subset of the original MAT. Some

methods preserve topology, others do not or do so only up to a certain

level. The main challenge is often selecting the optimal threshold value—

a compromise between removing noisy MAT parts and not removing

fine detail, ie often the endpoints of good MAT branches are also affected

by pruning. Examples of importance measures for pruning are the

separation angle 𝜃 (recall this is the angle between the spoke vectors)

and the separation distance 𝜆, ie the distance between the two feature

points of a medial atom. These values are typically low for noisy parts

of the MAT. Figure 7.9 gives an example of pruning with the separation

distance.
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(a) MAT without pruning (𝜆 = 0) (b) Reconstructed object for 𝜆 = 0.

(c) MAT with medium pruning (𝜆 =

6)

(d) Reconstructed object for 𝜆 = 6.

Despite the pruned MAT, the corre-

sponding boundary remains almost

unchanged.

(e) MAT with strong pruning (𝜆 =

10).

(f) Reconstructed object for 𝜆 = 10.

Notice how the tree is separated from

the the ground and that edges have

become rounder.

Figure 7.9: The effect of different levels of

pruning based on the separation distance

𝜆 on the MAT.

7.3 Notes and comments

The Medial Axis Transform was originally introduced in 1967 by Harry

Blum, a biologist (Blum, 1967).

Ma et al. (2012) introduced the shrinking ball algorithm. Peters (2018)

explains how to make the algorithm robust so that it can be successfully

applied to lidar point cloud inputs and how to obtain a sheet and cluster

segmentation using a region-growing approach.

7.4 Exercises

1. Draw the medial axis of a 2D box. Then draw the medial bisectors.

How could the medial bisector be used to distinguish between the

different sheets?

2. For what closed object the MAT is a single point?

3. Do think the MAT could help us to detect thick and thin parts of

an object? If so, how?
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Generalised maps and combinatorial maps are two related data structures

to represent objects of any dimension using a single consistent definition.

2D combinatorial maps are basically the same as most half-edge data

structures, with the minor difference that the links between primitives

are defined in a manner that works consistently in every dimension.

However, they have clear advantages when we move to 3D combinatorial

maps, in which we can break the limits of boundary representation and

can store links between adjacent volumes.

As for generalised maps, they are very similar to the combinatorial maps

of the same dimension, but they avoid the concept of orientation at the

cost of having twice as many primitives. Theoreticians thus mostly focus

on how generalised maps can represent unorientable objects. However,

the most interesting practical aspect about them is that by omitting

orientation, they make building many algorithms easier.

Higher-dimensional generalised and combinatorial maps (ie 4D and

higher) can be used to incorporate other non-spatial features, such as

time and scale, although this is more of a research topic than a practical

application.

8.1 What are generalised and combinatorial
maps?

Generalised maps (g-maps) and combinatorial maps (c-maps or just maps)
are what are known as ordered topological models. These are subdivisions

of space into abstract simplices (Figure 8.1), much like a geometric

triangulation in 2D or a tetrahedralisation in 3D. However, unlike the

latter, the subdivision operation to create an ordered topological model is

a purely combinatorial operation, ie no geometric tests are ever made.

At this point, it is very important to note that the simplices in an ordered

topological model do not correspond to actual simplices in space, ie they do

Figure 8.1: An 𝑛-dimensional simplex,

or simply 𝑛-simplex, is a combinatorial

primitive made from a set of 𝑛+1 vertices.

A 0-simplex is thus a point, a 1-simplex is

a line segment, a 2-simplex is a triangle,

and a 3-simplex is a tetrahedron. Here

they are shown as if embedded in 3D

space (ie ℝ3
).
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Figure 8.2: The barycentric triangulation

interpretation of: (a) a 2D combinatorial

map and (b) a 2D generalised map

(a) (b)

barycentric triangulation

2D combinatorial map

2D generalised map

not represent actual triangles or tetrahedra that you can point to in a

3D model. However, there are a few geometric interpretations that are

possible, and we will be using one of them to help in understanding,

but please bear in mind that it is slightly incorrect from a theoretical

standpoint.

8.1.1 Darts

The most precise geometric interpretation is as follows: a generalised

or combinatorial map is akin to a barycentric triangulation. Shortly, a

barycentric triangulation of a polygon is a simple way to triangulate a

roughly convex polygon by adding a new vertex at its barycentre, then

creating new triangles by joining this new vertex to every existing edge

in the triangulation, ie forming new triangles with the two vertices on

the ends of every existing edge plus the new vertex at the barycentre.

This method creates more triangles than are absolutely necessary in a

triangulation, but it does so without doing any geometric tests (unlike a

constrained triangulation).

In a 2D combinatorial map, the triangulation that is performed is similar

to what was described above (Figure 8.2a), with the difference that the

new vertex is not really located at the barycentre. In fact, that vertex is not

located anywhere—hence why the simplices created using this process

are called abstract simplices. In the figures, we thus place the new vertex

in a convenient location that avoids visually overlapping simplices, but

this is just an arbitrary choice to make the figures clearer.

In a 2D generalised map, the barycentric triangulation requires an extra

step where we first split every edge into two by adding a vertex at their

barycentres (which is equivalent to a barycentric 1D triangulation of the

edge), and then do the 2D triangulation as described above (Figure 8.2b).

Note that this means that a generalised map has exactly twice as many

simplices as a combinatorial map of the same model.

Now, this is where the ordered part of an ordered topological model

comes in. Every vertex in the simplices that were created can be asso-

ciated with an element of a certain dimension. The original vertices

are zero-dimensional, the new vertices on the edges (for g-maps) are

one-dimensional, the new vertices on the faces are two-dimensional, and

so on. Doing so reveals that:

▶ every simplex in a 2D generalised map has one vertex of every

dimension (ie 0, 1 and 2), and
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(a) (b) (c)

Figure 8.3: (a) A cube, (b) its barycentric

tetrahedralisation for a 3D combinatorial

map, and (c) one of its simplices showing

the ordered property.

3D generalised map

3D combinatorial map

nD generalised map

nD combinatorial map

dart

▶ every simplex in a 2D combinatorial map has two zero-dimensional

vertices and one two-dimensional vertex (ie 0, 0 and 2).

In order to get the tetrahedralisation for a 3D generalised or combinatorial

map, we start from the triangulation describing the 2D generalised or

combinatorial map of every face, and then we tetrahedralise by adding

a new vertex in the barycentre of each volume. This new vertex is

connected to every existing triangle to form the new tetrahedra, which

follow the same ordering pattern as before (Figure 8.3). Formulating it in

a dimension-independent way, we have that:

▶ every simplex in an 𝑛D generalised map has one vertex of every

dimension up to 𝑛 (ie 0, 1, 2, . . . , 𝑛), and

▶ every simplex in an𝑛D combinatorial map has two zero-dimensional

vertices and one one vertex of every dimension from 2 up to 𝑛 (ie

0, 0, 2, . . . , 𝑛).

In a generalised or combinatorial map, the primitives that are used to

describe the geometry of objects are precisely these 𝑛D abstract simplices,

which are called darts.

8.1.2 Permutations and involutions

Let us define some properties of 𝑛-simplices that are important for

generalised and combinatorial maps. An 𝑛-simplex can have up to 𝑛 + 1

adjacent other simplices as neighbours, where adjacency is defined as

sharing a common (𝑛−1)-simplex on its boundary. That is, a line segment

can have up to two adjacent line segments (each sharing a vertex), a

triangle can have up to three adjacent triangles (each sharing an edge),

a tetrahedron can have up to four adjacent tetrahedra (each sharing a

triangular face), and so on. Note that these numbers will be lower for the

simplices on the boundary of the model.

Therefore, a dart in a 2D generalised/combinatorial map will have up to

three neighbouring darts, whereas a dart in a 3D generalised/combinato-

rial map will have up to four neighbouring darts, and these neighbours

will have all but one of the same vertices as the original dart. Since

two adjacent 𝑛-simplices will have a common (𝑛 − 1)-simplex on their

common boundary, going from a dart to its adjacent neighbour will

therefore switch only one of its vertices. Then, since the ordered property

tells us the exact combination of dimensional elements that any simplex

must have, the switch must exchange an element of a certain dimension
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Figure 8.4: Every connected component

in a combinatorial map has two possible

orientations. Here, the arrows are darts.

Note how a 2D combinatorial map is

equivalent to a half-edge data structure.

(a) (b)

𝛼

orientation of a combinatorial map

𝛽

involution

permutation

for another element of the same dimension (while keeping all of the other

previous elements).

In a generalised map, the operation to change the 0-dimensional element,

known as 𝛼0, will thus switch a vertex for another vertex on the same edge,

face and volume. Similarly, the operation to change the 1-dimensional

element (𝛼1) will switch an edge for another edge on the same vertex,

face and volume, the operation to change the 2-dimensional element (𝛼2)

will switch a face for another face on the same vertex, edge and volume,

and the operation to change the 3-dimensional element (𝛼3) will switch

a volume for another volume on the same vertex, edge and face. These

are thus all denoted as 𝛼𝑖 , where 𝑖 is the dimension of the element being

switched.

In a combinatorial map, the operations are slightly different because of

the two 0-dimensional elements, which means that changing either 0-

dimensional element will switch an edge for either of its two adjacent edges.

Since having an operation that yields two different results is undesirable,

we therefore have to choose one of these edges as a result of the operation,

which means giving the combinatorial map an orientation (Figure 8.4).

This orientation is defined by ordering the two 0-dimensional elements

in the dart, and as in half-edge data structures, two darts connected by an

involution should have opposite orientations. Since this operation switches

the edges of a dart, it is thus denoted as 𝛽1. As for the other operations,

they are defined as in a generalised map, but they are all denoted as 𝛽𝑖 ,
where 𝑖 is the dimension of the element being switched.

While the triangulation analogy is useful, visually representing darts as

simplices is cumbersome and it does not work well in 3D. For example,

consider how the tetrahedra in Figure 8.3b visually obstruct each other,

which means that showing a more complex polyhedron than a cube is

not ideal. Because of this, most visualisations of generalised maps and

combinatorial maps skip the vertices for 2-dimensional elements and

higher, resulting in something that looks like a half-edge data structure

(Figure 8.5).

Except for the special case of 𝛽1, it is important to note that applying the

operation to switch from a dart to its neighbour twice results in returning

to the same dart. Since such an operation is equal to its own inverse, it is

known mathematically as an involution. As for 𝛽1, it forms a loop of darts

around a face that eventually returns to the original dart, and it is thus

known instead as a permutation.
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(a)

0 0

0

0 0

1 1

1

1 1 1

1

2

2

2

(b)

(c) (d)

Figure 8.5: (a) Three polygons, (b) their

simplices while represented as a 2D gen-

eralised map, and alternative geometric

interpretations of them as (c) a 2D gener-

alised map and (d) a combinatorial map.

orbit

cell

8.1.3 Orbits and sewing

Starting from a given dart 𝑑, the operation to obtain all the darts connected

to it while following only the permutations/involutions corresponding

to certain dimensions is known as an orbit of 𝑑.

Among these orbits, the most important one is the one to obtain all the

darts belonging to a particular cell, ie a vertex, edge, face, or volume. As

we discussed previously, changing the 𝑖-dimensional cell (𝑖-cell) of a dart,

ie applying 𝛼𝑖 or 𝛽𝑖 , means switching to an adjacent 𝑖-cell. By the opposite

logic, the orbit that obtains all the darts of an 𝑖-dimensional cell is the

one that follows all the permutations and involutions except for 𝛼𝑖 or 𝛽𝑖
(Figure 8.6). For an 𝑛-dimensional generalised map, we can denote this as

⟨𝛼0 , . . . , 𝛼𝑖−1 , 𝛼𝑖+1 , . . . , 𝛼𝑛⟩(𝑑), and for an 𝑛-dimensional combinatorial

map, we can denote this as ⟨𝛽1 , . . . , 𝛽𝑖−1 , 𝛽𝑖+1 , . . . , 𝛽𝑛⟩(𝑑).

Note that this means that the objects of any dimension are thus defined

as sets of darts. While this is normal for faces and volumes in most other

data structures, this applies also to vertices and edges in generalised and

combinatorial maps.

Another important orbit is the one that obtains all the darts belonging

to an 𝑖-cell within a 𝑗-cell, where 𝑖 < 𝑗. This can be obtained using

the orbit that follows all the permutations and involutions up to 𝑗 − 1

except for 𝛼𝑖 or 𝛽𝑖 . For instance, the darts belonging to an edge within a

single volume (without obtaining the darts of the same edge but on other
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Figure 8.6: (a) A 3D generalised map of

a cube, and (b) the orbits that represent

one of its vertices, one of its edges and

one of its faces.

(a) (b)

Figure 8.7: A 3-sewing operation to con-

nect two cubes along a common face.

Note that the operation should start from

corresponding darts on either volume.

sew

sewing

combinatorial structure

embedding structure

volumes) are obtained as ⟨𝛼0 , 𝛼2⟩(𝑑) in a generalised map and ⟨𝛽2⟩(𝑑) in
a combinatorial map.

An important characteristic of orbits is that if they are implemented with

some care, it is possible to use them to iterate over the darts of a cell

in a consistent order. This is the basis of the operation that is used to

construct generalised and combinatorial maps, which is called sewing. In

order to sew together two 𝑖-dimensional objects, the 𝑖-sewing operation

starts from two corresponding darts on a common (𝑖 − 1)-cell but on

different 𝑖-cells (Figure 8.7). It then proceeds to do a parallel traversal of

each of their (𝑖 − 1)-orbits while connecting corresponding darts with 𝛼𝑖

(for a g-map) or 𝛽𝑖 (for a c-map).

This process can be used to simply connect adjacent 𝑖-dimensional objects

together, but it can also be used to create (𝑖 + 1)-dimensional objects.

For example, two vertices can be 0-sewn to create an edge (in a g-map),

adjacent pairs of edges in a loop can be 1-sewn to create a face, a set of

faces enclosing a volume can be 2-sewn along their common edges to

create a volume.

8.2 Implementing generalised and
combinatorial maps

With data structures for geometric modelling, it is often useful to sepa-

rate them into two parts: (i) a combinatorial structure that describes the

primitives and the relationships between them, and (ii) an embedding

structure that maps the primitives to space and stores additional infor-

mation (eg attributes). This division exists in many data structures, but it

is particularly clear in generalised and combinatorial maps.
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linear geometry

linear cell complex

The most common way to implement a generalised or combinatorial

map encodes each dart as a pair of tuples: one for the combinatorial

part and one for its embedding. The combinatorial tuple contains all

the permutations and involutions of the dart in order according to their

dimension. For instance, these can be pointers or memory addresses

of other darts, or something like ids (in which case the tuple should

also contain an id for the dart). When no objects are connected to a dart

through that permutation/involution, a special marker can be used (eg

null or zero).

