Linear Algebra - Part 2 Linear systems, linear least-squares

Liangliang Nan

Linear system

- Linear equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

x_{1}, \ldots, x_{n} : variables
b and a_{1}, \ldots, a_{n} : constant real (or complex) numbers

- Linear system (a system of linear equations)

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots=b_{3}
\end{aligned}
$$

Linear system

- Solution of a linear system
- A list of numbers satisfying each equation

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots=b_{3}
\end{aligned}
$$

Linear system

- Solution of a linear system
- A list of numbers satisfying each equation

Example

$$
\begin{gathered}
2 x-y=1 \\
x-2 y=-2
\end{gathered}
$$

Linear system

- Solution of a linear system
- A list of numbers satisfying each equation

$$
\begin{aligned}
& \text { Example (unique solution) } \\
& \begin{array}{c}
2 x-y=1 \\
x-2 y=-2
\end{array}
\end{aligned}
$$

Linear system

- Solution of a linear system
- A list of numbers satisfying each equation
- Solution set
- The set of all possible solutions

Example

$$
x+2 y=3
$$

Linear system

- Solution of a linear system
- A list of numbers satisfying each equation
- Solution set
- The set of all possible solutions

Example (infinite number of solutions)

$$
x+2 y=3
$$

Linear system

- Solution of a linear system
- A list of numbers satisfying each equation
- Solution set
- The set of all possible solutions

Example

$$
\begin{array}{r}
x+2 y=3 \\
2 x+4 y=2
\end{array}
$$

Linear system

- Solution of a linear system
- A list of numbers satisfying each equation
- Solution set
- The set of all possible solutions

Example (no solution)

$$
\begin{array}{r}
x+2 y=3 \\
2 x+4 y=2
\end{array}
$$

Linear system

- A system of linear equations has
- no solution, or
- exactly one solution, or
- infinitely many solutions.

A system of linear equations is consistent

- One solution or infinitely many solutions

A system of linear equations is inconsistent

- No solution

Linear system

- Does a system of linear equations have
- no solution, or
- exactly one solution, or
- infinitely many solutions ?

If unique solution, what is it?

Solve a linear system

- Without/With matrix notation

Solve a linear system

- Without matrix notation
- Row transformation: elimination

$$
\begin{align*}
& x_{1}-2 x_{2}+x_{3}=0 \\
& 2 x_{2}-8 x_{3}=8 \tag{2}\\
&-4 x_{1}+5 x_{2}+9 x_{3}=-9,---(1) \\
& \hline--(3)
\end{align*}
$$

Solve a linear system

- Without matrix notation
- Row transformation: elimination

$$
\begin{array}{rlrl}
x_{1}-2 x_{2}+x_{3} & =0 & ---(1) \\
2 x_{2}-8 x_{3} & =8 & \cdots--(2) & \square
\end{array} \begin{aligned}
& x_{1}-2 x_{2}+x_{3}=0 \\
& 2 x_{2}-8 x_{3}=8 \\
&-4 x_{1}+5 x_{2}+9 x_{3}=-9,--(3) \\
&-3 x_{2}+13 x_{3}=-9 \\
& \text { (1) } * 4+\text { (3) }
\end{aligned}
$$

Solve a linear system

- Without matrix notation
- Row transformation: elimination

$$
\begin{align*}
& x_{1}-2 x_{2}+x_{3}=0 \tag{1}\\
& x_{1}-2 x_{2}+x_{3}=0 \tag{1}\\
& 2 x_{2}-8 x_{3}=8 \tag{2}\\
& 2 x_{2}-8 x_{3}=8 \\
& -3 x_{2}+13 x_{3}=-9 \tag{3}\\
& \text { (1) } * 4+(3) \\
& x_{1}-2 x_{2}+x_{3}=0 \tag{1}\\
& 2 x_{2}-8 x_{3}=8 \tag{2}\\
& x_{3}=3 \tag{3}\\
& (2) * 1.5+(3)
\end{align*}
$$

