
Introduction to Git(Hub)

2/9/2020
Stelios Vitalis, Clara Garcia Sanchez



1. Version Control
1.1 Why do we need it?
1.2 What is it?
1.3 Architecture
1.4 Commits
1.5 Branches

2. Git
2.1 Definitions
2.2 Init or Clone
2.3 Add and Commit
2.4 Checkout
2.5 Branch and Merge
2.6 Remotes, Pull and Push

3. Github and Workflow
1/57



Versioning and Collaboration
The general concept

It’s useful because:

• It tracks history of our work

• It allows us to work as a team

• It can be used to manage a project

2/57



Version Control System (VCS)
Definition

Definition

Version Control is the management of changes to documents,
computer programs, large web sites, and other collections of
information.1

1Wikipedia
3/57



VCS
Definitions

Repository

A storage location where all versions and information about them
are stored.

Workspace

The actual working directory of the user.

4/57



Types of VCS

There are two types:
• Centralised

– Subversion (SVN)
– Microsoft Team Foundation Server (TFS)
– Concurrent Versions System (CVS)

• Distributed
– Git
– Mercurial

5/57



Centralised
Architecture

A server is the only repository and every user has a workspace.

Server

User 1 User 2 User 3

Repository

Workspace

6/57



Distributed
Architecture

Every user has a copy of the repository and a workspace.

Server (GitHub)

User 1 User 2 User 3

User 1 User 2 User 3

Repository

Workspace

7/57



What is a repository?
Seems like a time line

Co
mm

it 1

Co
mm

it 2

Co
mm

it 3

Co
mm

it 4

Co
mm

it 5

8/57



What is a repository?
But it’s more like a metro network

9/57



Repository “internals”
It’s a graph

A B C D

This nodes are called commits or revisions.

10/57



Commit or Revision
Information

Every commit has:

• ID: some identifier

• Author: name and email of user who commits

• Timestamp: time of commit

• Message: what the commit contains

and, of course, the changes of the files that are submitted.

11/57



Repository “internals”
Branching

A B C D

main

12/57



Repository “internals”
Branching

A B C D E

main one-branch

13/57



Repository “internals”
Branching

A B C D F

E

main

one-branch

14/57



Repository “internals”
Branching

A B C D F

E G H

main

one-branch

15/57



Repository “internals”
Merging

C D F

E G H

I

main

16/57



See you at the lab

13.00pm at Discord git-help (voice channel).
Check the git-help text channel for any preparation instructions.

17/57



1. Version Control
1.1 Why do we need it?
1.2 What is it?
1.3 Architecture
1.4 Commits
1.5 Branches

2. Git
2.1 Definitions
2.2 Init or Clone
2.3 Add and Commit
2.4 Checkout
2.5 Branch and Merge
2.6 Remotes, Pull and Push

3. Github and Workflow
18/57



Git
Some History

Git was created by Linus Torvalds in 2005 because there was no
decent version control system to maintain the Linux kernel.
He described the tool as "the stupid content tracker".

19/57



Git
Some History

He setup the following objectives:

• Performance

• Take CVS as an example of what not to do; if in doubt, make the
exact opposite decision

• Support a distributed, BitKeeper-like workflow

• Include very strong safeguards against corruption, either
accidental or malicious

20/57



Git
Definitions

It’s an open-source destributed VCS.
Specific definitions:

• Every commit has an ID which is its contents hash. E.g.:
2c7ae1b9865e58797ba326d2f7a115bebb034fd7

• We call the “current” commit as HEAD.

21/57



Git
Definitions

c7e2daa 2c7ae1b 3a5de77

1842e25 1a2e54b

main

new-feature

HEAD

22/57



Git
Definitions

remoteworking directory repository

git commit

git checkout

git reset

git diff --staged

git diff HEAD

git rebase

git merge

index

git add/rm

git push

git checkout

git pull

git fetch

git diff

23/57



Create a repository
From scratch

git init

Creates a new empty repository.