As for the embedding tuple, it generally consists of links to specific

structures to store the geometry and attributes for the cell of each

dimension that a dart belongs to. For example, the first element of the

tuple could then be a link to a 0-embedding structure, which then contains

a list of attributes about the vertex of that dart, the next element could be

a link to a 1-embedding structure with information about its edge, and

so on. If no embedding information is needed for the cells of a particular

dimension, the corresponding item in the tuple can be omitted, although

it is generally desirable to have at least a basic embedding structure with

an id.

Regarding the geometric information, in the simplest case, where all

geometries are linear (ie line segments, polygons and polyhedra), the

0-embedding structure of a particular vertex can just contain its point

coordinates. From these points, we can linearly interpolate the higher-

dimensional geometries by assuming that line segments connect two

points and polygons are bounded by (roughly coplanar) line segments.

This kind of data structure with the linear geometries assumption is

known as a linear cell complex.

More complex geometries can be however stored in a generalised or com-

binatorial map using the higher-dimensional embeddings. For instance,

we can store the control points for a Bézier curve in its 1-embedding

structure, or the ones for a Bézier surface in its 2-embedding structure.

8.3 Exercises

1. Why do barycentric triangulations only work well with roughly

convex polygons/polyhedra?

2. Look at the differences between g-maps and c-maps. Why is im-

plementing algorithms on c-maps is often much harder than on

g-maps? Think about how this relates to implementing algorithms

on full edge-based data structures vs. half-edge data structures.

3. What are the equivalent operations between the DCEL and a 2D

combinatorial map?

4. Rather than storing links to special embedding structures for each

dimension in the embedding tuple of a dart, it is also possible to

store point coordinates directly. Why is this usually a bad idea?
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 http://moka-modeller.sourcefo

rge.net

 https://doc.cgal.org/latest/Ge

neralized_map/index.html

 https://doc.cgal.org/latest/Co

mbinatorial_map/index.html

8.4 Notes and comments

𝑛-dimensional generalised and combinatorial maps were developed by

Lienhardt (1994) as a generalisation of 2D combinatorial maps (Edmonds,

1960). Independently, the cell-tuple structure (Brisson, 1989) was de-

veloped as a generalisation of the quad-edge (Guibas and Stolfi, 1985)

data structure in 2D and the facet-edge data structure (Dobkin and

Laszlo, 1987) in 3D. The two data structures (generalised maps and the

cell-tuple) are basically equivalent. However, for a more in-depth look at

combinatorial maps, see Damiand and Lienhardt (2014) instead.

Chains of maps (Elter and Lienhardt, 1994) supplement the approach

used in generalised maps and combinatorial maps with an incidence

graph, which can be used to support non-manifolds, but they are rarely

used because of their extremely high space requirements.

Moka is a nice free modeller that uses generalised maps. There are also

good implementations of generalised maps and combinatorial maps in

CGAL.

http://moka-modeller.sourceforge.net
http://moka-modeller.sourceforge.net
https://doc.cgal.org/latest/Generalized_map/index.html
https://doc.cgal.org/latest/Generalized_map/index.html
https://doc.cgal.org/latest/Combinatorial_map/index.html
https://doc.cgal.org/latest/Combinatorial_map/index.html
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To facilitate and encourage the exchange and interoperability of geo-

graphical information, the ISO (International Organization for Standard-

ization: www.iso.org) and the OGC (Open Geospatial Consortium:

www.opengeospatial.org) have developed in recent years standards

that define what the basic geographical primitives are (the abstract

specifications of ISO19107), and also how they can be represented in a

computer (the implementation specifications of GML and Simple Features).
While the abstract definitions for the primitives are not restricted to two

dimensions (2D), most of the efforts for the representation and storage

of the geographical primitives have been done only in 2D; the Simple
Features specifications are well-defined, used, and implemented across

the GIS community.

This document gives an overview of the primitives in 3D, both from the

ISO19107 and the GML point-of-views. Although the topic might appear

trivial—“a polyhedron is simply a polyhedron, no?”—it is in practice a

problem because several definitions exist and different software packages

use different ones.

Having unambiguous definitions for the geometric primitives is impor-

tant to foster interoperability, because most GIS operations (eg calculation

of the area of polygons; creation of buffers; conversion to other formats;

Boolean operations such as intersection, union, etc.) require that the

input primitives be according to certain definitions, otherwise the output

of the operation is not guaranteed.

9.1 Are your polyhedra the same as my
polyhedra?

In the scientific literature, there is no single definition for a solid or a

polyhedron (notice that these two terms are often used interchangeably).

Even in the field of mathematics, opinions differ as to what constitutes

the term polyhedron; many simply characterise the term as “difficult to

define”. Some researchers use it only for a regular polyhedron, or only

for a convex one, and some consider non-planar faces as part of the

definition.

The most common definition used is probably this simple one: a poly-

hedron is a 3D solid bounded by planar faces. The bounding faces are

surfaces embedded in ℝ3
, the three-dimensional Euclidean space, and

together the bounding surfaces form a closed two-dimensional manifold
(or 2-manifold for short). A 2-manifold is a topological space that is

topologically equivalent to ℝ2
. An obvious example is the surface of the

Earth, for which near to every point the surrounding area is topologically

equivalent to a plane. The concept of neighbourhood, or locality, is

such that a manifold can actually be constructed by ‘gluing’ separate

Euclidean spaces together. Representing and storing a 2-manifold, even

www.iso.org
www.opengeospatial.org
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Figure 9.1: An invalid 2-manifold: one

edge and one vertex are non-manifold

(the red ones).

2D
GM Surface

1D
GM Curve

0D
GM Point

3D
GM Solid

Figure 9.2: ISO 19017 primitives relevant

for the modelling of the built environ-

ment.

exterior boundary

interior boundary

profile of
the solid

Figure 9.3: One solid which respects the

ISO19107 definition. It has one exterior

shell (grey) and one interior shell (or-

ange) forming a cavity.

The genus of an (orientable) surface em-

bedded is the number of “handles” that

it has. For instance, a doughnut and a

mug have a genus of 1.

in ℝ3
, can be done with data structures that are intrinsically 2D since: (1)

each edge is guaranteed to have a maximum of two incident faces; (2)

around each vertex the incident faces form one ‘umbrella’ (Figure 9.1).

The 2D data structures typically used in GIS, eg the half-edge or the

DCEL, can thus be used.

9.2 The standard ISO19107

The geometric primitives as used in 3D GIS are based on the ISO19107

definitions, and the definition of a polyhedra there is broader than that

of a 2-manifold, to allow us to represent all the real-world features.

As shown in Figure 9.2,

the ISO19107 geometric primitives for representing an object are: a 0D

primitive is a GM_Point, a 1D a GM_Curve, a 2D a GM_Surface, and a

3D a GM_Solid. A 𝑑-dimensional primitive is built with a set of (𝑑 − 1)-
dimensional primitives, eg a GM_Solid is formed by several GM_Surfaces,

which are formed of several GM_Curves, which are themselves formed of

GM_Point. Observe that the ISO19107 primitives do not need to be linear

or planar, ie curves defined by mathematical functions are allowed

In our context, the following three definitions from ISO (2003) are relevant:

Definition 9.2.1 A GM_Solid is the basis for 3-dimensional geometry. The
extent of a solid is defined by the boundary surfaces. The boundaries ofGM_Solids
shall be represented asGM_SolidBoundary. [. . . ] TheGM_OrientablesSurfaces
that bound a solid shall be oriented outward.

Definition 9.2.2 A GM_Shell is used to represent a single connected com-
ponent of a GM_SolidBoundary. It consists of a number of references to
GM_OrientableSurfaces connected in a topological cycle (an object whose
boundary is empty). [. . . ] Like GM_Rings, GM_Shells are simple.

Definition 9.2.3 A GM_Object is simple if it has no interior point of self-
intersection or self-tangency. In mathematical formalisms, this means that
every point in the interior of the object must have a metric neighbourhood
whose intersection with the object is isomorphic to an 𝑛-sphere, where 𝑛 is the
dimension of this GM_Object.

Observe that since shells (GM_Shells) are simple, they are 2-manifold

objects. To be a valid shell, the 2-manifold should be closed, ie there should

not be ‘holes’ in the surface (in other words, it should be watertight).

Figure 9.3 shows a solid that respects that definition.

First observe that the solid is composed of two shells (both forming its

boundaries), one being the exterior and one being the interior shell. The

exterior shell has eleven surfaces, and the interior one six. An interior

shell creates a cavity in the solid—cavities are also referred to as “voids”

or holes in a solid. A solid can have no inner shells, or several. Observe

that a cavity is not the same as a hole in a torus (a doughnut) such as

that in Figure 9.4: it can be represented with one exterior shell having

a genus of 1 and no interior shell. Observe also that the top face of the
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Figure 9.4: A ‘squared torus’ is modelled

with one exterior boundary formed of

ten surfaces. Notice that there are no

interior boundary.

𝑑-manifold

solid in Figure 9.3 has one inner ring, but that other surfaces “fill” that

hole so that the exterior shell is closed.

9.3 Primitives used in practice

CityGML, the international standard for 3D modelling of cities (see Chap-

ter 10), uses a subset of ISO19107, with the following two restrictions:

1. GM_Curves can only be linear (thus only LineStrings and Linear-

Rings are used);

2. GM_Surfaces can only be planar (thus Polygons are used).

Following ISO19107, in GML and CityGML geometric primitives can be

combined into either aggregates or composites.

An aggregate (class gml:_AbstractGeometricAggregate) is an arbitrary

collection of primitives of same dimensionality that is simply used

to bundle together geometries. GML (and CityGML) has classes for

each dimensionality (Multi*), the most relevant one in our context is

MultiSurface that is often used in practice to represent the geometry of

a building. An aggregate does not prescribe any topological relationships

between the primitives.

A composite of dimension 𝑑 is a collection of 𝑑-dimensional primitives

that form a 𝑑-manifold. The most relevant example in our context is a

CompositeSurface, which is a 2-manifold.
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Figure 9.5: Some of the CityGML primi-

tives, including aggregates and compos-

ites. Orange primitives are those repre-

senting inner boundaries. The Shell is

not a class in GML, but it is implied

when a CompositeSurface is used to de-

fine the boundary of a Solid.

LinearRing PolygonPoint

MultiSurface CompositeSurface

MultiSolid CompositeSolidSolid

9.4 Implementation specifications for the 3D
primitives

Observe that for a primitive to be valid, all its lower-dimensionality

primitives have to be valid. For instance, a valid Solid cannot have as one

of its surfaces a Polygon having a self-intersection (which would make it

invalid).

9.4.1 Polygon

For a Polygon embedded inℝ3
to be valid, it needs to fulfil the 6 assertions

in Figure 9.6, which are given on pages 27–28 of the OGC Simple Features
document. These rules are verified by first projecting each Polygon to

a plane, this plane is usually obtained by least-square adjustment of its

points. A Polygon must also be planar to be valid: its points (used for

both the exterior and interior rings) have to lie on a plane.

Figure 9.6: The six assertions for the va-

lidity of a 2D polygon, according to Sim-
ple Features.

1. Polygons are topologically closed;

2. The boundary of a Polygon consists of a set of LinearRings that make up

its exterior and interior boundaries;

3. No two Rings in the boundary cross and the Rings in the boundary of a

Polygon may intersect at a Point but only as a tangent, eg

∀𝑃 ∈ 𝑃𝑜𝑙𝑦𝑔𝑜𝑛, ∀𝑐1, 𝑐2 ∈ 𝑃.𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(), 𝑐1 ≠ 𝑐2,

∀𝑝, 𝑞 ∈ 𝑃𝑜𝑖𝑛𝑡, 𝑝, 𝑞 ∈ 𝑐1, 𝑝 ≠ 𝑞, [𝑝 ∈ 𝑐2⇒ 𝑞 ∉ 𝑐2];
4. A Polygon may not have cut lines, spikes or punctures eg:

∀𝑃 ∈ 𝑃𝑜𝑙𝑦𝑔𝑜𝑛, 𝑃 = 𝑃.𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟.𝐶𝑙𝑜𝑠𝑢𝑟𝑒;

5. The interior of every Polygon is a connected point set;

6. The exterior of a Polygon with 1 or more holes is not connected. Each

hole defines a connected component of the exterior.
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s1 s2 s3 s4
ishells=0 ishells=2ishells=0 ishells=2
invalid (1) invalid (3, 6)valid valid

ishells=1 ishells=0ishells=0 ishells=0
s5 s6 s7 s8

invalid (6) invalid (2, 5)invalid (4) valid

ishells=1 ishells=0ishells=0 ishells=0
s9 s10 s11 s12

invalid (3 in 2D) invalid (2)validinvalid (5)

Figure 9.7: Twelve solids, some of them

valid and some invalid. The number of in-

terior shell(s) is “ishell”, and the numbers

in parentheses next to invalid indicates

which OGC assertions are broken. For

solid 𝑠9 the colour of the exterior shell is

not shown to highlight the interior shell.

9.4.2 MultiSurface

It is an arbitrary collection of Polygon. Validating a MultiSurface simply

means that each Polygon is validated individually; a MultiSurface is

valid if all its Polygons are valid.

9.4.3 CompositeSurface

Besides that each Polygon must be individually valid, the Polygons

forming a CompositeSurface are not allowed to overlap and/or to be

disjoint. Furthermore, if we store a CompositeSurface in a data structure,

each edge is guaranteed to have a maximum of two incident surfaces

(except those on the boundary), and around each vertex the incident

faces form one “umbrella” (see Figure 9.1).

9.4.4 Solid

According to ISO19107, the different boundaries of a solid are allowed

to interact with each other, but only under certain circumstances. To

understand these, we have to generalise to 3D the implementation

specifications defined in 2D by the OGC (Figure 9.6). Observe that all

of them, except the third one, generalise directly to 3D since a point-set

topology nomenclature is used. The only modifications needed are that,

in 3D, polygons become solids, rings become shells, and holes become

cavities.