Solve a linear system

- Without matrix notation
- Row transformation: elimination

$$
\begin{align*}
& x_{1}-2 x_{2}+x_{3}=0 \tag{1}\\
& x_{1}-2 x_{2}+x_{3}=0 \tag{1}\\
& 2 x_{2}-8 x_{3}=8 \tag{2}\\
& -4 x_{1}+5 x_{2}+9 x_{3}=-9 \text {, } \tag{3}\\
& 2 x_{2}-8 x_{3}=8 \\
& -3 x_{2}+13 x_{3}=-9 \\
& \text { (1) } * 4+(3) \\
& \begin{array}{rlllll}
x_{1}-2 x_{2}+x_{3}=0 & ---(1) \\
2 x_{2}-8 x_{3} & =8 & ---(2) \\
x_{3} & =3 & ---(3)
\end{array} \quad \begin{array}{rlll}
x_{1}-2 x_{2}+x_{3}=0 & ---(1) \\
x_{2} & =16 & --(2) \\
x_{3} & =3 & --(3) & x_{1}=29 \\
x_{2} & =16
\end{array} \tag{3}
\end{align*}
$$

$$
(2)+8 *(3)
$$

Solve a linear system

- Matrix notation

Solve a linear system

- Matrix notation
- Coefficient matrix

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned}
$$

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 2 & -8 \\
-4 & 5 & 9
\end{array}\right]
$$

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
\mathbf{b}=\left[\begin{array}{r}
0 \\
8 \\
-9
\end{array}\right]
$$

A $\mathbf{x}=\mathbf{b}$

Solve a linear system

- Gaussian elimination
- Matrix inversion

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 2 & -8 \\
-4 & 5 & 9
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{r}
0 \\
8 \\
-9
\end{array}\right]
$$

$A x=b$

Solve a linear system

- Gaussian elimination
- Strategy: find an equivalent system easier to solve

$$
A \mathbf{x}=\mathbf{b} \Rightarrow A^{\prime} \mathbf{x}=\mathbf{b}^{\prime}
$$

Solve a linear system

- Augmented matrix

A x=b, where $\mathrm{A}=\left[\begin{array}{rrr}1 & -2 & 1 \\ 0 & 2 & -8 \\ -4 & 5 & 9\end{array}\right] \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{r}0 \\ 8 \\ -9\end{array}\right]$

$$
\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

Solve a linear system

- Gaussian elimination
- Elementary row operations
- Replacement: Replace one row by the sum of itself and a multiple of another row.
- Interchange: Interchange two rows.
- Scaling: Multiply all entries in a row by a nonzero constant.

Solve a linear system

- Gaussian elimination

- Elementary row operations
- Replacement: Replace one row by the sum of itself and a multiple of another row.
- Interchange: Interchange two rows.
- Scaling: Multiply all entries in a row by a nonzero constant.

$$
\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right] \begin{aligned}
& \cdots---(1) \\
& \cdots-(2) \\
& \cdots
\end{aligned}
$$

Solve a linear system

- Gaussian elimination

- Elementary row operations

- Replacement: Replace one row by the sum of itself and a multiple of another row.
- Interchange: Interchange two rows.
- Scaling: Multiply all entries in a row by a nonzero constant.

$$
\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right] \underset{\cdots-(3)}{\cdots-(1)} \underset{\substack{-(1) \\
\cdots+(3)->(3)}}{\Longleftrightarrow}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

Solve a linear system

3Dgeoinfo

- Gaussian elimination

- Elementary row operations

- Replacement: Replace one row by the sum of itself and a multiple of another row.
- Interchange: Interchange two rows.
- Scaling: Multiply all entries in a row by a nonzero constant.

$$
\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right] \underset{\cdots-(3)}{\cdots-{ }_{--(2)}^{(1)}} \underset{(1)^{*} 4+(3) \rightarrow(3)}{\square}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right] \stackrel{(2) * 1 / 2 \rightarrow(2)}{\square}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

Solve a linear system

3Dgeoinfo

- Gaussian elimination

- Elementary row operations

- Replacement: Replace one row by the sum of itself and a multiple of another row.
- Interchange: Interchange two rows.
- Scaling: Multiply all entries in a row by a nonzero constant.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right] \underset{\cdots-(3)}{\cdots-(1)} \underset{-(2)}{(1) * 4+(3) \rightarrow(3)}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right] \stackrel{(2)^{* 1 / 2} \rightarrow(2)}{\Rightarrow}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]} \\
& \stackrel{(2))^{* 3+(3)} \rightarrow(3)}{\Rightarrow}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
\end{aligned}
$$