The working directory is not affected, but an empty repository and
index is created.

24/57



Create a repository
From a remote

git clone remote_address

Creates a copy of an existing online repository.

• A new folder is created.

• All commits/branches etc. are copied locally.

• The source repository is set as the origin remote.

25/57



Status
See where you stand

git status

Gives all information about the current state of repository and index.

• Shows current branch and difference with remote.

• Shows the staged files.

• Shows changed but not staged files.

• Shows untracked files.

26/57



Create a commit
Add files to the index

git add filename

Adds the file to the index. We say it’s staged.

• The current file from working directory is copied to the index
only if it has changes compared to HEAD.

• The filename can be a pattern. Eg. “git add .” will add all
files.

• Nothing has been committed yet.

27/57



git add file.txt

c7e2daa 2c7ae1b index working dir

main file.txt

HEAD

(a) Before. . .

c7e2daa 2c7ae1b index working dir

main file.txt file.txt

HEAD

(b) . . . and after
28/57



Create a commit
Commit staged files

git commit -m “message"

Creates a commit from a copy of the index.

• The new commit has the given message.

• After the commit, the index is cleared.

• The HEAD and the current branch tags are moved to the new
commit.

That

29/57



git commit -m "Changes to file.txt"

c7e2daa 2c7ae1b index workspace

main file.txt file.txt

HEAD

(a) Before. . .

c7e2daa 2c7ae1b 3a5de77 index workspace

main

file.txt

HEAD

(b) . . . and after
30/57



Move to a commit
Change branch or version

git checkout ref

Moves to a branch/commit and changes the working directory
accordingly.

• The ref can be a branch name, commit id or something else...

• The HEADmoves to the refered commit.

• The current branch changes (if a branch name is given).

31/57



git checkout main

c7e2daa 2c7ae1b 3a5de77

1842e25 1a2e54b

main

new-feature

HEAD

(a) Before. . .

c7e2daa 2c7ae1b 3a5de77

1842e25 1a2e54b

main

new-feature

HEAD

(b) . . . and after. The working directory will change as well!
32/57



git checkout 2c7ae1b

c7e2daa 2c7ae1b 3a5de77

main

file.txt

HEAD

(a) Before. . .

c7e2daa 2c7ae1b 3a5de77

main

file.txt

HEAD

(b) . . . and after. That’s called a detached HEAD state!
33/57



git checkout main

c7e2daa 2c7ae1b 3a5de77

main

file.txt

HEAD

(a) Before on a ‘detached HEAD’ state. . .

c7e2daa 2c7ae1b 3a5de77

main

file.txt

HEAD

(b) . . . and after. Back to normal.
34/57



Create a branch
Use the branch command

git branch new-branch-name

Create a new branch here.

• The new branch is created on the position of HEAD.

• The HEAD still points to the previous position.

35/57



git branch new-feature

c7e2daa 2c7ae1b 3a5de77

mainHEAD

(a) Before. . .

c7e2daa 2c7ae1b 3a5de77

main

new-feature

HEAD

(b) . . . and after.

36/57



git checkout new-feature

c7e2daa 2c7ae1b 3a5de77

main

new-feature

HEAD

(a) Before. . .

c7e2daa 2c7ae1b 3a5de77

main

new-featureHEAD

(b) . . . and after.
37/57



Create a branch
Use Checkout instead

git checkout -b new-branch-name

Create a new branch here and switch to it.

• The new branch is created on the position of HEAD.

• The HEAD now points to the new branch.

38/57



Merge branches
There is a command for that

git merge other-branch

Merges the other-branch to this one.

• You call merge when you are on the branch that wants to
“receive” the changes.

• Both branches remain after the merge, but changes have been
incorporated to the current.