To further explain what the assertions are in 3D, Figure 9.7 shows 12

solids, some of them valid, some not (all the statements below refer to

solids in this figure).
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regularisation

combinatorial consistency

The first assertion of the OGC means that a solid must be closed, or

‘watertight’ (even if it contains interior shells). The solid 𝑠1 is thus not

valid, but 𝑠2 is because the hole in the top surface is ‘filled’ with other

faces.

The second assertion implies that each shell must be simple, ie that it is a

2-manifold.

The third assertion means that the boundaries of shells can intersect

each others, but the intersection between the shells can only contain

primitives of dimensionality 0 (vertices) and 1 (edges). If a surface or a

volume is part of the intersection, then the solid is invalid. The solid 𝑠3 is

an example of a valid solid: it has two interior shells whose boundaries

intersect at one point (at the apexes of the tetrahedra), and the apex of

one of the tetrahedra is coplanar with the exterior shell. If the interior of

the two interior shells intersects (as in 𝑠4) the solid is not valid; this is

also related to the sixth assertion stating that each cavity must define one

connected component: if the interior of two cavities are intersecting they

define the same connected component. Notice also that 𝑠5 is not valid

since one surface of its cavity intersects with one surface of the exterior

shell (they “share a surface”); 𝑠5 should be represented with one single

exterior shell (having a ‘dent’), and no interior shell.

The fourth assertion states that a shell is a 2-manifold and that no dangling

pieces can exist (such as that of 𝑠6); it is equivalent to the regularisation of

a point-set in ℝ3
.

The fifth assertion states that the interior of a solid must form a connected

point-set (in ℝ3
). Consider the solid 𝑠7, it is valid since its interior is

connected and it fulfils the other assertions; notice that: (1) it is a 2-

manifold but that unlike other solids in Figure 9.7 (except 𝑠8) its genus is

1; (2) it is modelled only with an exterior shell. If we move the location

of the triangular prism (which is part of the exterior shell, and is not an

interior shell) so that it touches the boundary of the exterior shell (as

in 𝑠8), then the solid becomes invalid since its interior is not connected

anymore, and also since its exterior shell is not simple anymore (2 edges

have 4 incident planar faces, which is not 2-manifold). It is also possible

that the interior shell of a solid separates the solid into two parts: the

interior shell of 𝑠9 is a pyramid having four of its edges intersecting with

the exterior shell, but no two surfaces are shared, thus these interactions

are allowed. However, the presence of the pyramid separates the interior

of the solid into two unconnected volumes (violating assertion 5); for

both 𝑠8 and 𝑠9, the only possible valid representation is with two different

solids.

Notice also that for a solid to be valid, all its lower-dimensionality

primitives must be valid. That is, each surface of the shells has to be

individually valid according to the assertions in Figure 9.6. An example of

an invalid surface would be one having a hole (an inner ring) overlapping

the exterior ring (see 𝑠10).

It should also be noticed that when validating a solid both the combina-

torial consistency and the geometric consistency of the representation

should be valid. A solid such as 𝑠11 is valid, but if the location of only

one of its vertices is modified (for instance if the apex of the pyramid

of 𝑠11 is moved downwards to form 𝑠12) then it becomes invalid. Both
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Figure 9.8: One solid and the orientation

of 3 of its polygons (different colours).

𝑠11 and 𝑠12 can be represented with a graph having exactly the same

topology (which is valid for both), but if we consider the geometry then

the latter solid is not valid since its exterior shell is not simple. Enforcing

simplicity requires calculating the intersections between the surfaces.

Lastly, the orientation of the polygons must be considered. In 2D, the

only requirement for a polygon is that its exterior ring must have the

opposite orientation of that of its interior ring(s) (eg clockwise versus

counter-clockwise). In 3D, if one polygon is used to construct a shell, its

exterior ring must be oriented in such as way that when viewed from

outside the shell the points are ordered counter-clockwise. Figure 9.8

shows an example.

In other words, the normal of the surface must point outwards if a

right-hand system is used, ie when the ordering of points follows the

direction of rotation of the curled fingers of the right hand, then the

thumb points towards the outside. If the polygon has interior rings, then

these have to be ordered clockwise.

2 How does it work in practice?

The software ‘val3dity’, developed at TU Delft, allows us to validate

directly all the ISO19107 primitives, it accepts as input CityJSON

and OBJ, among others. It is freely available at https://github

.com/tudelft3d/val3dity, and a web-application can be used at

http://geovalidation.bk.tudelft.nl/val3dity/

9.4.5 MultiSolid

It is an arbitrary collection of Solids. Validating a MultiSolid simply

means that each Solid is validated individually; a MultiSolid is valid if

all its Solids are valid.

9.4.6 CompositeSolid

A CompositeSolid, formed by the Solids 𝐴 and 𝐵, should fulfil the

following two assertions:

▶ Assertion #1: their interior should not overlap (𝐴𝑜 ∩ 𝐵𝑜 = ∅)
▶ Assertion #2: their union should form one solid (𝐴 ∪ 𝐵 = one

Solid)

9.5 Notes and comments

The title “Are your polyhedra the same as my polyhedra?” is taken from the

(excellent) paper from Grünbaum (2003).

The 2D GIS data structures that can be used for storing 2-manifolds are,

for instance, the half-edge (Mäntylä, 1988), the quad-edge (Guibas and

Stolfi, 1985), and the doubly-connected edge list (DCEL) (Muller and

Preparata, 1978); all of these store the edge of a polyhedron as the atom,

with links to its adjacent edges and incident faces.

https://github.com/tudelft3d/val3dity
https://github.com/tudelft3d/val3dity
http://geovalidation.bk.tudelft.nl/val3dity/
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For details how the validation of a the 3D primitives can be implemented,

see Ledoux (2013) and Ledoux (2018).

The official specifications documents are the following:

▶ ISO19107 document: ISO (2003)

▶ Simple Features document: OGC (2006)

▶ GML specifications: OGC (2007)

▶ CityGML specifications: OGC (2021)

9.6 Exercises

1. List all 10 surfaces (and describe their geometry) for the solid in

Figure 9.4.

2. Draw a 2-manifold that has a genus of 2.

3. The object in Figure 9.1 contains 8 surfaces but is not a 2-manifold.

If you were to store it in a 3D primitive in GML, which one would

you choose?

4. How many interior shells does the solid in Figure 9.8 have?

5. In which direction points the normal of the interior shell of the

solid in Figure 9.5?
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A 3D city model is a digital representation, with three-dimensional

geometries, of the common objects in an urban environment, with

buildings usually being the most prominent objects.

Because typical 3D city models are reconstructed/derived from various

acquisition techniques, their structure, format, and characteristic will

greatly vary. As an example, a 3D city model can be reconstructed

with methods such as these: photogrammetry, laser scanning, extrusion

from 2D footprints, conversion from architectural models and drawings,

procedural modelling, volunteered geoinformation, etc.

This chapter discusses the main 3D city models formats, and focuses on

semantic 3D city models, which are useful in a variety of applications.

10.1 Semantic 3D city models

Consider the 3D city model of Helsinki in Figure 10.1a (one part of it),

which was reconstructed by dense matching of aerial images. The model

is a textured mesh, formed by triangles to which a texture is attached

(the triangles are visible in Figure 10.1b). If you were asked to count the

number of buildings (or cars, or dormers in a given building) you would

surely just have to zoom in on the model, look at it, and then you could

give the answer. However, for a computer, this 3D city model is simply

represented as a series of triangles to which a texture is attached; the

notion of ‘building’ (or ‘car’, or any other object) is thus not available. As

a result, a computer cannot automatically answer these simple questions.

It should be observed that there exist algorithms to segment and classify

textured meshes into objects, but these are not fully automatic (yet!) and

are beyond the scope of this book. Other simple questions that a human

could easily answer but a computer cannot:

1. how many windows does the main façade of a given building have?

2. how many floors does a given building have?

(a) (b) the edges of the triangles are highlighted in orange.

Figure 10.1: Part of the 3D city model of Helsinki, Finland.
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Figure 10.2: A building is semantically decomposed into different objects, and each objects is defined with geometry. This building has

good spatio-semantic coherence

decomposition of a city into relevant

classes

hierarchical decomposition

spatio-semantic coherence

3. can the local park be seen from the second floor of a given building?

A semantic 3D city model is a data model where the relevant objects

(and their sub-parts) are labelled with their meaning and have attributes

attached to them. Conceptually, it means that a city is decomposed into

classes that we deem relevant for certain applications, for instance the

city is decomposed into the classes ‘building’, ‘road’, ‘tree’, ‘lamppost’,

etc, and each of the objects has its own 3D geometry and potentially

(thematic) attributes (eg the owner of a building, the name of street, the

city identifier for a lamppost, etc).

Observe also, as shown in Figure 10.2 for one building, that the objects

can be further decomposed into semantically homogeneous parts, in 3D

city modelling these are often the parts of a buildings (eg an extension to

a house) and the type of surfaces (roof, façade, window, door).

The decomposition is thus hierarchical, and the relationships between

the classes are stored (eg a building is composed of parts, which are

formed of walls/grounds/roofs, which have windows). We say that a

3D city model is spatio-semantically coherent if the two decompositions are

coherent, that is if there is a one-to-one mapping between the elements

of each decomposition (geometry and semantic), see Figure 10.2 for one

example.

Figure 10.3 shows one semantic model being visualised in a viewer, notice

that the user can identify the roof surfaces and that different attributes

are available.

It should also be noticed that semantic 3D models can be textured.

To avoid the fact that every city/country defines its own classes to

decompose a city (eg a ‘building’ class can be a ‘house’ class in another

city), semantic models prescribe the classes and often even the thematic

attributes that should be stored.
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Figure 10.3: Part of the semantic 3D city model of The Hague, in the Netherlands. Notice that each building is decomposed into its

semantic surfaces (wall, roof, and ground) and there are attributes for each. The model is not textured, but semantic models can have

textures too.

 https://www.opengeospatial.org

/standards/citygml

Figure 10.4: The modules of the CityGML

data model.

10.2 The CityGML data model

CityGML is an open data model to represent semantic 3D models of

cities and landscapes, and it is standardised by the Open Geospatial

Consortium (OGC). Its first version (v1.0.0) was released in 2008, and the

current version (v3.0.0) in 2021.

The classes possible in CityGML are grouped into different modules, as

can be seen in Figure 10.4.

In the specifications, each module is described with text and the UML

diagram of the classes is available. Figure 10.5 shows the core module, and

Figure 10.6 the classes for the Building module. It can be seen that both

the exterior and the interior of a building can be described, a building

can for instance have different rooms (BuildingRoom), different storeys

or units (BuildingStorey and BuildingUnit), but also installations (eg

chimneys, antennas, balconies, etc.).

10.2.1 Levels-of-detail (LoDs)

One particularity of CityGML is that it prescribes the different standard

levels of detail (LoDs) for 3D objects, which allows us to represent objects

for different applications and purposes.

For each of the modules defined by CityGML, four LoDs can be defined.

Figure 10.7

https://www.opengeospatial.org/standards/citygml
https://www.opengeospatial.org/standards/citygml
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Figure 10.5: Overview of the UML model for the core of CityGML. (Figure © 2021 Open Geospatial Consortium, Inc.)

Figure 10.6: Overview of the UML model for the core of CityGML. (Figure © 2021 Open Geospatial Consortium, Inc.)
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Figure 10.7: The four LoDs in CityGML

for the exterior of a building.

Figure 10.8: The subdivision of the inte-

rior of a building can be modelled. Figure

from Löwner et al. (2016)

Figure 10.9: Two buildings represented

in CityGML as LoD2 models. Both are

valid LoD2 models.

LoDs for trees and roads

ISO19107 is used, with a few restrictions

shows the ones for the buildings, and they are as follows:

LoD0 is a horizontal polygon representing the footprint (at the elevation

of the terrain) and optionally a horizontal polygon representing

the horizontal roof. Such models represent the transition from 2D

to 3D GIS, and they do not contain volumetric geometries.

LoD1 is a block model, with an horizontal and planar roof that is usually

derived by extruding a footprint to a given height. LoD1 models

are easy to reconstruct: the footprint of a building, readily available

in many countries, can be extruded to its height. The height can be

the average (or median) of all the lidar points inside the footprint.

LoD2 the generalised roof shape and larger roof superstructures are

present. As such, LoD2 models are useful for rooftop solar potential

estimations. They are usually obtained with photogrammetric

techniques, and, in some cases, may be derived automatically (see

Chapter 12).

LoD3 is a detailed architectural model containing openings (windows

and doors), chimneys, and other façade details. Models at LoD3 are

usually obtained with a conversion from BIM models or from ter-

restrial laser scanning. The presence of windows and other details

makes them useful in applications such as energy simulations.

The interior of a building can also be modelled by using the following

classes: BuildingStorey, BuildingRoom, or BuildingUnit. For each of

these, it is possible to use one of the LoD (from LoD0 to LoD3), although

the details have not be standardised.

We usually assume that lower LoDs have less geometrical and semantical

details than higher ones.

While the four LoDs are supposed to inform users about the representa-

tion of the data, in practice they are too generic (not precise enough) and

can be ambiguous. For instance, as Figure 10.9 shows,

a building with roof overhangs can be modelled as LoD2 with them, or

without (and therefore the size of its footprint would be larger). Both are

technically “valid” LoD2 models, but the acquisition methods required

differ significantly. The model on the right can be acquired with aerial

photogrammetry or aerial lidar (the walls are derived as projections

from the roof outline), while the model on the left probably needs two

acquisition techniques: the walls are at their actual location (ground

survey was necessary) and the roof overhangs are explicitly present.

To remedy to this situation, improved LoDs for buildings have been

proposed at TU Delft, see Figure 10.10.

Notice that while each of the CityGML classes can be represented

with four different LoDs, only those for buildings are prescribed and

documented. For trees and roads, practitioners can decide that a given

representation is ‘LoD2’, but that would purely indicate that the LoD is

higher than a LoD1 one. There are efforts (scientific papers) to document

these, but they have not been standardised (yet).

10.2.2 Geometries

CityGML uses the ISO19107 geometric primitives for representing the

geometry of its 3D objects. While the ISO19107 primitives do not need
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Figure 10.10: The improved LoDs for

buildings; they are generally referred to

as the TUDelft LoDs.

ADE: application domain extension

to be linear or planar, ie curves defined by mathematical functions are

allowed, CityGML uses a subset of ISO19107, with the following two

restrictions: (1) GM_Curves can only be linear (thus only LineStrings

and LinearRings are used); (2) GM_Surfaces can only be planar (thus

Polygons are used).