Solve a linear system

3Dgeoinfo

- Gaussian elimination

- Elementary row operations

- Replacement: Replace one row by the sum of itself and a multiple of another row.
- Interchange: Interchange two rows.
- Scaling: Multiply all entries in a row by a nonzero constant.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right] \underset{\cdots-(3)}{\cdots-(2)} \underset{\cdots}{(1)^{*} 4+(3) \rightarrow(3)}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right] \stackrel{(2) * 1 / 2 \rightarrow(2)}{\rightleftharpoons}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]} \\
& \stackrel{(2) * 3+(3) \rightarrow(3)}{\Rightarrow}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right] \stackrel{(1)-(3) \rightarrow(1)+4^{*}(3) \rightarrow(2)}{\Rightarrow}\left[\begin{array}{rrrr}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
\end{aligned}
$$

Solve a linear system

- Gaussian elimination

- Elementary row operations

- Replacement: Replace one row by the sum of itself and a multiple of another row.
- Interchange: Interchange two rows.
- Scaling: Multiply all entries in a row by a nonzero constant.

$$
\left.\begin{array}{l}
{\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right] \underset{\cdots-(3)}{\cdots-(1)} \underset{\cdots}{(1)^{*}+4+(3) \rightarrow(3)}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right] \stackrel{(2) * 1 / 2 \rightarrow(2)}{\Rightarrow}\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & -4 \\
0 \\
0 & -3 & 13
\end{array}\right)-9}
\end{array}\right]
$$

Solve a linear system

- Gaussian elimination

$$
\begin{array}{ll}
{\left[\begin{array}{rrrr}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]} & \mathbf{I} \mathbf{X}=\left[\begin{array}{r}
29 \\
16 \\
3
\end{array}\right] \\
\mathbf{X}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & x_{1}=29 \\
x_{2}=16 \\
x_{3}=3
\end{array}
$$

Solve a linear system

- Gaussian elimination

$$
\left.\begin{array}{rlr}
{\left[\begin{array}{rrrr}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]} & \mathbf{I} \mathbf{X}=\left[\begin{array}{r}
29 \\
16 \\
3
\end{array}\right] \\
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & x_{1}=29 \\
x_{2}=16 \\
x_{3} & =3
\end{array}\right] \begin{aligned}
& \\
& x_{1}-2 x_{2}+x_{3}=0 \\
& 2 x_{2}-8 x_{3}=8 \\
&-4 x_{1}+5 x_{2}+9 x_{3}=-9,
\end{aligned}
$$

Solve a linear system

- Gaussian elimination

$$
\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

original augmented matrix

$$
A \mathbf{x}=\mathbf{b}
$$

original linear system

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

transformed augmented matrix

$$
\begin{aligned}
& \mathbf{I} \mathbf{X}=\mathbf{X}^{0} \\
& \text { equivalent linear system }
\end{aligned}
$$

Solve a linear system

- Gaussian elimination

- Matrix inversion

Gaussian elimination
$A \mathbf{x}=\mathbf{b}$
original linear system

$$
\mathbf{I} \mathbf{x}=\mathbf{x}^{0}
$$

equivalent linear system

Matrix inversion

$A^{-1} A \mathbf{x}=A^{-1} \mathbf{b}$

$$
\mathbf{x}=\mathrm{A}^{-1} \mathbf{b}
$$

Direct solution

Solve a linear system

- Gaussian elimination

- Matrix inversion

Gaussian elimination

$$
A \mathbf{x}=\mathbf{b}
$$

original linear system

$$
\mathbf{I} \mathbf{x}=\mathbf{x}^{0}
$$

equivalent linear system

> Matrix inversion
$A^{-1} A x=A^{-1} b$

$$
\mathbf{x}=\mathrm{A}^{-1} \mathbf{b}
$$

Direct solution
Useful only if unique solution exists
Gain insights before you solve

Linear system

- Two fundamental questions
- Existence: Is the system consistent (does at least one solution exist)?
- Uniqueness: If a solution exists, is it the only one?

$$
\begin{array}{r}
x+2 y=3 \\
2 x+4 y=2----(1)
\end{array}
$$

Linear system

- Two fundamental questions
- Existence: Is the system consistent (does at least one solution exist)?
- Uniqueness: If a solution exists, is it the only one?
- $\operatorname{det}(A)!=0->$ unique solution
- $\operatorname{det}(A)==0$-> no solution, or many solution