39/57



git merge new-feature

c7e2daa 2c7ae1b 3a5de77

1842e25 1a2e54b

main

new-feature

HEAD

(a) Before. . .

c7e2daa 2c7ae1b 3a5de77

1842e25 1a2e54b

9ef2dad

main

new-feature

HEAD

(b) . . . and after. The working directory will change as well!
40/57



Conflict
A conflict happens when during a merge there are changes to the
same lines of the same document or when there is contradictory
changes.

• Both versions are shown.

• You change your files as normally.

• You add them again to the index.

• You commit. 41/57



git merge new-feature

c7e2daa 2c7ae1b 3a5de77

1842e25 1a2e54b

main

new-feature

HEAD

(a) Before. . .

c7e2daa 2c7ae1b 3a5de77

1842e25 1a2e54b

index

main

new-feature

HEAD

(b) . . . and after. The conflicts are marked and you have to resolvel!
42/57



Remotes
The remote repositories

Remotes

A list of remote repositories that we can exchange commits.

• Every remote is reached through a url.

• It is given a name to be distinguished.

• Normally we call the “main” remote as origin.

43/57



Fetch
Get commits from remote

git pull

Fetches all commits from the remote and tries to merge the
upstream to the current one.

• Remember, remote branches are also branches, so they can be
merged.

44/57



git fetch origin

A B C origin/main

main

HEAD

(a) Before. . .

A B C D E

origin/mainmain

HEAD

(b) . . . and after.
45/57



git fetch origin

A B D E

origin/main main

HEAD

(a) Before. . .

A B C

D E

origin/main

main

HEAD

(b) . . . and after.
46/57



Pull
It’s a fetch and merge

git pull [remote-name]

Fetches all commits from the remote and merges.

• It does git fetch and git merge remote-name/branch

47/57



git pull

A B C origin/main

main

HEAD

(a) Before. . .

A B C D E origin/main

main

HEAD

(b) . . . and after.
48/57



git pull

A B D E

origin/main main

HEAD

(a) Before. . .

A B C

D E

F

origin/main

main

HEAD

(b) . . . and after.
49/57



Push
Share your changes to the world

git push

Push your local branch(es) to the remote.

• Normally it just pushes the current branch to the upstream.

• Will only work if the remote branch is updated and there is a
fast-forward to the local branch.

50/57



git push

A B C D E

origin/main main

HEAD

(a) Before. . .

A B C D E origin/main

main

HEAD

(b) . . . and after.
51/57



git push

A B C

D E

F

origin/main

main

HEAD

(a) Before. . .

A B C

D E

F

origin/main

main

HEAD

(b) . . . and after.
52/57



Git
Overview

remoteworking directory repository

git commit

git checkout

git reset

git diff --staged

git diff HEAD

git rebase

git merge

index

git add/rm

git push

git checkout

git pull

git fetch

git diff

53/57



1. Version Control
1.1 Why do we need it?
1.2 What is it?
1.3 Architecture
1.4 Commits
1.5 Branches

2. Git
2.1 Definitions
2.2 Init or Clone
2.3 Add and Commit
2.4 Checkout
2.5 Branch and Merge
2.6 Remotes, Pull and Push

3. Github and Workflow
54/57



Github
It’s just a web app

It’s a repository hosting service, based on an closed-source web app
that wraps git!

• You can create remote repositories there (free for public, paid
for private use).

• It incorporates some management tools as well (issue-tracking,
pull requests, continuous integration).

There are other platforms out there as well, like Gitlab.

55/57



Github
Host your own project

You can create repositories in GitHub and host your source code.
Same with GitLab.
You can do that before or after you create a local repository.

56/57



Github
Clone an existing repository

git clone https://github.com/qgis/QGIS.git

57/57


	Version Control
	Why do we need it?
	What is it?
	Architecture
	Commits
	Branches

	Git
	Definitions
	Init or Clone
	Add and Commit
	Checkout
	Branch and Merge
	Remotes, Pull and Push

	Github and Workflow

