Linear Algebra - Part 3
 1. Eigenvalues and eigenvectors
 2. Singular value decomposition

Liangliang Nan

Eigenvalues and Eigenvectors

- What is the difference between the results of these multiplications?

$$
\left[\begin{array}{ll}
6 & 3 \\
4 & 7
\end{array}\right]\left[\begin{array}{l}
5 \\
1
\end{array}\right]=\left[\begin{array}{l}
33 \\
27
\end{array}\right] \quad \text { vs. }\left[\begin{array}{ll}
6 & 3 \\
4 & 7
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
30 \\
40
\end{array}\right]=10\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

Eigenvalues and Eigenvectors

- Definition
- An eigenvector of an $\boldsymbol{n} \times \boldsymbol{n}$ matrix A is a nonzero vector \boldsymbol{v} such that $\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}$ for some scalar λ. The scalar λ is called an eigenvalue of A if there is a nontrivial solution \boldsymbol{v} of $\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}$; such an \boldsymbol{v} is called an eigenvector corresponding to λ.

$$
A v=\lambda v
$$

Eigenvalues and Eigenvectors

- Geometric meaning
- Non-zero $A v=\lambda v$
- When A applied to it, does not change direction
- Only scaled by the scalar value λ

Eigenvalues and Eigenvectors

- Geometric meaning
- Non-zero
$A v=\lambda v$
- When A applied to it, does not change direction
- Only scaled by the scalar value λ

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
$$

Shear transformation

Eigenvalues and Eigenvectors

$A v=\lambda v$

Eigenvalues and Eigenvectors

3Dgeoinfo

$$
\begin{aligned}
A v=\lambda v \Rightarrow & (A-\lambda I) v=0 \\
& I \text { is the } n \text { by } n \text { identity matrix }
\end{aligned}
$$

v is non-zero $\Rightarrow \operatorname{det}(A-\lambda I)=0$

- The eigenvalues of A are the roots of the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

Eigenvalues and Eigenvectors

- The eigenvalues of A are the roots of the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

Example: $\quad M=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

Eigenvalues and Eigenvectors

- The eigenvalues of A are the roots of the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

Example: $\quad M=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] . \quad|M-\lambda I|=\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right|=3-4 \lambda+\lambda^{2}$.
Roots of $\lambda^{2}-4 \lambda+3=0$ are: $\lambda_{1}=1$ and $\lambda_{2}=3$

Eigenvalues and Eigenvectors

- The eigenvalues of A are the roots of the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

Example: $\quad M=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] . \quad|M-\lambda I|=\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right|=3-4 \lambda+\lambda^{2}$.
Roots of $\lambda^{2}-4 \lambda+3=0$ are: $\lambda_{1}=1$ and $\lambda_{2}=3$
Eigenvector corresponding to $\lambda_{1}=1$ can obtained by solving $M \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}$
$\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \rightarrow\left\{\begin{array}{l}2 x_{1}+x_{2}=x_{1} \\ x_{1}+2 x_{2}=x_{2}\end{array} \rightarrow\left\{\begin{array}{l}x_{1}+x_{2}=0 \\ x_{1}+x_{2}=0\end{array} \rightarrow v_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right] \ldots v_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\right.\right.$

Eigenvalues and Eigenvectors

- Properties/Theorems
- The trace of A, defined as the sum of its diagonal elements, is also the sum of all eigenvalues

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i}=\sum_{i=1}^{n} \lambda_{i}=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}
$$

- The determinant of A is the product of all its eigenvalues

$$
\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
$$

- A invertible $\longleftrightarrow \rightarrow$ every eigenvalue is nonzero
- If A invertible, the eigenvalues of A^{-1} are $1 / \lambda_{1}, 1 / \lambda_{2}, \ldots, 1 / \lambda_{n}$
- A^{T} has the same eigenvalues A.

