Linear Algebra

Liangliang Nan

What is linear algebra?

What is linear algebra?

What is linear algebra?

- Difficult problem can be handled effectively
- Representation
- 3D points, lines, planes in the 3D space
- Distance?

What is linear algebra?

- Difficult problem can be handled effectively
- Representation
- Coordinates will be used
- Perform geometrical transformations/computation
- The rotation of a 3D object
- The intersection of 3 non-parallel planes
- Associate 3D with 2D points
- The projection of a 3D object onto a plane

What is linear algebra?

- Difficult problem can be handled effectively
- Representation
- Coordinates will be used
- Images are matrices of numbers
- Find properties of these number

What is linear algebra?

3Dgeoinfo

- Difficult problem can be handled effectively
- Representation
- Coordinates will be used
- Images are matrices of numbers
- Linear algebra
- Organize information in cases where certain mathematical structures are present
- The study of those structures
- Vectors and linear functions

Scope of the lectures

Part 1: Vectors, matrices, matrix/vector arithmetic, geometric transformations
Part 2: Linear systems, linear-least squares
Part 3: Eigen values/vectors, singular value decomposition

Linear Algebra - Part 1
 Vectors, matrices, matrix/vector arithmetic, geometric transformations

Liangliang Nan

Vectors (i.e., 2D and 3D vectors)

Vectors (i.e., 2D vectors)

3Dgeoinfo

$$
\mathbf{v}=\left(x_{1}, x_{2}\right)
$$

Magnitude: $\quad\|\mathbf{v}\|=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}}$

If $\quad\|\mathbf{v}\|=1, \quad \mathbf{v}$ Is a UNIT vector

Vectors (i.e., 2D vectors)

$$
\mathbf{v}=\left(x_{1}, x_{2}\right)
$$

Magnitude: $\quad\|\mathbf{v}\|=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}}$

If $\quad\|\mathbf{v}\|=1, \quad \mathbf{v}$ Is a UNIT vector
What is the unit vector that has the same direction as \mathbf{v} ?

Vectors (i.e., 2D vectors)

$$
\mathbf{v}=\left(x_{1}, x_{2}\right)
$$

Magnitude: $\quad\|\mathbf{v}\|=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}}$

If $\quad\|\mathbf{v}\|=1, \quad \mathbf{v}$ Is a UNIT vector

$$
\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left(\frac{x_{1}}{\|\mathbf{v}\|}, \frac{x_{2}}{\|\mathbf{v}\|}\right) \text { Is a unit vector }
$$

Orientation: $\quad \theta=\tan ^{-1}\left(\frac{x_{2}}{x_{1}}\right)$

Vector Addition

3Dgeoinfo

$$
\mathbf{v}+\mathbf{w}=\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)
$$

Compute
A parallelogram

$$
\begin{aligned}
& (0,1)+(1,0)=? \\
& (1,1)+(1,1)=? \\
& (1,0)+(-1,0)=?
\end{aligned}
$$

Vector Subtraction

3Dgeoinfo

- Inverse operation of addition

$$
\mathbf{v}-\mathbf{w}=\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)=\left(x_{1}-y_{1}, x_{2}-y_{2}\right)
$$

Scalar Product

3Dgeoinfo

- Length is changed
- Direction is preserved

$$
a \mathbf{v}=a\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right)
$$

Inner (dot) Product

3Dgeoinfo

The inner product is a SCALAR!

$$
\mathrm{v} \cdot \mathrm{w}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=\|\mathrm{v}\| \cdot\|\mathrm{w}\| \cos \alpha
$$

Inner (dot) Product

The inner product is a SCALAR!
$\mathrm{v} \cdot \mathrm{W}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=\|\mathrm{v}\| \cdot\|\mathrm{w}\| \cos \alpha$
if $\quad \mathrm{v} \perp \mathrm{w}, \quad \mathrm{v} \cdot \mathrm{w}=$

Inner (dot) Product

The inner product is a SCALAR!

$$
\mathrm{v} \cdot \mathrm{w}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=\|\mathrm{v}\| \cdot\|\mathrm{w}\| \cos \alpha
$$

Compute the inner product of

$$
\begin{aligned}
& (0,1) \cdot(1,0)=? \\
& (1,1) \cdot(1,1)=? \\
& (1,0) \cdot(-1,0)=?
\end{aligned}
$$

Orthonormal Basis

3Dgeoinfo

- Unit vectors; orthogonal to each other
- Any vector -> linear combination of the basis

$$
\begin{array}{lll}
\mathbf{i}=(1,0) & \|\mathbf{i}\|=1 & \mathbf{i} \cdot \mathbf{j}=0 \\
\mathbf{j}=(0,1) & \|\mathbf{j}\|=1 & \\
\mathbf{v}=\left(x_{1}, x_{2}\right) & \mathbf{v}=x_{1} \mathbf{i}+x_{2} \mathbf{j}
\end{array}
$$