See Chapter 9 for ISO19107.

10.2.3 Textures and materials

The 3D geometries can be supplemented with textures and/or colours

(called materials since different parameters like transparency can be

defined) to give a better impression of their appearance.

CityGML reuses known and used standards in other fields for the

appearances. The material is represented with the X3D specifications,

and the texture with the COLLADA standard.

10.2.4 Extensions to the core data model with ADEs

The CityGML data model prescribes a certain number of classes, but

sometimes practitioners may want to model additional objects. For this,

CityGML has the concept of ADEs (application domain extensions). An

ADE is defined as an extension/extra to the core data model, inheritance

is used to refine the classes of CityGML (add attributes for instance) or

to define entirely new classes.

CityGML has XML files and the schemas can be extended, see Section 10.3

for more details.

CityJSON has a similar mechanism, see below.
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 https://www.3dcitydb.org

GML specifications:  https://www.op

engeospatial.org/standards/gml

CityGML vs CityGML-XML

10.2.5 Encodings

Based on the CityGML data model, there exist four encodings:

1. XML-based encoding, also called “CityGML”;

2. CityJSON;

3. a database schema called 3DCityDB, which can be implemented

both for PostgreSQL and Oracle Spatial. This is not an official

standard, but is nonetheless used by several municipalities around

the world.

4. a database schema based on the CityJSON, it is called ‘cjdb’. This is

also not an official standard.

We discuss in the following the first two.

10.3 The XML encoding of CityGML

The XML encoding of the CityGML data model is an application schema

of GML, the Geography Markup Language, also standardised by the OGC.

Observe that both the data model and the XML encoding are officially

called ‘CityGML’, but that since this is too confusing in practice, in this

book we refer to the data model by using simply ‘CityGML’, and to the

encoding by using ‘CityGML-XML’.

As shown in Figure 10.11, CityGML datasets consist of a set of plain text

files (XML files) and possibly some accompanying image files that are

used as textures. Each text file can represent a part of the dataset, such

as a specific region, objects of a specific type (such as a set of roads), or

a predefined LoD. The structure of a CityGML file is a hierarchy that

ultimately reaches down to individual objects and their attributes.

Because CityGML files are XML files, they can be parsed by any XML-

parser (there are many available), and also can be modified with a text

editor.

The schema of CityGML is encoded in XML files called “XSD” (XML

Schema Definition). This way, software can validate whether the syntax

of a file corresponds to that of the data model, for instance it can defined

that a Building must have a geometry, and that a set of attributes are

mandatory.

10.3.1 The drawback of the XML encoding

The vast majority of the efforts concerning CityGML have been spent on

developing the concepts and the data model, and it appears that very

little attention has been paid to deriving a usable exchange format. Indeed,

the XML encoding is verbose, hierarchical, complex, and not adapted for

the web. These drawbacks hinder the use of CityGML in practice, which

can be observed by: (1) the low number of software packages supporting

full read/write/edit capabilities for CityGML files; and (2) the relatively

low number of datasets stored in CityGML files.

https://www.3dcitydb.org
https://www.opengeospatial.org/standards/gml
https://www.opengeospatial.org/standards/gml
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Figure 10.11: Part of a CityGML file con-

taining 2 buildings.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <CityModel xmlns:xlink="http://www.w3.org/1999/xlink"
3 xmlns:gml="http://www.opengis.net/gml/3.2"
4 xmlns="http://www.opengis.net/citygml/3.0"
5 xmlns:bldg="http://www.opengis.net/citygml/building/3.0"
6 xsi:schemaLocation="http://www.opengis.net/citygml/3.0">
7 <cityObjectMember>
8 <bldg:Building gml:id="9a06451677c7">
9 <bldg:function>1070</bldg:function>

10 <bldg:lod1Solid>
11 <gml:Solid>
12 <gml:exterior>
13 <gml:CompositeSurface>
14 <gml:surfaceMember>
15 <gml:Polygon>
16 <gml:exterior>
17 <gml:LinearRing>
18 <gml:pos>0.0 0.0 0.0</gml:pos>
19 <gml:pos>0.0 1.0 0.0</gml:pos>
20 <gml:pos>1.0 1.0 0.0</gml:pos>
21 <gml:pos>1.0 0.0 0.0</gml:pos>
22 <gml:pos>0.0 0.0 0.0</gml:pos>
23 </gml:LinearRing>
24 </gml:exterior>
25 </gml:Polygon>
26 </gml:surfaceMember>
27 ...
28 </bldg:Building>
29 <bldg:Building gml:id="jdhd76sa">
30 ...
31 </bldg:Building>
32 </cityObjectMember>
33 </CityModel>

JavaScript Object Notation

 http://json.org

 GML madness

The GML Madness blog post shows 25 different ways to store a simple

square in GML. This means that a developer implementing a parser

for CityGML would have to support them all, and more for the primi-

tives in higher dimensions!

 https://erouault.blogspot.com/2014/04/gml-madness.html

CityGML files are notoriously known to be very difficult to parse and

to extract information from. This has to do with the fact that XML

itself requires special libraries to handle the data, that GML has several

different ways to store the same geometry, and that CityGML files have

deep hierarchies (which are problematic for DBMS implementation,

which tend to be ‘flat’) and several XLinks.

10.4 CityJSON

CityJSON is a JSON-based encoding for a subset of the CityGML data

model (version 3.0). It defines how to store digital 3D models of cities

and landscapes. The aim of CityJSON is to offer an alternative to the

GML encoding of CityGML, which can be verbose and complex to read

and manipulate. CityJSON aims at being easy-to-use, both for reading

datasets and for creating them. It was designed with programmers in

mind, so that tools and APIs supporting it can be quickly built.

http://json.org
https://erouault.blogspot.com/2014/04/gml-madness.html
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Figure 10.12: The CityJSON classes (same

name as CityGML classes) are divided

into 1st and 2nd levels.

 https://cityjson.org

1:  https://twobithistory.org/20

17/09/21/the-rise-and-rise-of-j

son.html

The current version of CityJSON is 2.0, and it is a standard of the Open

Geospatial Consortium (OGC).

CityJSON has a number of advantages over CityGML-XML. First, and

foremost, JSON dominates the web: nowadays if two applications need to

exchange data they will most likely use JSON (over XML). Of the ten most

popular APIs on the web, only one exposes its data in XML, the others

all use JSON.
1

Second, JSON is predominantly favoured by developers

(on Stack Overflow it is by far the most discussed exchange format) which

means that more libraries and software will support it, and these will

most likely be maintained. Finally, JSON is based on two data structures

that are available in virtually every programming language (more details

below), and we can thus structure a file in a way that developers would

build and index in memory the objects (developers then do not need to

use external libraries, all features and geometries are already indexed,

and ready to use).

A CityJSON file represents a given geographical area; the file contains

one JSON object of type "CityJSON" and would typically contain the

following JSON properties:

1 {

2 "type": "CityJSON",

3 "version": "2.0",

4 "transform": {},

5 "metadata": {},

6 "CityObjects": {},

7 "vertices": [],

8 "appearance": {}

9 }

10.4.1 City objects are “flattened out”

The property "CityObjects" contains a JSON dictionary where the

properties are the identifiers of the city objects (IDs). The schema of

CityGML has been flattened out and all hierarchies removed. Figure 10.12

shows the city objects that are supported in CityJSON, both 1st- and

2nd-level city objects are stored in the dictionary "CityObjects".

https://cityjson.org
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
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ISO19107 geometries are used

As an example, for a Building containing 2 BuildingParts, the 3 objects

will be represented at the same level and linked by their IDs.

1 "CityObjects": {

2 "id-1": {

3 "type": "Building",

4 "attributes": {...},

5 "children": ["id-2", "id-3"],

6 "geometry": [{...}]

7 },

8 "id-2": {

9 "type": "BuildingPart",

10 "parents": ["id-1"],

11 "geometry": [{...}]

12 ...

13 },

14 "id-3": {

15 "type": "BuildingPart",

16 "parents": ["id-1"],

17 "geometry": [{...}]

18 ...

19 }

20 }

Each city object can have a "parents" and/or a "children" property,

and this is how in the snippet the building "id-1" is linked to its 2 parts.

The fact that a dictionary is used means that developers have direct access

to the city objects through their IDs (and also in constant time if a hash

map is used to implement the dictionary).

A city object can be of any of the types defined in Figure 10.12, and each

of them must have the same structure, and at a minimum contain a

"geometry" property. If attributes are to be stored, they have to be in

the "attributes" property. This simplifies the work of the developer

because there is a single point of entry for all geometries and attributes,

unlike with XML-encoded CityGML.

1 {

2 "type": "PlantCover",

3 "attributes": {

4 "averageHeight": 11.05,

5 "colour": "green"

6 },

7 "geometry": [{...}]

8 }

10.4.2 Geometry

CityJSON defines the same 3D geometric primitives used in CityGML,

with the same restrictions for linearity/planarity. However, since they are

rarely used in a 3D context, Point and LineString only have their Multi*

counterparts; a single Point is a MultiPoint with only one object. When a

geometry is defined, it must contain a value for the LoD. In order to avoid

ambiguities, we encourage the use of the TUDelft LoDs (see above), over

the five standard CityGML ones. City Object can have several LoDs, and

thus CityJSON, as is the case for CityGML, allows us to store concurrently

several LoDs for the same object.

1 {

2 "type": "MultiSurface",

3 "lod": 2.1,
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 https://en.wikipedia.org/wiki/

Wavefront_.obj_file

 https://www.cityjson.org/specs

/#transform-object

Concrete examples of each geometric

type are given at  https://www.ci

tyjson.org/dev/geom-arrays/.

4 "boundaries": [

5 [[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]

6 ]

7 }

It should be noticed that CityJSON uses a different approach from

GML and CityGML-XML to store the (𝑥, 𝑦, 𝑧) coordinates of geometric

primitives. A geometric primitive does not list all the coordinates of its

vertices, rather the coordinates of the vertices are stored in a separate

array (the "vertices" property of the CityJSON object), and geometric

primitives refer to the position of a vertex in that array.

1 "vertices": [

2 [23234, 111009, 1392],

3 [29456, 115134, 1007],

4 [54508, 229995, 1961],

5 ...

6 [23134, 625134, 203]

7 ]

The indexing mechanism of the format Wavefront OBJ is reused, because

it has been used for many years, with success, in the computer graphics

community. This mechanism is modified so that the coordinates of the

vertices of the geometries are represented integer values (and not float).

This is to reduce the size of a CityJSON object (and thus the size of

files) and to ensure that only a fixed number of digits is stored for the

coordinates of the geometries (eg to have millimetre precision). This is

achieved by using a simple quantization method, where the scale factor

and the translation needed to obtain the original coordinates are stored.

There are several advantages to storing vertices once (instead of repeating

them as in GML). First, the files can be compressed: 3D vertices are often

shared by several surfaces, and repeating them can be costly (especially if

they are very precise, often sub-millimetre is used). Second, this increases

the topological relationships that are explicitly stored in the file, and

several operations can be sped up and made more robust (eg are two

buildings adjacent?). Third, it is very easy to convert to a representation

listing all coordinates; the inverse is not true.

The geometry is based on an enumeration of the vertices forming each

ring of a surface, as follows. A "MultiSurface" has an array containing

surfaces, where each surface is modelled by an array of arrays, the first

array being the exterior boundary of the surface, and the others the

interior boundaries. A "Solid" has an array of shells, the first array being

the exterior shell of the solid, and the others being the interior shells;

each shell has an array of surfaces, modelled in the exact same way as

a "MultiSurface". Notice that unlike with GML and CityGML-XML,

there is only one variation per geometry type, which (greatly) simplifies

the life of developers.

1 {

2 "type": "Solid",

3 "lod": 2.2,

4 "boundaries": [

5 [ [[0, 3, 2, 1, 22]], [[4, 12, 123, 5, 6, 7]], [[0, 1, 5, 4]], [[1,

2, 6, 5]] ],

6 [ [[240, 243, 124]], [[244, 246, 724]], [[34, 414, 45]], [[111, 246,

5]] ]

7 ]

8 }

https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://www.cityjson.org/specs/#transform-object
https://www.cityjson.org/specs/#transform-object
https://www.cityjson.org/dev/geom-arrays/
https://www.cityjson.org/dev/geom-arrays/
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 https://en.wikipedia.org/wiki/

X3D

 https://www.khronos.org/collad

a/

full list at: https://www.cityjson.org

/citygml/v30/

10.4.3 Appearance

Both textures and materials are supported, and the same mechanisms as

CityGML are used for these. The material is represented with the X3D

specifications, as is the case for CityGML. For the texture, the COLLADA

specifications are reused, as is the case for CityGML.

10.4.4 Extension to the core model

CityJSON also supports extensions to the core data model of CityGML

for specific applications and use-cases. They are simply called Extensions
and are defined as simple JSON files, and support the addition of new

feature types, as well as the addition of new attributes for features and

for datasets. See https://www.cityjson.org/specs/#extensions for

more details.

10.4.5 CityGML support

CityJSON implements most of the data model, and all the CityGML

modules have been mapped to CityJSON objects. However, for the sake of

simplicity and efficiency, some modules and features have been omitted

and/or simplified. If a module is supported, it does not mean that there

is a 1-to-1 mapping between the classes and features in CityGML and

CityJSON, but rather that it is possible to represent the same information,

but in a different manner. CityJSON thus conforms to a subset of CityGML,

although technically only XML-encoded CityGML files can be conformant

to the specifications of CityGML.

The main features that are not supported are:

▶ Several CRSs in the same datasets. In CityJSON, all geometries

in a given CityJSON object must use the same CRS. In CityGML,

3 adjacent buildings can all have different CRSs, and some of

the geometries to represent the walls can be in yet another CRS

(although admittedly it is seldom used!).

▶ Identifiers for low-level geometries. In CityGML most objects can

have an ID (usually a gml:id). That is, not only can one building

have an ID, but also each of the 3D primitives forming its geometry

can have an ID. In CityJSON, only city objects and semantic surfaces

can have IDs.

▶ Complex attributes have been simplified. For instance, several at-

tributes in CityGML are derived from gml:Measure (like bldg:mea-

suredHeight), and thus you cannot just store a value but also the

unit of measurement. This is not represented in CityJSON directly,

an Extension must be used. Also, generic attributes in CityGML

cannot be mapped simply because in CityJSON you can add any

attributes you like (inline with the JSON philosophy).