Eigenvalues and Eigenvectors

- Applications
- Minimum enclosing rectangle (or object-oriented bounding box)

Object-oriented bounding box

Eigenvalues and Eigenvectors

- Applications
- Minimum enclosing rectangle (or object-oriented bounding box)

Eigenvalues and Eigenvectors

- Applications
- Minimum enclosing rectangle (or object-oriented bounding box)

1) Construct covariance matrix

$$
C=\frac{1}{k} \sum_{i=1}^{k}\left(p_{i}-\bar{p}\right) \otimes\left(p_{i}-\bar{p}\right)
$$

2) Compute eigenvalues and eigenvectors

$$
C \cdot \boldsymbol{v}_{j}=\lambda_{j} \cdot v_{j}, j \in\{0,1,2\}
$$

3) The two directions of the eigenvectors give the axes
4) Project the points onto the two axes to determine their range

Eigenvalues and Eigenvectors

- Applications
- Minimum enclosing rectangle (or oriented bounding box)
- Normal estimation for point clouds

1) For each point, find it K closest neighbors
2) Construct covariance matrix

$$
C=\frac{1}{k} \sum_{i=1}^{k}\left(p_{i}-\bar{p}\right) \otimes\left(p_{i}-\bar{p}\right)
$$

3) Compute eigenvalues and eigenvectors

$$
C \cdot v_{j}=\lambda_{j} \cdot v_{j}, j \in\{0,1,2\}
$$

4) Normal vector = the eigenvector corresponding to the smallest eigenvalue

Eigenvalues and Eigenvectors

- Applications
- Minimum enclosing rectangle (or oriented bounding box)
- Normal estimation for point clouds
- Inverse of matrix A
- solve linear systems
- matrix approximation
- image compression

Eigenvalues and Eigenvectors

- Compute the eigenvalues and eigenvectors of the following transformations

	Scaling	Unequal scaling	Horizontal shear
Illustration	$\left[\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right]$	$\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]$	$\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$
Matrix			

Eigenvalues and Eigenvectors

- Compute the eigenvalues and eigenvectors of the following transformations

	Scaling	Unequal scaling	Horizontal shear
Illustration	$\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$	$\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]$	$\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$
Matrix	$\lambda_{1}=\lambda_{2}=k$	$\lambda_{1}=k_{1}$ $\lambda_{2}=k_{2}$	$\lambda_{1}=\lambda_{2}=1$
Eigenvalues, λ_{i}		$u_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ Eigenvectors All non-zero vectors	$u_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Matrix Decomposition

- LU decomposition

$$
\mathbf{A}=\mathbf{L U}=\left[\begin{array}{lll}
\mathrm{L} 10 & 1 & 0 \\
\mathrm{~L} 20 & \mathrm{~L} 21 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & \mathrm{U} 11 & \mathrm{U} 12 \\
0 & 0 & \mathrm{U} 22
\end{array}\right]
$$

- Cholesky decomposition

$$
\mathbf{A}=\mathbf{L L}^{T}=\left(\begin{array}{ccc}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{array}\right)\left(\begin{array}{ccc}
L_{11} & L_{21} & L_{31} \\
0 & L_{22} & L_{32} \\
0 & 0 & L_{33}
\end{array}\right)
$$

- Singular value decomposition

Singular Value Decomposition

3Dgeoinfo

- Definition

- A factorization of a given matrix to its components

where
- A - an $m \times n$ real (or complex) matrix
- U-an $m \times m$ orthogonal matrix
- V-an $n \times n$ orthogonal matrix
- Σ - an $m \times n$ diagonal matrix; the entries on the diagonal called the singular values

Singular Value Decomposition

- Definition
- A factorization of a given matrix to its components

$$
\underset{m \times n}{\mathbf{A}}=\underset{m \times m}{\mathbf{U}} \cdot \underset{m \times n}{\boldsymbol{\Sigma}^{\mathbf{~}}} \cdot \underset{n \times n}{\mathbf{v}^{\top}}
$$