Orthonormal Basis

3Dgeoinfo

- Unit vectors; orthogonal to each other
- Any vector -> linear combination of the basis

$$
\begin{aligned}
\mathbf{i} & =(1,0) \quad\|\mathbf{i}\|=1 \quad \mathbf{i} \cdot \mathbf{j}=0 \\
\mathbf{j} & =(0,1) \quad\|\mathbf{j}\|=1 \\
\mathbf{v} & =\left(x_{1}, x_{2}\right) \quad \quad \mathbf{v}=x_{1} \mathbf{i}+x_{2} \mathbf{j} \\
\mathbf{v} \cdot \mathbf{i} & = \\
\mathbf{v} \cdot \mathbf{j} & =
\end{aligned}
$$

Orthonormal Basis

- Unit vectors; orthogonal to each other
- Any vector -> linear combination of the basis

$$
\begin{aligned}
& \mathbf{v} \cdot \mathbf{i}=?=\left(\mathrm{x}_{1} \mathbf{i}+\mathrm{x}_{2} \mathbf{j}\right) \cdot \mathbf{i}=\mathrm{x}_{1} 1+\mathrm{x}_{2} 0=\mathrm{x}_{1} \\
& \mathbf{v} \cdot \mathbf{j}=\left(\mathrm{x}_{1} \mathbf{i}+\mathrm{x}_{2} \mathbf{j}\right) \cdot \mathbf{j}=\mathrm{x}_{1} \cdot 0+\mathrm{x}_{2} \cdot 1=\mathrm{x}_{2}
\end{aligned}
$$

Vector (cross) Product

Magnitude: $\|u\|=\|v \times w\|=\|v\|\|w\| \sin \alpha$

Vector (cross) Product

Magnitude: $\|u\|=\|v \times w\|=\|v\|\|w\| \sin \alpha$

Orientation:

$$
u \perp v \Rightarrow u \cdot v=
$$

$$
u \perp w \Rightarrow u \cdot w=
$$

Vector (cross) Product

Magnitude: $\|u\|=\|v \times w\|=\|v\|\|w\| \sin \alpha$

Orientation:

$$
u \perp v \Rightarrow u \cdot v=(v \times w) \cdot v=0
$$

$$
u \perp w \Rightarrow u \cdot w=(v \times w) \cdot w=0
$$

if
v// w?

$$
\rightarrow \mathrm{u}=
$$

Vector Product Computation

- Orthonormal basis

$$
\begin{array}{lll}
\mathbf{i}=(1,0,0) & \|\mathbf{i}\|=1 & \mathbf{i}=\mathbf{j} \times \mathbf{k} \\
\mathbf{j}=(0,1,0) & \|\mathbf{j}\|=1 & \mathbf{j}=\mathbf{k} \times \mathbf{i} \\
\mathbf{k}=(0,0,1) & \|\mathbf{k}\|=1 & \mathbf{k}=\mathbf{i} \times \mathbf{j} \\
\mathbf{u}=\mathbf{v} \times \mathbf{w}=\left(x_{1}, x_{2}, x_{3}\right) \times\left(y_{1}, y_{2}, y_{3}\right)
\end{array}
$$

Vector Product Computation

- Orthonormal basis

$$
\begin{array}{ccc}
\mathbf{i}=(1,0,0) & \|\mathbf{i}\|=1 & \mathbf{i}=\mathbf{j} \times \mathbf{k} \\
\mathbf{j}=(0,1,0) & \|\mathbf{j}\|=1 & \mathbf{j}=\mathbf{k} \times \mathbf{i} \\
\mathbf{k}=(0,0,1) & \|\mathbf{k}\|=1 & \mathbf{k}=\mathbf{i} \times \mathbf{j}
\end{array} \quad \begin{gathered}
\mathbf{u}=\mathbf{v} \times \mathbf{w}=\left(x_{1}, x_{2}, x_{3}\right) \times\left(y_{1}, y_{2}, y_{3}\right) \\
=\left(x_{2} y_{3}-x_{3} y_{2}\right) \mathbf{i}^{+}\left(x_{3} y_{1}-x_{1} y_{3}\right) \mathbf{j}^{+}\left(x_{1} y_{2}-x_{2} y_{1}\right) \mathbf{k}
\end{gathered}
$$

Matrices

Matrix addition

3Dgeoinfo

$$
A_{n \times m}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right] \longleftrightarrow \begin{gathered}
\text { and } \\
\text { Pixel's intensity value }
\end{gathered}
$$

Sum: $\quad C_{n \times m}=A_{n \times m}+B_{n \times m} \quad c_{i j}=a_{i j}+b_{i j}$
A and B must have the same dimensions!