▶ Raster files for the relief. Only TINs are supported.

https://en.wikipedia.org/wiki/X3D
https://en.wikipedia.org/wiki/X3D
https://www.khronos.org/collada/
https://www.khronos.org/collada/
https://www.cityjson.org/citygml/v30/
https://www.cityjson.org/citygml/v30/
https://www.cityjson.org/specs/#extensions
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OBJ specifications: http://paulbourke

.net/dataformats/obj/

OFF specifications: https://en.wikip

edia.org/wiki/OFF_(file_format)

glTF specifications: https://www.khro

nos.org/gltf/

CesiumJS: https://cesium.com/cesiu

mjs/

three.js: https://threejs.org/

10.5 Other formats for 3D city modelling

We describe briefly in this section a few formats and standards that are

related to 3D city modelling and that are sometimes used in practice.

Those generally focus mostly on geometries, but lack support for semantics

and attributes (to a varying degree). They are thus usually less suitable

and less agile than the family of CityGML formats, that is they can be

useful for a few use-cases.

10.5.1 Standard computer graphics formats: OBJ, PLY,
OFF, etc

There exist several similar formats in computer graphics for storing and

representing meshes (which are usually triangular meshes, but polygons

can also be represented):

OBJ (Wavefront Object) is one of the most popular text-based formats

in the 3D graphics community. It has a simple structure where first the

vertices are listed, and then each polygon is listed, as a list of references to

the vertex ID (its position in the list of vertices). The OBJ format can also

encode colours and texture information, which are stored in a separate file

(a .mtlfile, Material Template Library). Attributes for specific polygons or

groups of polygons is only possible by using the comments and grouping

possibilities (as a hack), there are no standardised and documented ways

to do so.

OFF is a simpler format: only polygons can be represented, optionally

with their colours.

PLY is based on the same ideas for the geometries, and attributes can also

be attached to vertices and polygons. (See the Computational modelling of
terrains book Appendix A).

Notice that neither of these formats allow us to store an ISO19107 solid

having inner shells and attributes/semantics for different parts/ele-

ments.

10.5.2 glTF (GL Transmission Format)

glTF is a JSON-based open 3D format by Khronos Group for the exchange

of 3D models. It also has a binary encoding for storing mesh geometry

and animation data. It provides compact representation of geometries,

and small file sizes.

It used for instance in CesiumJS (which supports semantic 3D city models

to some extents), and in other libraries like three.js.

http://paulbourke.net/dataformats/obj/
http://paulbourke.net/dataformats/obj/
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://www.khronos.org/gltf/
https://www.khronos.org/gltf/
https://cesium.com/cesiumjs/
https://cesium.com/cesiumjs/
https://threejs.org/
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10.5.3 LandInfra & InfraGML

LandInfra is a relatively new OGC open standard for land and infrastruc-

ture features, integrating concepts from IFC/BIM (see Chapter 11) and

CityGML.

It actually partially overlaps with CityGML: it contains the thematic

classes ‘Building’, ‘Road’ and ‘Railway’ (Transportation in CityGML),

and ‘LandSurface’ (ReliefFeature in CityGML). However, it has a

more detailed representation for land and infrastructure features, eg

administrative units, ownership rights, spatial units for land use (land

parcels and the legal spaces of buildings), surveying and representation,

alignment for roads and railways, subsurface models for terrain, etc

InfraGML is the GML-based encoding of LandInfra, and the only one

standardised.

LandInfra is a relatively young standard and at present it is difficult to

identify any concrete examples of its usage in practice; the majority of

citations about LandInfra describe the need to consider LandInfra in

future work.

10.6 Notes and comments

The official specifications of CityGML are available at https://www.op

engeospatial.org/standards/citygml.

(Stadler and Kolbe, 2007) first proposed and described the semantic and

spatial decompositions of a city, and how keeping the two decomposition

aligned has several advantages in practice.

Biljecki et al. (2015) describe and list 30 use-cases and 100 applications

that make use of semantic 3D city models.

See Biljecki et al. (2018) for an overview of the existing ADEs (for CityGML

v2.0.0).

The official specifications of CityJSON are available at https://www.ci

tyjson.org/specs/.

CityJSON specifications, examples datasets, tutorials, and software are

available at https://cityjson.org. Ledoux et al. (2019) discuss in

details the encoding and give concrete examples why they believe it is

a superior encoding to XML for the CityGML data model; parts of this

chapter was taken and adapted from that paper.

Airaksinen et al. (2019) describe the efforts and workflows used by the

city Helsinki to built both a textures mesh and a semantic 3D city models

of their city. Details about how the model is used in practice are also

given.

Kumar et al. (2019) describe the role and position of LandInfra with

respect to CityGML and BIM/IFC.

For the description of LoD of other classes then buildings, see Kumar et al.

(2019) for terrains, Labetski et al. (2018) for roads, and Ortega-Córdova

(2018) for trees.

https://www.opengeospatial.org/standards/citygml
https://www.opengeospatial.org/standards/citygml
https://www.cityjson.org/specs/
https://www.cityjson.org/specs/
https://cityjson.org
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10.7 Exercises

1. It is stated that a given CityJSON file will be on average 6X com-

pacter than an equivalent CityGML file. Explain why CityJSON

files are compacter.

2. Build manually a CityJSON file of a unit cube that represent a

LoD2 building, and assign to its surfaces the correct semantics

(roof, ground, façade). Add a few random attributes to the building.

Make sure your file is valid by following that tutorial: https:

//www.cityjson.org/tutorials/validation/

3. What would be the “best” format to store the textured mesh of

Helsinki (in Figure 10.1)?

https://www.cityjson.org/tutorials/validation/
https://www.cityjson.org/tutorials/validation/
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Building information modelling (BIM) involves the creation and use

of detailed digital 3D models of buildings or infrastructure in a way

that supports their design and construction, but increasingly also ex-

tending to their planning, operation, maintenance, refurbishing and/or

demolition.

Originally, the scope of BIM was limited to support a building’s design

and construction in the Architecture Engineering and Construction (AEC)

field. However, BIM models are now considered to be useful for much

more than this narrow purpose, representing a central platform that can

be used throughout a building’s entire lifecycle, supporting collaboration

by different users and different disciplines. For example, the most typical

current use of BIM comprises the design phase of a building, where

different domain experts (eg architectural design, structural design and

installations design) can work together to create one comprehensive

3D model that contains all elements of a building. Later on, the same

model could be maintained to support the building’s asset and facility

management.

In industry, the potential of BIM is commonly focussed on improving

existing processes (eg minimising errors during design and construction,

optimising resources, improving coordination and control). However,

there is a lot of ongoing work to reuse BIM models for new applica-

tions (eg structural analysis, energy simulations, urban planning and

building permitting). These applications often imply the conversion and

integration of BIM models with other sources, such as 3D city models.

11.1 How BIM came to be

Traditionally, the design of buildings and infrastructure mostly relied on

technical drawings on paper, often as a combination of more engineering-

focused 2D cross-sections and floor plans, with more visual drawings

(eg architectural sketches) that showed an overview of project as 2D

perspective views, either in a stylised or in a realistic way. These were

sometimes supplemented with 3D physical models (ie maquettes).

Although the initial concept of BIM was developed starting from the 1980s,

when these design processes were (partly) transferred to computers, it

mostly meant the use of 2D computer-aided design (CAD) software to

create the technical drawings and the use of general-purpose graphics

editing software for the other views. While this simplified many tasks (eg

iterating to make small changes and printing new versions), it is worth

noting that the use of these kinds of software did not fundamentally

change the nature of designing a building, or of using the archived

versions of such designs for later purposes (eg locating pipes and wires),

which were most likely only stored in print anyway.
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Figure 11.1: BIM models focus on

volumetric physical elements (centre),

whereas 3D GIS models focus on seman-

tic surfaces (left) and the voids between

them (right).

BIM is often considered as an evolution from these CAD-based processes,

which is partly true, but it is also a very different way to model buildings

and infrastructure. This is mainly because it models a building or infras-

tructure project as a single model composed of a large set of 3D objects,

as opposed to a series of unconnected 2D drawings showing different

views of subsets of these objects. The kind of technical drawings that

were made before are still common, but they can be semi-automatically

generated from the BIM model using software.

The objects represented in a BIM model include the 3D elements that

a building is composed of (eg beams, columns, stairs and windows).

They can range from higher level representations (less detailed) up to

the representation of detailed single screws, with their accompanying

relevant attributes (eg the materials they are made of and their properties).

Moreover, more abstract elements are included that describe the project

itself (eg construction timelines and costs). There is also a large number

of relations between the objects, which are often used by software to

support smart editing features, such as keeping sets of related objects

together when one of them is moved.

Note that a key aspect of BIM is that it focusses on volume-filling physical

objects (Figure 11.1), such as walls, whereas GIS representations instead

tend to model the objects’ outer surfaces (eg wall surfaces) and the voids

between them (eg rooms). This means that BIM models are usually more

detailed and have semantics that are more meaningful for some purposes

(eg construction or refurbishing), but 3D GIS models have higher-level

semantics that are easier for many applications (eg navigation and spatial

analyses). Table 11.1 compares the ways in which in 3D city models and

BIM models differ.

11.1.1 Use of BIM and common terminology

BIM was originally focussed on the design of buildings, but its reach has

expanded significantly in recent years and is continuing to do so in a

number of ways. Firstly, it is attempting to cover all sorts of non-building

infrastructure projects as well, including roads, railways, bridges, tunnels,

waterways, utility and communication networks, which together with

buildings are often known as assets. Secondly, it also aims to support

all the stages of the lifecycle of an asset using the same base data,

including its planning (with the help of GIS data), design, construction,
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3D city models BIM

geometry

boundary representation

(explicit)

parametrically modelled

solids (implicit)

data source surveys designs

range of detail (𝑑) 1000 > 𝑑 > 0.1 m 50 > 𝑑 > 0.001 m

semantics city/terrain building elements

georeferencing compulsory optional

analysis city-level building-level

evolution of GIS CAD

dominated by government industry

Table 11.1: Comparison between 3D city

models features and BIM aspects.

level of development

LoD

level of information need

LOIN

operation, maintenance, refurbishing and demolition. These stages will

likely involve different software, eg specialised building design and asset

management software; and it will also likely involve different people, eg

architects, surveyors, civil engineers, etc.

Relevant to this, some software vendors and organisations (eg the Amer-

ican Institute of Architects and the UK BIM Task Group) have come up

with the concept of the level of development (LOD) of a BIM model,

which is equivalent to the concept of level of detail (also LOD or LoD)

in GIS. While both terms are directly related to how abstract a model is,

and indirectly to how complex the geometries in it are, the two terms

are somewhat different. Different LoDs in GIS usually model the same

features at the same time, but they are captured at or generalised to

different levels of detail. Different LODs in a BIM model instead show the

same asset at the different stages that it goes through, from its conception

(as a rough sketch or even with no geometry), and gaining more detail as

it passes through its design and to its construction. Ideally, this extends

to modification of the model to reflect its as-built state, which can be

then used for asset management and other applications. The exact terms

used for different BIM LODs differ, but a common scheme goes from

LOD 100 (concept), LOD 200 (design during development), LOD 300

(detailed design to calculate materials and costs), LOD 400 (construction)

and LOD 500 (asset management). Other schemes use smaller numbers,

such as 1 to 7 in the United Kingdom, or use the same hundreds-series

numbers but with different definitions.

In the recent ISO 19560 standard (Organization and digitization of

information about buildings and civil engineering works, including

building information modelling (BIM) — Information management using

building information modelling), the Level of Information Need (LOIN)

is defined as a ‘framework which defines the extent and granularity of

information’ and is intended to substitute the many and inconsistent

previous classifications of LODs in BIM. The LOIN is intended for

clients who define their information needs for project management:

various metrics can be used to measure the information to be delivered.

For example, geometry, alphanumeric data and documents, as well as

unstructured information such as plans, reports, photographs and so on,

with the alphanumeric information considered at least as important as

geometry, helping in the process of passing from documents (reports,

manuals, product specification sheets) to the BIM model itself for the

description, storage and management of the information related to the
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4D BIM

5D BIM

6D BIM

7D BIM

 https://www.autodesk.com/produ

cts/revit/overview

 https://www.graphisoft.com/arc

hicad/

 https://www.buildingsmart.org/

members/member-directory/

industry foundation classes

IFC

 http://www.buildingsmart-tech.

org/specifications/ifc-releases

 https://standards.buildingsmar

t.org/IFC/DEV/IFC4_2/FINAL/HTML/

EXPRESS

actor

control

process

product

building.

Another important set of terms is related to the dimensions in BIM,

which are commonly used but they are used inconsistently. In this,

practitioners and software vendors very often refer to 4D BIM, which

means that a model includes time information, generally in the context

of construction scheduling. Note however that this information might

not be in a convenient format, eg a linked Word file with a textual

description. Other dimension definitions sometimes refer to 5D BIM,

which usually means a model with cost information. Finally, different

people use 6D or 7D BIM to refer to various other aspects (sustainability,

facility management, and delivery of as-built models among others), but

the definitions for these are very inconsistent.

Apart from the core applications of BIM in managing a building’s

lifecycle mentioned above, it is worth noting that there are also many

new possibilities that are currently being studied, such as the automatic

conversion of BIM models into GIS-ready models that can be integrated

into 3D city models, applying environmental analyses directly on BIM

models (eg shadow analyses), improving the sustainability of buildings

(green BIM), using BIM models to automate building permit issuing, and

as will be further discussed in this course, the integration of BIM models

with GIS data (GeoBIM).

11.2 IFC

BIM is an industry-dominated field, and software-specific file formats

are still the main way in which files are exchanged, such as using the

native formats of Autodesk’s Revit and Graphisoft’s ArchiCAD (BIMx).

However, such formats are only well supported by their corresponding

software programs, which leads to interoperability problems when

exchanging files.

As a way to solve this problem, the buildingSMART consortium, which

notably includes a number of software companies (including Autodesk

and the Graphisoft-owning Nemetschek Group), created the industry

foundation classes (IFC) as an open data model for the exchange of BIM

models. IFC has been further standardised as ISO 16739 (ISO, 2013) with

its geometry definitions in ISO 10303 (ISO, 2014).

IFC files are often large (hundreds of MBs), and their structure is rather

complex. They can contain many types of classes (130 defined types, 217

enumeration types, 60 select types, 816 entities, 47 functions, 2 rules,

415 property sets, 93 quantity sets and 1697 individual properties in IFC

4.2), which are defined using the EXPRESS data modelling language.