Linear system

- Two fundamental questions
- Existence: Is the system consistent (does at least one solution exist)?
- Uniqueness: If a solution exists, is it the only one?
- $\operatorname{det}(A)!=0->$ unique solution
- $\operatorname{det}(A)==0->$ no solution, or many solution

$$
\begin{array}{r}
x+2 y=1 \\
2 x+4 y=2
\end{array}
$$

Linear system

3Dgeoinfo

- Non-square systems

$$
A_{m \times n} x=b \quad(m \neq n)
$$

- Underdetermined if $\mathrm{m}<\mathrm{n}$
- "more unknowns than equations"
- If any two equations are not consistent: no solution
- If all pairs of equations are consistent: infinite number of solutions
- Overdetermined if $m>n$
- "more equations than unknowns"
- Usually has no solution, but people may want the "best approximate solution"

Linear least squares

3Dgeoinfo

- Fit a mathematical model to data
- Idealized value of the model for any data is linearly in term of the unknown parameters
- The fitted model summarizes data, can predict unobserved values

Linear least squares

- Fit a mathematical model to data

Linear least squares

- Goal: minimizing the sum of the square of the errors

Linear least squares

- Goal: minimizing the sum of the square of the errors

Linear least squares

- Goal: minimizing the sum of the square of the errors
$\min \sum_{i=0}^{i=N}\left[y_{i}-\left(a x_{i}+b\right)\right]^{2} \quad$ Variables are a an b

Linear least squares

- Goal: minimizing the sum of the square of the errors

$$
\min \sum_{i=\mathbf{0}}^{i=N}\left[y_{i}-\left(a x_{i}+b\right)\right]^{2} \quad \text { Variables are } a \text { an } b
$$

- Equivalent to solving the overdetermined linear system

$$
\begin{aligned}
& y_{1}-\left(a x_{1}+b\right)=0 \\
& y_{2}-\left(a x_{2}+b\right)=0 \\
& y_{3}-\left(a x_{3}+b\right)=0
\end{aligned} \quad N \geq 2
$$

Linear least squares

- Goal: minimizing the sum of the square of the errors

$$
\min \sum_{i=\mathbf{0}}^{i=N}\left[y_{i}-\left(a x_{i}+b\right)\right]^{2} \quad \text { Variables are } a \text { an } b
$$

- Equivalent to solving the overdetermined linear system

$$
\begin{aligned}
& y_{1}-\left(a x_{1}+b\right)=0 \\
& y_{2}-\left(a x_{2}+b\right)=0 \\
& y_{3}-\left(a x_{3}+b\right)=0
\end{aligned} \quad N \geq 2
$$

- Solve it

$$
A \mathbf{x}=\mathbf{b} \Rightarrow A^{\top} A \mathbf{x}=A^{\top} \boldsymbol{b} \Rightarrow \mathbf{x}=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

Other methods

- Row transformation w/o matrix notation
- Gaussian elimination
- Direct method $\quad \mathbf{x}=\mathrm{A}^{-1} \mathrm{~b}$
- Many other methods
- LU decomposition

$$
\left[\begin{array}{lll}
\text { A00 } & \text { A01 } & \text { A02 } \\
\text { A10 } & \text { A11 } & \text { A12 } \\
\text { A20 } & \text { A21 } & \text { A22 }
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\text { L10 } & 1 & 0 \\
\text { L20 } & \text { L21 } & 1
\end{array}\right]\left[\begin{array}{ccc}
\text { U00 } & \text { U01 } & \text { U02 } \\
0 & \text { U11 } & \text { U12 } \\
0 & 0 & \text { U22 }
\end{array}\right]
$$

- Cholesky decomposition

$$
\mathbf{A}=\mathbf{L L}^{T}=\left(\begin{array}{ccc}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{array}\right)\left(\begin{array}{ccc}
L_{11} & L_{21} & L_{31} \\
0 & L_{22} & L_{32} \\
0 & 0 & L_{33}
\end{array}\right)
$$

Assignment (part 2)

3Dgeoinfo

- System of linear equations
- Linear least squares
- Use any programming language/tools
- Use any third party libraries/software

Next Lecture

Part 3: Eigen values/vectors, singular value decomposition