Example: $\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]+\left[\begin{array}{ll}6 & 2 \\ 1 & 5\end{array}\right]=\left[\begin{array}{ll}8 & 7 \\ 4 & 6\end{array}\right]$

Matrix product

$$
\begin{aligned}
& A_{n \times m}=\left[\begin{array}{cccc}
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right] \mathbf{a}_{\mathrm{i}} \quad B_{m \times p}=\left[\begin{array}{ccc}
b_{11} \\
b_{21} \\
\vdots \\
b_{m 1}
\end{array} \begin{array}{ccc}
b_{12} & \ldots & b_{1 p} \\
b_{22} & \ldots & b_{2 p} \\
\vdots & \vdots & \vdots \\
b_{m 2} & \ldots & b_{m p}
\end{array}\right]}
\end{array}\right. \\
& \text { Product: } \\
& b_{j}
\end{aligned}
$$

$$
C_{n \times p}=A_{n \times \sqrt{m}} P_{\mathrm{m}_{\mathrm{m} \times p}} \quad \mathrm{c}_{\mathrm{ij}}=\mathbf{a}_{\mathrm{i}} \cdot \mathbf{b}_{\mathrm{j}}=\sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{a}_{\mathrm{ik}} \mathrm{~b}_{\mathrm{kj}}
$$

A and B must have compatible dimensions!

$$
A_{n \times n} B_{n \times n} B_{n \times n} A_{n \times n}
$$

Matrix transpose

Transpose:

$$
\begin{array}{cr}
C_{m \times n}=A_{n \times m}^{T} & (A+B)^{T}=A^{T}+B^{T} \\
c_{i j}=a_{j i} & (A B)^{T}=B^{T} A^{T} \\
\text { If } & A^{T}=A
\end{array} \quad \text { A is symmetric } \quad l l
$$

Examples:

$$
\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]^{T}=\left[\begin{array}{ll}
6 & 1 \\
2 & 5
\end{array}\right] \quad\left[\begin{array}{ll}
6 & 2 \\
1 & 5 \\
3 & 8
\end{array}\right]^{T}=\left[\begin{array}{lll}
6 & 1 & 3 \\
2 & 5 & 8
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
5 & 2 \\
1 & 5
\end{array}\right]} \\
& {\left[\begin{array}{ll}
3 & 2 \\
2 & 7
\end{array}\right]}
\end{aligned}
$$

Matrix determinant

$\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$
$\operatorname{det}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{cc}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
A must be square
Example: $\operatorname{det}\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]=$

$$
\left|\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & 4 \\
8 & 4 & 10
\end{array}\right|=
$$

Matrix inverse

- Reciprocal

- Inverse of a matrix

When the inverse comes first:

$$
\begin{aligned}
A \times A^{-1} & =\mathbf{I} \\
I & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Identity Matrix

$$
\begin{aligned}
& (1 / 8) \times 8=\mathbf{1} \\
& A^{-1} \times A=\mathbf{I}
\end{aligned}
$$

Matrix inverse: compute

3Dgeoinfo

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\underset{\text { determinant }}{\frac{1}{a d-b c}}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

1. Swap the positions of a and d
2. Put negatives in front of b and c
3. Divide everything by the determinant

Matrix inverse: always exist?

3Dgeoinfo

- A must be square

$$
\left[\begin{array}{lll}
6 & 1 & 3 \\
2 & 5 & 8
\end{array}\right]
$$

Matrix inverse: always exist?

- A must be square
- A must be non-singular

$$
\left[\begin{array}{ll}
3 & 4 \\
6 & 8
\end{array}\right]^{-1}
$$

3Dgeoinfo

2D Geometric Transformations

2D Translation

2D Translation Equation

3Dgeoinfo

$$
\begin{aligned}
& \mathbf{P}=(x, y) \\
& \mathbf{t}=\left(t_{x}, t_{y}\right)
\end{aligned}
$$

$$
\mathbf{P}^{\prime}=\mathbf{P}+\mathbf{t}=\left(\mathrm{x}+\mathrm{t}_{\mathrm{x}}, \mathrm{y}+\mathrm{t}_{\mathrm{y}}\right)
$$

2D Translation using Matrices

$$
\begin{aligned}
& \mathbf{P}=(x, y) \\
& \mathbf{t}=\left(t_{x}, t_{y}\right)
\end{aligned}
$$

$$
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
x+t_{x} \\
y+t_{y}
\end{array}\right]=\underset{\text { Not square }}{\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y}
\end{array}\right]} \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What is the inverse transformation?