Example (general case)

$$
\underset{\mathbf{A}}{\left[\begin{array}{cc}
2 & 0 \\
0 & -3 \\
0 & 0
\end{array}\right]}=\underset{\mathbf{U}}{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]} \cdot \underset{\Sigma}{\left[\begin{array}{ll}
2 & 0 \\
0 & 3 \\
0 & 0
\end{array}\right]} \cdot \underset{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}{\left[\begin{array}{ll}
\mathbf{L}
\end{array}\right]}
$$

Singular Value Decomposition

- Geometric meaning

Example (square matrix)

Singular Value Decomposition

- Geometric meaning

$$
A=U \Sigma V^{\top}
$$

Example (square matrix)

Singular Value Decomposition

- Geometric meaning

$$
A=U \Sigma V^{\top}
$$

Example (square matrix)

Singular Value Decomposition

- How to compute?
- Theorem: SVD and eigenvalues/eigenvectors
- The columns of \mathbf{U} are eigenvectors of $\mathbf{A A}^{\top}$
- The columns of \mathbf{V} are eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$
- The non-zero elements of Σ are the square roots of the non-zero eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$ or $\mathbf{A A}^{\top}$

$$
\begin{aligned}
& \mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}} \quad \Sigma=\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \cdot & \\
& & & \sigma_{N}
\end{array}\right] \\
& \mathrm{U}, \mathrm{~V}=\text { orthogonal matrix } \\
& \begin{array}{lll}
\sigma_{i}=\sqrt{\lambda_{i}} \quad \begin{array}{l}
\sigma=\text { singular value } \\
\lambda=\text { eigenvalue of } \mathrm{A}^{\mathrm{t}} \mathrm{~A}
\end{array}
\end{array}
\end{aligned}
$$

Singular Value Decomposition

- Applications
- Transformation decomposition

Singular Value Decomposition

- Applications
- Transformation decomposition
- Solve homogenous linear systems $A \boldsymbol{x}=0$
- A is a square matrix
- $\boldsymbol{x}=0$ is always a valid solution
- $\operatorname{det}(A)=0 \rightarrow$ a non-zero solution
$-\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\top}$
$-\boldsymbol{x}$: the last column of \boldsymbol{V} (i.e., right singular vector corresponding to the zero singular value of A)

Singular Value Decomposition

- Applications
- Transformation decomposition
- Solve homogenous linear systems $A \boldsymbol{x}=0$
- Compute inverse of a matrix A

$$
A=U \Sigma V^{\top}
$$

Singular Value Decomposition

- Applications
- Transformation decomposition
- Solve homogenous linear systems $A \boldsymbol{x}=0$
- Compute inverse of a matrix A

$$
\begin{aligned}
& A=U \Sigma V^{\top} \\
\rightarrow & A^{-1}=\left(U \Sigma V^{\top}\right)^{-1}
\end{aligned}
$$

$$
=\left(\mathrm{V}^{\top}\right)^{-1} \Sigma^{-1} U^{-1} \quad U \text { and } V \text { orthogonal, so inverse }=\text { transpose }
$$

$$
=\mathrm{V} \Sigma^{-1} U^{\top} \quad \Sigma^{-1} \text { is also diagonal with reciprocals of entries of } \Sigma
$$

Singular Value Decomposition

- Applications
- Transformation decomposition
- Solve homogenous linear systems $A \boldsymbol{x}=0$
- Compute inverse of a matrix A
- Camera calibration (in GEO1016)
- Recover the camera parameters from a set of 3D-pixel correspondences.

Assignment 3: part 3

Question 7: eigenvalues, eigenvectors
Question 8: transformation decomposition

Hint: do some (simply) transformation of SVD

Exam (linear algebra part)

1. 2 or 3 multi-choice questions

- With four choices A, B, C, and D
- Only one correct answer

2. 2 or 3 open-ended questions

- Give an answer
- Give the explanation