Among others, there are several classes to model actors (eg people and

organisations), controls (eg specifications, regulations, schedules and

other requirements), processes (eg actions during construction), products

(eg physical building elements and other spatially defined objects), the

project itself (eg where it is placed), and resources (eg cost, materials

and equipment), as well as groups of other classes (eg those having a

common purpose). In the rest of this handout, we will mostly focus on

products.

https://www.autodesk.com/products/revit/overview
https://www.autodesk.com/products/revit/overview
https://www.graphisoft.com/archicad/
https://www.graphisoft.com/archicad/
https://www.buildingsmart.org/members/member-directory/
https://www.buildingsmart.org/members/member-directory/
http://www.buildingsmart-tech.org/specifications/ifc-releases
http://www.buildingsmart-tech.org/specifications/ifc-releases
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/
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Figure 11.2: The four layers in which the

Industry Foundation Classes are organ-

ised. Source: IFC4.1 specification

IFC layers

IFC core layer

IFC kernel

IFC interoperability layer

11.2.1 General organisation of the standard

The concepts represented in IFC are organized in four conceptual layers,

as represented in Figure 11.2.

The core layer contains the classes which are central and most gen-

eral in the data model. In particular, the Kernel contains the root

classes for the definition of objects, relationships and properties and

their relationships (eg IfcRoot, superclass of all the other entities;

IfcRelationship, superclass of all relationships; IfcObject, which

is the parent entity of IfcGroup, IfcActor, IfcResource, IfcControl,

IfcProcess, IfcProject and IfcProduct, being specified in the further

extensions of the model). In the core layer there are also the three main

extensions representing the foreseen possible representations by IFC:

product, control and process.

The interoperability layer includes classes specialising those defined

in the IfcProductExtension schema, increasing the level of detail of

the represented information. The included entities can be of interest to

multiple domains.

Some even more specific information can be represented through the

domain specific part of the schema, which can specify either classes

represented in the interoperability layer or in the product extension

directly (IfcArchitectureDomain, IfcBuildingControlsDomain, Ifc-

ConstructionMgmtDomain,IfcElectricalDomain,IfcHvacDomain,Ifc-

PlumbingFireProtectionDomain,IfcStructuralAnalysisDomain,Ifc-

StructuralElementsDomain).
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IFC resource layer

STEP physical file

SPF

IFC-XML

IFC zip

federated model

IFC element

The resource layer defines entities to further describe the objects defined

in the other levels.

11.2.2 Formats, encodings and federated models

The most common encoding of IFC files is the STEP Physical File (SPF),

which is a plain text format that is reasonably compact, easy to parse by

a computer and human readable (Figure 11.3). It is also defined in the

ISO 10303 standard. Files with this encoding have the extension .ifc.

Figure 11.3: Excerpt of a typical IFC file

encoded in STEP. After a short metadata

header, a file consists of a series of lines,

where every line starts with a hash sign

(#), followed by the definition of an en-

tity. An entity is assigned a numeric ID,

followed by an equals sign (=), the name

of the entity, and a tuple of its parame-

ters. These parameters can be empty ($),

a number, a list (a comma separated list

enclosed by parentheses), a text string

(enclosed by single quotes), or the ID of

another entity, among others.

1 #365= IFCDIRECTION((1.,0.,0.));
2 #367= IFCDIRECTION((0.,0.,1.));
3 #369= IFCCARTESIANPOINT((0.,0.,0.));
4 #371= IFCAXIS2PLACEMENT3D(#369,#367,#365);
5 #372= IFCDIRECTION((0.766044443119,0.642787609687));
6 #374= IFCGEOMETRICREPRESENTATIONCONTEXT($,’Plan’,3,1.00000000000E

-5,#371,#372);
7 #375= IFCGEOMETRICREPRESENTATIONSUBCONTEXT(’Box’,’Plan’,*,*,*,*,#374,$,.

PLAN_VIEW.,$);
8 #377= IFCCARTESIANPOINT((-3.,-3.,-1.));
9 #379= IFCBOUNDINGBOX(#377,18.,16.,1.);

10 #380= IFCSHAPEREPRESENTATION(#375,’Box’,’BoundingBox’,(#379));
11 #383= IFCPRODUCTDEFINITIONSHAPE($,$,(#355,#380));
12 #389= IFCSITE(’0KMpiAlnb52RgQuM1CwVfd’,#12,’Gelaende’,’Ebenes Gelaende’,’

LandUse’,...
13 #400= IFCRELAGGREGATES(’1GO86xgv8B470LzUwG9dnQ’,#12,$,$,#66,(#389));
14 #406= IFCPROPERTYSINGLEVALUE(’BuildingHeightLimit’,$,

IFCPOSITIVELENGTHMEASURE(9.),$);
15 #407= IFCPROPERTYSINGLEVALUE(’GrossAreaPlanned’,$,IFCAREAMEASURE(0.),$);
16 #408= IFCPROPERTYSET(’1pzemvk20um3F9bx64I1e9’,#12,’Pset_SiteCommon’,$

,(#406,#407));
17 #412= IFCRELDEFINESBYPROPERTIES(’2w5hE3w6ce8Clm81uDvALx’,#12,$,$,(#389)

,#408);
18 #416= IFCQUANTITYLENGTH(’GrossPerimeter’,$,$,0.,$);
19 #419= IFCQUANTITYAREA(’GrossArea’,$,$,0.,$);

In addition to STEP files, there is also an XML encoding of the standard

(IFC-XML) with file extension .ifcXML, as well as a zipped version of the

other encodings with extension .ifcZIP. These two are less convenient

due to the large file of XML files and the need to uncompress its zipped

version. They are thus rarely used in practice. In addition, recent proposals

add new options to store the IFC files, in order to enable the use of further

technologies for their management. For example, the Ontology Web

Language (OWL) format is considered in ifcOWL, and ifcJSON is also

being developed. An overview of available formats is given at https:

//technical.buildingsmart.org/standards/ifc/ifc-formats/

BIM models are usually split into several models, each of which describe

the information related to a design discipline working on a project:

architectural, structural, installations, etc. They are combined together in

a federated model.

11.2.3 How objects are modelled

Physical elements in IFC (ie IfcElement) are usually modelled separately

using a local coordinate system that is defined per object (as opposed to

the national or regional coordinate systems used in GIS). This reflects the

fact that in BIM and CAD, objects are generally modelled independently

https://technical.buildingsmart.org/standards/ifc/ifc-formats/
https://technical.buildingsmart.org/standards/ifc/ifc-formats/
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IFC product

IFC product representation

IFC object placement

IFC geometry

IFC profile

IFC sweep volume

before later being fitted together. In practice, this means that the location

of an independently-modelled element is defined by a hierarchy of

transformations. For example, these levels can correspond to the levels

in a decomposition structure (typically a site, project, building and

individual floors), or link an element to another element (a dependent

element linked to one it is attached to).

In concrete terms, a product in IFC (ie IfcProduct, which is a superclass

of IfcElement), is linked to a geometry (ie IfcProductRepresentation)

and to the local coordinate system that defines its location (ie IfcObject-

Placement). The latter can be absolute (ie defined with respect to the

whole project’s coordinate system) or relative (ie defined with respect to

another product).

11.2.4 Geometry

The geometry of a physical element can be created using a variety of

representation paradigms:

Primitive instancing: an object is represented based on a set number

of predefined parameters (Figure 11.4). IFC uses this paradigm

to define various forms of 2D profiles (Figure 11.5), as well as

volumetric objects, such as spheres, cones and pyramids.

CSG and Boolean operations: an object is represented as a tree of Boolean

set operations (union, intersection and difference) of volumetric

objects (Figure 11.6). Half-spaces are often used to cut out the

undesired parts of surfaces or volumes.

Sweep volumes: a solid can also be defined by a 2D profile (a circle,

a rectangle or an arbitrary polygon with or without holes) and a

curve along which the surface is extruded (Figure 11.7).

B-rep: an object is represented by its bounding surfaces, either triangu-

lated meshes, polygonal meshes or topological arrangements of

free-form surfaces (Figure 11.8).

These paradigms can be used independently or combined with each

other in a hierarchy.

1 #17079= IFCDIRECTION((1.,0.));
2 #17081= IFCCARTESIANPOINT((0.,0.));
3 #17083= IFCAXIS2PLACEMENT2D(#17081,#17079);
4 #17084= IFCRECTANGLEPROFILEDEF(.AREA.,’’,#17083,0.885,2.01);

Figure 11.4: Defining a rectangular pro-

file (ie IfcRectangleProfileDef) para-

metrically. The rectangle extends 0.885

units along the x-axis, which is de-

fined by the direction given in its

IfcAxis2Placement2D (1, 0), and 2.01

units along the 𝑦-axis (perpendicular to

the 𝑥-axis).

Figure 11.5: The IFC standard supports

parametric instantiated objects, such as

these extrusions of (a) shape profiles and

(b) letter profiles.

Related to how geometries are stored in IFC, two constructs (and related

IFC classes) are particularly important: IfcOpenings and IfcSpaces.
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Figure 11.6: Removing part of a volume

by subtracting a half-space from it using

a Boolean set operation.

1 #237=IFCEXTRUDEDAREASOLID(#236,#234,#230,6000.);
2 #238=IFCDIRECTION((1.,0.,0.));
3 #239=IFCDIRECTION((-1.,0.,1.));
4 #240=IFCCARTESIANPOINT((-2500.,0.,3000.));
5 #241=IFCAXIS2PLACEMENT3D(#240,#239,#238);
6 #242=IFCPLANE(#241);
7 #243=IFCHALFSPACESOLID(#242,.F.);
8 #244=IFCBOOLEANCLIPPINGRESULT(.DIFFERENCE.,#237,#243);

Figure 11.7: The IFC standard supports

objects defined through sweeps, which

are defined by (a) an IfcPCurve (black

spiral) and a SweptArea (blue disk), in

this case resulting in (b) a screw shape.

IFC opening

IFC space

IFC proxy

Subtraction relationships are part of the IFC model, representing openings

by means of the voiding mechanism: IfcOpening defines the 3D objects

that are subtracted from another geometry (eg a hole for a window in

an IfcWall or for a staircase in an IfcSlab). The IfcOpening can be

in turn filled by an element, like an IfcWindow or IfcDoor. Meanwhile,

IfcSpaces are used to explicitly model meaningful spaces (eg rooms,

apartments or storeys), and it is possible to associate attributes to them.

11.2.5 Semantics

The semantics in an IFC file are stored as a mix of entities, attributes and

relationships.

An example of entities (classes) is given by all the subentities of IfcBuil-

dingElement, including: IfcBeam, IfcBuildingElementComponent, Ifc-

BuildingElementProxy,IfcChimney,IfcColumn,IfcCovering,IfcCur-

tainWall, IfcDoor, IfcFooting, IfcMember, IfcPile, IfcPlate, Ifc-

Railing, IfcRamp, IfcRampFlight, IfcRoof, IfcShadingDevice, Ifc-

Slab, IfcStair, IfcStairFlight, IfcWall, and IfcWindow. These can

be used to represent many different functions that a building ele-

ment can have, although there is also a commonly used generic one,

IfcBuildingElementProxy, that does not provide this information. Sim-

ilar subentities exist in other parts of the standard, such as for distribution

elements (eg for heating, cooling, ventilation and plumbing).

In order to represent objects which are not included in the IFC model,

an IfcProxy element is foreseen, which is a subclass of IfcProduct.

For example, the entity IfcBuildingElementProxy described above is a

subentity of IfcProxy for building elements. Such generic entities are

useful in order to support the addition of customised entities to models.

However, many times this is misused to represent objects which have

suitable entities in the IFC model. This is a problem, since a correct

interpretation of such entities from the semantic point of view becomes

Figure 11.8: Defining a simple

polygon (ie IfcPolyLoop) using

B-rep. Every point is defined as an

IfcCartesianPoint, then the polygon

is defined by a list of points.

1 #120= IFCCARTESIANPOINT((-3.,13.,0.));
2 #122= IFCCARTESIANPOINT((12.,10.,0.));
3 #124= IFCCARTESIANPOINT((15.,13.,0.));
4 #126= IFCPOLYLOOP((#120,#122,#124));
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IFC spatial structure element

 https://standards.buildingsmar

t.org/IFC/RELEASE/IFC4/ADD1/HTML

/schema/ifcproductextension/lexi

cal/ifcspatialstructureelement.h

tm

IFC property set

IFC georeferencing

more difficult, requiring either manual work or complex inferences based

on their geometry.

Moreover, it is often possible to store the same kind of object by means of

several entities. For example, the layers within a compound wall object

can be represented by means of an associated IfcMaterialLayerSet, but

also as a more generic decomposition where every wall layer is modelled

as a distinct IfcBuildingElementPart.

Regarding relationships between entities, IFC classes are generally struc-

tured in a deep hierarchies (is-a relationships), but some are organized in

meronymic (part-of) trees, and there is support for spatial composition

(fits-within) by means of IfcSpatialStructureElements. This is used

for the hierarchy of site, building, storey, space and zone. Finally, elements

are also related to one another directly, for example for wall connectivity

and space boundaries.

Regarding attributes, various forms of semantic information can be

associated to IFC elements, such as materials, properties (key-value pairs)

and even scheduling. The specific attributes that can be attached to each

entity can be checked by looking at its documentation, taking into account

that an entity can have all the attributes (recursively) inherited from its

parents.

In addition, property sets can be used for attributes. For instance, a

building’s use can be defined using the property set Pset_BuildingUse,

which includes things like its market category (eg residential or commer-

cial). Another example is given in Figure 11.9, where custom properties

are defined in order to store specific semantics of a model.

1 #991622=IFCPROPERTYSINGLEVALUE(’End Extension Calculation’,$,
IFCLENGTHMEASURE(3000.),$);

2 #991623=IFCPROPERTYSINGLEVALUE(’Material’,$,IFCLABEL(’NL_01_hout_plaat’),$
);

3 #991624=IFCPROPERTYSINGLEVALUE(’Length’,$,IFCLENGTHMEASURE(2594.),$);
4 #991625=IFCPROPERTYSINGLEVALUE(’Start Release’,$,IFCINTEGER(3),$);
5 #991626=IFCPROPERTYSINGLEVALUE(’End Release’,$,IFCINTEGER(1),$);
6 #991627=IFCPROPERTYSINGLEVALUE(’Cut Length’,$,IFCLENGTHMEASURE

(2594.000000000001),$);
7 #991628=IFCPROPERTYSINGLEVALUE(’Structural Usage’,$,IFCINTEGER(10),$);
8 #991629=IFCPROPERTYSINGLEVALUE(’Analyze As’,$,IFCINTEGER(1),$);
9 #991630=IFCPROPERTYSINGLEVALUE(’Volume’,$,IFCVOLUMEMEASURE

(13602936.00000029),$); Figure 11.9: Defining properties to store

the semantics in an IFC model.