2D Translation using Matrices

3Dgeoinfo

- Homogeneous coordinates
- Multiply the coordinates by a non-zero scalar and add an extra coordinate equal to that scalar

$$
\begin{aligned}
& (x, y) \rightarrow(x \cdot z, y \cdot z, z) \quad z \neq 0 \\
& (x, y, z) \rightarrow(x \cdot w, y \cdot w, z \cdot w, w) \quad w \neq 0
\end{aligned}
$$

2D Translation using Matrices

- Homogeneous coordinates
- Multiply the coordinates by a non-zero scalar and add an extra coordinate equal to that scalar

$$
\begin{aligned}
& (x, y) \rightarrow(x \cdot z, y \cdot z, z) \quad z \neq 0 \\
& (x, y, z) \rightarrow(x \cdot w, y \cdot w, z \cdot w, w) \quad w \neq 0
\end{aligned}
$$

- Back to Cartesian coordinates
- Divide by the last coordinate and eliminate it

$$
\begin{aligned}
& (x, y, z) \quad z \neq 0 \rightarrow(x / z, y / z) \\
& (x, y, z, w) \quad w \neq 0 \rightarrow(x / w, y / w, z / w)
\end{aligned}
$$

2D Translation using Homogeneous Coordinates

$$
\begin{gathered}
\mathbf{P}=(x, y) \rightarrow(x, y, 1) \\
\mathbf{t}=\left(t_{x}, t_{y}\right) \rightarrow\left(t_{x}, t_{y}, 1\right){ }^{\prime} \rightarrow\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \\
=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{t} \\
0 & 1
\end{array}\right] \cdot \mathbf{P}=\mathbf{T} \cdot \mathbf{P}
\end{gathered}
$$

Scaling

Scaling Equation

Scaling \& Translation

$$
\mathrm{P}^{\prime \prime}=\mathrm{T} \cdot \mathrm{P}^{\prime}=\mathrm{T} \cdot(\mathrm{~S} \cdot \mathrm{P})=(\mathrm{T} \cdot \mathrm{~S}) \cdot \mathrm{P}=\mathrm{A} \cdot \mathrm{P}
$$

Scaling \& Translation

$$
\begin{aligned}
& \mathbf{P}^{\prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\underbrace{\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]}_{\mathrm{A}}
\end{aligned}
$$

Scaling \& Translation

$$
\begin{aligned}
& \mathbf{P}^{\prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\underbrace{\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]}_{\mathrm{A}}=
\end{aligned}
$$

Translation \& Scaling
 = Scaling \& Translation ?

3Dgeoinfo

$$
\begin{aligned}
& \mathbf{P}^{\prime \prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}= {\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & s_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right] } \\
& \mathbf{P}^{\prime \prime \prime}=\mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P}=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
&=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{~s}_{\mathrm{x}} \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{~s}_{\mathrm{y}} \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{s}_{\mathrm{x}} \mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{s}_{\mathrm{y}} \mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right]
\end{aligned}
$$

Rotation

${ }^{T}$ TUDelft
3Dgeoinfo

Rotation Equations

Rotation Equations

$$
\begin{aligned}
& \mathrm{x}=\mathrm{r} \cos (\phi) \\
& \mathrm{y}=\mathrm{r} \sin (\phi) \\
& \mathrm{x}^{\prime}=\mathrm{r} \cos (\phi+\theta) \\
& \mathrm{y}^{\prime}=\mathrm{r} \sin (\phi+\theta) \\
& \quad \quad \quad \text { Expand } \\
& \mathrm{x}^{\prime}=\mathrm{r} \cos (\phi) \cos (\theta)-\mathrm{r} \sin (\phi) \sin (\theta) \\
& \mathrm{y}^{\prime}=\mathrm{r} \sin (\phi) \cos (\theta)+\mathrm{r} \cos (\phi) \sin (\theta) \\
& \quad \quad \text { Substitute }
\end{aligned}
$$

Rotation Equations

This is easy to capture in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What is the inverse transformation

- Rotation by - θ
R has many interesting properties:

$$
\mathbf{R}^{-1}=\mathbf{R}^{T} \quad \mathbf{R} \cdot \mathbf{R}^{\mathbf{T}}=\mathbf{R}^{\mathrm{T}} \cdot \mathbf{R}=\mathbf{I} \quad \operatorname{det}(\mathbf{R})=1
$$

Translation + Rotation + Scaling

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathbf{T} \cdot \mathrm{R} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & \mathrm{t}_{\mathrm{x}} \\
\sin \theta & \cos \theta & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\left[\begin{array}{cc}
R^{\prime} & \mathrm{t} \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathrm{S} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{R}^{\prime} \mathrm{S} & \mathrm{t}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right] \quad \begin{array}{l}
\text { If } \mathrm{s}_{\mathrm{x}}=\mathrm{s}_{\mathrm{y}} \text {, this is a similarity } \\
\text { transformation }
\end{array}
\end{aligned}
$$

Assignment 1

3Dgeoinfo

Matrix/vector arithmetic

Next Lecture

Part 2: Linear systems, linear least squares