11.2.6 Georeferencing

Properly georeferencing an IFC file makes it possible to link the (local)

coordinates inside an IFC model with their corresponding real-world

coordinates, and thus to place the model of a single building or construc-

tion within the virtual environment. However, it is important to say that

since georeferencing has historically not been necessary for designers,

many IFC models are not georeferenced properly (or at all), which is a

major issue in practice.

There are several options to store georeferencing information in IFC, as

originally described by Clemen and Hendrik (2019) and summarised in

Table 11.2. These options range from basic address information to the

https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/schema/ifcproductextension/lexical/ifcspatialstructureelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/schema/ifcproductextension/lexical/ifcspatialstructureelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/schema/ifcproductextension/lexical/ifcspatialstructureelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/schema/ifcproductextension/lexical/ifcspatialstructureelement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/schema/ifcproductextension/lexical/ifcspatialstructureelement.htm
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definition of a more detailed position referred to a projected coordinate

reference system (CRS). In this last case, an offset can be stored between

the project coordinate system and the global origin of a CRS (𝑋, 𝑌 and

height). The rotation of the 𝑋𝑌-plane is also included.

Table 11.2: Synthesis of LoGeoRefs as

defined by Clemen and Hendrik (2019).
LoGeoRef Supported CRS Storing entities

LoGeoRef10

No CRS, approx-

imate location

by means of the

address.

IfcPostalAddress referenced by either

IfcSite or IfcBuilding.

LoGeoRef20

WGS84

EPSG:4326

RefLatitude, RefLongitude, RefEle-
vation within IfcSite

LoGeoRef30

Any Cartesian

CRS, including

projected coordi-

nates (CRS not

specified in the

file)

IfcCartesianPoint referenced within

IfcSite (defining the projected coor-

dinates of the model reference point);

IfcDirection attribute of IfcSite.

LoGeoRef40

Any Cartesian

CRS, including

projected coordi-

nates (CRS not

specified in the

file)

WorldCoordinateSystem storing the co-

ordinates of the reference point in

any Cartesian CRS (including the pro-

jected ones) and the orientation in

TrueNorth. Both are stored within

IfcGeometricRepresentationContext.

LoGeoRef50

Specific pro-

jected CRS,

specified by

means of the

EPSG code

IFC v.4 onlyCoordinates of the reference

point stored in IfcMapConversion us-

ing the attributes Eastings, Northings
and OrthogonalHeight for global eleva-

tion. Rotation for the XY-plane stored

using the attributes XAxisAbscissa and

XAxisOrdinate. The coordinate refer-

ence system (CRS) used is specified by

IfcProjectedCRS in the attribute Name
by means of the proper EPSG code.

However, it is important to note that these levels of georeferencing do not

necessarily indicate a scale measuring the quality of georeferencing, but

they are mostly relevant to identify how the information is stored. In fact,

in some cases, the accuracy of different LoGeoRefs can be very similar

(e.g. LoGeoRef30 and LoGeoRef40), since the values are supposed to be

the same, but stored differently within the IFC file.

11.3 Exercises

1. Open a simple IFC file (eg the IfcOpenHouse) in a text editor. Can

you understand the general structure of the file and how the STEP

encoding works?

2. Find a line that defines an IfcAxis2Placement3D. With the help

of the documentation of that entity in the buildingSMART website,

can you understand what it means?

3. Much like 3D GIS standards like CityGML, IFC files represent a

hierarchy. However, the hierarchy in an IFC file looks much flatter

with a simple entity in every line. Is this really a flatter hierarchy?
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What are some advantages and disadvantages of this (different)

approach?





(a)

(b)

Figure 12.1: Building reconstruction

transforms (a) a point cloud into (b) a

mesh model.
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In the previous chapter we discussed how to model 3D objects using the

boundary representation. You learned about data structures to represent

the geometry and topology of a 3D object’s surface in a very structured

and organised way. In this chapter we will look at how you could create

such a structured representation from a much less structured form of 3D

geoinformation, namely a point cloud.

In automatic building reconstruction we aim to construct 3D mesh models

for individual buildings from some form of elevation measurements, ie a

raster-based DSM or a point cloud, without any manual interventions

(see Figure 12.1).

It can be considered as one step in the geoinformation chain, since

we essentially transform ‘raw’ and unorganised point measurements

into more structured and semantically rich 3D models. Compared to a

point cloud, such models are much more useful for applications such as

environmental simulations of wind, air pollution, and noise propagation,

but also building energy demand estimation and urban planning in

general. Many of these applications require knowledge about the volume

or surface area of a building, or the distinction between the interior and

exterior of a building, which is evidently much easier to derive from

a mesh with a clearly defined boundary than from a point cloud. In

addition, meshes are typically more compact which makes them more

efficient to store and process.

This is not to say that meshes are always superior to point clouds. For

example some of the finer details that may be present in a point cloud

could be lost in the mesh representation. Furthermore, there is always

the risk of introducing new errors and deviations from the original

measurement in the building reconstruction process. But ultimately,

the many benefits of representing a building as a mesh outweigh these

disadvantages for many applications.

In this chapter we will first list common challenges and requirements for

the building models that are to be constructed. Second, we will look at

the important engineering choices in designing a building reconstruction

algorithm. And finally, we will discuss one particular approach that was

designed to work on Dutch open data in more detail.

12.1 Building model requirements and
reconstruction challenges

When designing a building reconstruction method, it is important to

carefully consider both the model requirements and the reconstruction
challenges. The model requirements specify in detail what properties

a reconstructed building model should have. Model requirements are

mostly application dependent. For example, an application that performs

heavy geometric processing on the building models has stricter geometry
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and topology requirements than an application that merely visualises

the building models. Reconstruction challenges, on the other hand, are

mostly input dependent. It is about the characteristics of the input data

and the typical shape of the buildings that are present in the input

data. It is relatively easy to design a reconstruction approach for a very

high quality point cloud that contains only very simple building shapes,

whereas reconstructing complex building shapes from a very sparse and

low quality input point cloud is substantially more difficult.

12.1.1 Building model requirements

Following are commonly encountered building model requirements.

Notice that the exact requirements will depend on the application.

Low complexity Means that the building model ought to have as few

vertices, edges, and faces as possible. Building models with a low

complexity are faster to process and take up less storage space.

High accuracy The surfaces of the building model should have the

lowest possible error with respect to the input point cloud. This

error can be measured as the root mean square of all the distances

from each input point to the model surface.

Geometrically valid This means among other things that the mesh is

2-manifold, has consistent faces orientation, no duplicated vertices,

and no self intersecting geometries. This makes the model generally

easier to process since many assumptions can be made about the

structure of the mesh. Section 9.4 discusses this (and the relevant

ISO19107 standard) in more detail.

Level of Detail (LoD) Specifies the degree of generalisation in the roof

structure of the reconstructed building model when compared

to how the actual building is built. An LoD1 model for example

only allows horizontal flat roof surfaces (even if the actual building

roof looks different), whereas an LoD2 model also allows for

more detailed multi-pitched roof shapes. For the remainder of

this chapter we will focus on the more detailed LoD2 models.

Section 10.2.1 discusses the possible LoDs for building models in

more detail.

12.1.2 Reconstruction challenges

Why can it be hard to satisfy the model requirements? This depends

on the reconstruction challenges. We distinguish between two main

categories.

Firstly, there are variations in architectural style. Urban environments

can be complex and organised with a high degree of randomness due

to their anarchical creation over time. This makes it difficult to design a

reconstruction algorithm that is able to model 100% of the buildings on

earth. It is probable that there are always a few cases that violate some

of the assumptions made in the building reconstruction method. For

example, to simplify a reconstruction approach, it may seem reasonable

to assume that buildings are not built on top of each other without

touching each other. And while this assumption is valid in more than
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Figure 12.2: A complex urban environ-

ment.

(a)

(b)

Figure 12.3: Varying point cloud quali-

ties. (a) low point density with missing

facades, (b) high point density and points

on facades.

Figure 12.4: Data driven reconstruction

based on a triangulation of the input

points (Axelsson, 1999)

99% of the cases, in practice there are some violations of this assumption

(see Figure 12.2).

Secondly, we need to consider the quality and completeness of the input

data. This mostly relates to how the input data, ie the point cloud, was

acquired (compare eg Figure 12.3a to reffig:pc-quality:high).

Most building reconstruction methods work with point clouds that are

captured from an airplane. This is the most efficient way to cover large

areas, but it also means that not all the exterior surfaces of a building

are captured due to occlusion. In particular facades and the underside

of overhanging structures may be missing in such datasets. If a surface

is missing in the point cloud we need to compensate for that with

assumptions on what we expect the building to look like. For instance,

we could assume that facades are always vertical so that we can simply

model a vertical plane from the roofline to the ground. However, while

this is reasonable for the majority of buildings there are bound to be

some exceptions. Other point cloud properties are also important. For

example the point density is indicative for the smallest details that we can

reliably detect in the point cloud. Consequently we can not reasonably

expect to see smaller details in the reconstructed building model unless

very strong assumptions are taken on the type of building shape that

is modelled. Some surface materials can also lead to problems. Glass

surfaces for example are notoriously difficult to measure with airborne

acquisition techniques, leading eg to holes in the roof surface which can

lead to problems in a building reconstruction method.

12.2 Data driven versus model driven building
reconstruction

Building reconstruction has been a popular topic among researcher over

the last few decades. Many approaches exist that vary in the expected type

and resolution or density of input data, the precise model requirements,

and in how restricted they are to a particular architectural style. One

could classify these methods on a linear scale with on one extreme the

purely so-called data driven approaches and on the other extreme the

purely so-called model driven approaches.
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Figure 12.5: Model driven reconstruc-

tion by fitting parametrised roof models

(Lafarge et al., 2010)

the AHN3 point cloud and the BAG

building footprints

The data driven approach strongly relies on the quality and completeness

of the input data. The resulting building models have a good data fit,

but a high complexity (high number of faces). Defects in the input data

are likely to cause problems in the building model, such as holes and

non-2-manifoldness. Examples of the data driven approach are methods

that triangulate directly the input point cloud (see Figure 12.4).

The model driven approach, on the other hand, relies on strong modelling

assumptions about the building shape. This typically results in models

with a low complexity, but a poorer fit with the input points when

compared to a purely data driven approach. Because the model driven

approach does not rely so heavily on the quality of the input, defects in

the input point cloud are less likely to lead to problems in the building

model. Examples of the model driven approach are methods that fit

pre-defined roof shapes such as a simple gable roof to a point cloud (see

Figure 12.4). Such a method will only work for buildings for which a

pre-defined roof shape is available. Yet, if this the case it can already

work reliably for a very sparse point cloud.

Clearly both approaches have limitations. The most advanced building

reconstruction methods, including the one discussed below, try to com-

bine the best of both to come to an optimal compromise, eg a method that

has both a good datafit and a high degree of flexibility in building shapes

but also a low complexity and perfect geometric validity. However, be

aware that such a mixed approach combines not only the advantages,

but likely also the disadvantages of both approaches to some degree.

12.3 Automatic LoD2 reconstruction for the
Netherlands

In this section we will discuss an automatic LoD2 reconstruction method

that I developed to work with Dutch open data. The output of this

method should have both a good data fit and a low model complexity

and is aimed to have completely valid geometry output. This means

the resulting models are suitable for various kinds of environmental

simulation applications.

12.3.1 Modelling assumptions

The following assumptions are taken in the reconstruction method. They

are deemed reasonable for the Dutch input datasets that the method was

designed on, and with these assumption the reconstruction problem is

somewhat simplified.

piecewise planar The shape of a building can be adequately approxi-

mated using planar faces that are detectable from the point cloud.

2.5D with vertical walls The roof of the building is 2.5D and all walls

are vertical. This implies the 3D building model can be extruded

from a 2D planar partition of the roof. The 2.5D assumption is

quite reasonable for airborne point cloud, because each building is

only scanned from above anyhow.
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building
points

footprint

terrain
points

intersection lines

boundary
lines

654

321

Figure 12.6: The main steps in the re-

construction algorithm. 1) the classified

(aerial) point cloud is cropped on the 2D

footprint, 2) planes and their boundaries

are detected in the point cloud, 3) from

the roof planes the intersection lines and

boundary lines are extracted, 4) the lines

are regularised and projected onto the 2D

footprint, 5) the roof-partitions is created.

This is a DCEL where each face is labeled

with the corresponding plane (from 2,

compare colors). 6) the roof-partition is

extruded into a 3D mesh.

If a terrain plane is assigned to a face

from the roof-partition, that face is re-

moved (2 and 5).

classified point cloud A reliable classification of the input point cloud

is expected, ie at least a building and a terrain (ground) class must

be present. This is the case for the AHN3 dataset that is used.

footprints are available Apart from a point cloud the method also takes

2D building footprints as input. These are used to crop the point

cloud for each building. It is assumed that the footprints are up-to-

date and well aligned with the point cloud.

The method can be classified as a mix between the purely data and model

driven approaches as discussed in the previous section. Consequently

it also mixes the benefits and trade-offs of both extremes. For example,

instead of forcing complete roof shapes on a point cloud, it is only

assumed a building is composed of planar surfaces. This makes the

method more flexible compared to a purely model driven approach

that fits a pre-defined roof shape, since it should be able to handle any

possible roof shape that can reasonably be approximated with (large)

planar surfaces while still mainting a low model complexity. However, if

a plane cannot be fitted to a part of the roof due to defects in the point

cloud, that part may lead to errors in the resulting building model.

12.3.2 Method overview

Figure 12.6 illustrates the six main steps of the algorithm. The main idea

is to compute a so-called roof-partition; a planar partition of the footprint

where each face corresponds to a planar piece of the roof and is labeled

with a roof plane. Prior to creating the roof-partition the roofplane and

line features must be extracted from the point cloud (Figure 12.6 step 2

and 3). And once the roof-partition is available, the 3D building model

can be generated through extrusion (Figure 12.6 step 6).

12.3.2.1 Feature extraction

The roof-partition is made using lines that are derived from roof planes

that are extracted from the building point cloud. The roof planes are

detected using a region-growing algorithm and then two type of lines

are derived from the planes: boundary lines and intersection lines (see



132 12 3D building reconstruction

Figure 12.7: Line regularisation through

clustering.

(a) Detected lines (b) Orientation clustering

(c) Distance clustering (d) Regularised lines

Figure 12.6 step 3). The boundary lines are created by detecting lines in

the boundary of the 𝛼-shape of each detected roof plane. The intersection

lines are created where adjacent planes intersect, such as on the top of a

gable roof.

Before the boundary and intersection lines are used to partition the

footprint, they are regularised. The goal of line regularisation is to

remove duplicate lines and thereby reduce the complexity of the roof-

partition. For example, the line on top of the gable roof in Figure 12.6 is

detected three times: once as an intersection line and twice as a boundary

line (once for each incident roof plane). After line regularisation only

a single line remains. After projecting the detected lines to 2D, line

regularisation is done in two steps: orientation clustering and distance

clustering (see Figure 12.7).

Orientation clustering is performed first, and in this step lines that have

approximately the same orientation in the 2D plane are put in the same

cluster. For example in Figure 12.7b, there are two dominant orientations

that each form a cluster of lines. Withing each orientation cluster the

angle between the lines is relatively small, whereas the angle between

lines in different clusters is large.

Next, distance clustering is performed. This divides each orientation

cluster into one or more distance clusters. This is done by computing

for each orientation cluster the distances between the lines it contains.

Groups of lines with a small distance with respect to each other are put

in their own distance cluster, weheras the distance between different

distance clusters is large (see Figure 12.7c).

Finally, one average line is computed for each distance cluster (Fig-

ure 12.7d).

12.3.2.2 Construction of the roof-partition

After the lines are detected and regularised they are used to subdivide

the footprint into a planar partition called the roof-partition. A doubly

connected edge list (DCEL) is used to represents the full topology of

the planar partition of the footprint, that is referred to as the initial
roof-partition. This means that each intersection is explicitly represented
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(a)

Intersection lines +
boundary lines

Angle
clustering

Distance
clustering

Regularised
lines

(b)

Figure 12.8: The roof-partition is repre-

sented as a DCEL (a). When extruding

to a 3D mesh (b), each edge in the roof-

partition becomes a wall face in the 3D

Mesh. Each vertex in the roof-partition

(eg 𝑣1) needs to be replicated for each

incident face: eg 𝑣
1𝐴, 𝑣

1𝐵 , 𝑣
1𝐶 in the 3D

Mesh.

Graph-cut optimisation is used. The

details on how graph-cut optimisation

works are outside the scope of this

course.

Figure 12.9: The edge 𝑒 (comprising of

two halfedges 𝑒𝐴 and 𝑒𝐵) is incident to

two faces ( 𝑓𝐴 and 𝑓𝐵) and two vertices

(𝑣1 and 𝑣2). In case of a roof-partition,

the height at 𝑣1 on face 𝑓𝐴 is denoted as

ℎ
1𝐴.

with a vertex. In addition there are no dangling edges. The use of a DCEL

allows for easy traversal and manipulation of the roof-partition, eg for

the extrusion to a 3D mesh in the last step.

Depending on the number of lines that remain after regularisation, the

initial roof-partition may still have a high complexity; it may contain many

small faces. To further reduce the complexity of the roof-partition and to

simultaniously assign an optimal roofplane to each face, an optimisation

step is performed. In this step a roof plane is assigned to each face in

the roof-partition (see Figure 12.6 step 5). This is done in such a way

that 1) the total error with the input point cloud is minimised and 2)

the total length of the edges between faces of a different roof plane is

minimised. This optimisation thus seeks an optimal balance between

respectively a good data fit and a low complexity of the roof-partition.

After the optimisation is complete, the edges for which the two incident

faces are assigned to the same roof plane are removed from the partition.

The faces in the resulting final roof-partition are referred to as roof-parts.

12.3.2.3 Extrusion

The final roof-partition is transformed into a 3D building mesh using

extrusion. This is done by exploiting the topological information that is

available in the the DCEL of the roof-partition, as illustrated in Figure 12.8.

Notice that the building mesh consists of three types of faces, ie the floor,

the roof and the wall faces. These are generated from the roof-partition

in separate procedures.

floor face The geometry of the floor face consists of the edges in the

roof-partition that are incident to the exterior to the footprint. The

elevation of the floor face can either be set to the lowest ground

point around the building, or if a terrain mesh is available it can be

made exactly fitting with the terrain by computing the intersection

with that terrain mesh and setting the vertex elevations accordingly.

wall faces These are vertical faces that connect the floor face with the

roof faces. They are extruded from the edges in the roof-partition

that have one or two incident roof parts. Depending on the plane

configuration of the incident roof parts an edge is extruded dif-

ferently. Figure 12.10 shows a few possible cases (there are more).
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Figure 12.10: Determining wall face ge-

ometry and vertex order. ℎ
1𝐴 denotes

the elevation at vertex 𝑣1 on face 𝑓𝐴 (see

Figure 12.9).

Notice that an edge in the roof-partition can generate 0 (if the

incident planes intersect exactly at the edge), 1 or 2 wall faces. Also

notice that the order of the vertices of a wall face (so that they are

oriented counter-clockwise around the face normal that points to

the exterior of the mesh) is completely determined by the plane

configuration case at the edge.

Special attention needs to be paid to vertices that are extruded

to more than two elevations such as 𝑣1 in Figure 12.8a. To get a

topologically correct building mesh, the extruded vertices should

become part of all their incident wall faces. Vertex 𝑣1𝐵 should thus

also be inserted in the boundary ring of the blue face in Figure 12.8b,

despite the fact it is co-linear with 𝑣1𝐴 and 𝑣1𝐶 .

roof faces Each roof part in the interior of the roof-partition will generate

a roof face in the building mesh. The planimetric geometry of the

roof faces is identical to the faces in the roof-partition. The vertex

elevations are found by projecting the 2D vertices to the plane of

the roof-part.

12.4 Notes and comments

Rottensteiner et al. (2014) gives an overview of building reconstruction

methods.

If you want to know more about the graph-cut optimisation method to

optimise the roof-partition have a look at the paper from Zebedin et al.

(2008).

A good example of a true 3D building reconstruction method (no 2.5D

assumption) is the work of Nan and Wonka (2017)

12.5 Exercises

1. Explain the advantages of 2-manifoldness in a building model

2. Complete the table of possible plane configurations in Figure 12.10.

3. Could a non-manifold edge be created in the extrusion that is

described in Section 12.3.2.3? If so, describe how that could happen.
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13.1 MSc geomatics theses . . 135There is no special content for this chapter, but we would like to list a

few resources that you can use to have an overview of the many different

applications of 3D modelling of the built environment. First of all, the

following paper has comprehensive lists of applications (up to 2015):

 To read or to watch.

F. Biljecki et al. (Dec. 2015). Applications of 3D City Models: State

of the Art Review. ISPRS International Journal of Geo-Information 4.4,

pp. 2842–2889

Paper: https://doi.org/10.3390/ijgi4042842

13.1 MSc geomatics theses

Then, we would like to highlight some of the most interesting applications

that have been created by previous geomatics students. These are all

good MSc theses that build on the topics we have seen throughout the

course.

For some of them, there’s a paper, so preferably skim that when available.

For the rest, please read the summary of the thesis.

13.1.1 Automatic enhancement of CityGML LoD2 models
with interiors and its usability for net internal area
determination (Roeland Boeters, 2013)

 To read or to watch.

R. Boeters et al. (Dec. 2015). Automatically enhancing CityGML LOD2

models with a corresponding indoor geometry. International Journal of
Geographical Information Science 29.12. ISSN: 1365–8816 (Print), 1362–

3087 (Online), pp. 2248–2268

Paper: https://3d.bk.tudelft.nl/ken/files/15_ijgis_roel

and.pdf

Full MSc thesis: http://resolver.tudelft.nl/uuid:b22a2b93

-4a0a-4aa7-8e3b-6e08e0027634

13.1.2 Automatic repair of 3D city building models using
a voxel-based repair method (Damien Mulder, 2015)

 To read or to watch.

https://doi.org/10.3390/ijgi4042842
https://3d.bk.tudelft.nl/ken/files/15_ijgis_roeland.pdf
https://3d.bk.tudelft.nl/ken/files/15_ijgis_roeland.pdf
http://resolver.tudelft.nl/uuid:b22a2b93-4a0a-4aa7-8e3b-6e08e0027634
http://resolver.tudelft.nl/uuid:b22a2b93-4a0a-4aa7-8e3b-6e08e0027634
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Full MSc thesis: http://resolver.tudelft.nl/uuid:8ef4459d-b

940-4007-bc3c-d87349015129/

13.1.3 Automatic identification of water courses from
AHN3 in flat and engineered landscapes (Tom
Broersen, 2016)

 To read or to watch.

T. Broersen et al. (2017). Automatic identification of watercourses in

flat and engineered landscapes by computing the skeleton of a LiDAR

point cloud. Computers & Geosciences 106, pp. 171–180

Paper: https://3d.bk.tudelft.nl/rypeters/pdfs/Broersen1

7.pdf

Full MSc thesis: http://resolver.tudelft.nl/uuid:7a64a9f7

-2fef-46b1-9e48-5e0b0d736056

13.1.4 Large-scale efficient extraction of 3D roof segments
from aerial stereo imagery (Martĳn Vermeer, 2018)

 To read or to watch.

Full MSc thesis: http://resolver.tudelft.nl/uuid:24e59c42-b

019-4fd8-a968-307eae8e4460

13.1.5 Automatic extraction of an IndoorGML navigation
from an indoor point cloud (Puck Flikweert, 2019)

 To read or to watch.

P. Flikweert et al. (2019). Automatic extraction of a navigation graph

intended for IndoorGML from an indoor point cloud. ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-

2/W5, pp. 271–278

Paper: https://doi.org/10.5194/isprs-annals-IV-2-W5-2

71-2019

Full MSc thesis: http://resolver.tudelft.nl/uuid:b11f5b57

-5362-4b45-bed6-d5bc154d86aa

13.1.6 Improving location accuracy of a crowdsourced
weather station by using a point cloud: use case
base Netatmo on the Hague (Yixin Xu, 2019)

 To read or to watch.

Full MSc thesis: http://resolver.tudelft.nl/uuid:b9cd47d6-c

http://resolver.tudelft.nl/uuid:8ef4459d-b940-4007-bc3c-d87349015129/
http://resolver.tudelft.nl/uuid:8ef4459d-b940-4007-bc3c-d87349015129/
https://3d.bk.tudelft.nl/rypeters/pdfs/Broersen17.pdf
https://3d.bk.tudelft.nl/rypeters/pdfs/Broersen17.pdf
http://resolver.tudelft.nl/uuid:7a64a9f7-2fef-46b1-9e48-5e0b0d736056
http://resolver.tudelft.nl/uuid:7a64a9f7-2fef-46b1-9e48-5e0b0d736056
http://resolver.tudelft.nl/uuid:24e59c42-b019-4fd8-a968-307eae8e4460
http://resolver.tudelft.nl/uuid:24e59c42-b019-4fd8-a968-307eae8e4460
https://doi.org/10.5194/isprs-annals-IV-2-W5-271-2019
https://doi.org/10.5194/isprs-annals-IV-2-W5-271-2019
http://resolver.tudelft.nl/uuid:b11f5b57-5362-4b45-bed6-d5bc154d86aa
http://resolver.tudelft.nl/uuid:b11f5b57-5362-4b45-bed6-d5bc154d86aa
http://resolver.tudelft.nl/uuid:b9cd47d6-c54f-40f4-95f9-4e9624f1c859
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54f-40f4-95f9-4e9624f1c859

13.1.7 Automatic conversion of CityGML to IFC (Nebras
Salheb, 2019)

 To read or to watch.

Full MSc thesis: http://resolver.tudelft.nl/uuid:455b6060-5

152-46eb-8c64-5382f915442b

13.1.8 Structure-aware building mesh simplification
(Vasileios Bouzas, 2019)

 To read or to watch.

Full MSc thesis: http://resolver.tudelft.nl/uuid:a0faf1a6-9

815-4828-9186-a4a16119c71c

13.1.9 Automatic construction of 3D tree models in
multiple levels of detail from airborne LiDAR data
(Rob de Groot, 2020)

 To read or to watch.

Full MSc thesis: http://resolver.tudelft.nl/uuid:3e169fc7-5

336-4742-ab9b-18c158637cfe

13.1.10 Height Inference for all USA Building Footprints
in the Absence of Height Data (Imke Lánský, 2020)

 To read or to watch.

Full MSc thesis: http://resolver.tudelft.nl/uuid:ddcae7d1-6

cc8-42a7-8c1d-a922ec7551f0

13.1.11 Inferring the number of floors of building
footprints in the Netherlands (Ellie Roy, 2022)

 To read or to watch.

Full MSc thesis: http://resolver.tudelft.nl/uuid:6de4255c-a

b2b-49c2-a282-ed779de092a1

http://resolver.tudelft.nl/uuid:b9cd47d6-c54f-40f4-95f9-4e9624f1c859
http://resolver.tudelft.nl/uuid:b9cd47d6-c54f-40f4-95f9-4e9624f1c859
http://resolver.tudelft.nl/uuid:455b6060-5152-46eb-8c64-5382f915442b
http://resolver.tudelft.nl/uuid:455b6060-5152-46eb-8c64-5382f915442b
http://resolver.tudelft.nl/uuid:a0faf1a6-9815-4828-9186-a4a16119c71c
http://resolver.tudelft.nl/uuid:a0faf1a6-9815-4828-9186-a4a16119c71c
http://resolver.tudelft.nl/uuid:3e169fc7-5336-4742-ab9b-18c158637cfe
http://resolver.tudelft.nl/uuid:3e169fc7-5336-4742-ab9b-18c158637cfe
http://resolver.tudelft.nl/uuid:ddcae7d1-6cc8-42a7-8c1d-a922ec7551f0
http://resolver.tudelft.nl/uuid:ddcae7d1-6cc8-42a7-8c1d-a922ec7551f0
http://resolver.tudelft.nl/uuid:6de4255c-ab2b-49c2-a282-ed779de092a1
http://resolver.tudelft.nl/uuid:6de4255c-ab2b-49c2-a282-ed779de092a1
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